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Abstract. By making use of the Taylor polynomials, new proofs are presented
for three binomial identities including Abel’s convolution formula.

§1. Introduction. There are numerous identities in mathematical literature. Among
them, Newton’s binomial theorem is well known

n∑
k=0

(
n

k

)
xkyn−k = (x+ y)n.

Abel [1] (see [7, §3.1], for example) discovered the following deep generalizations of
it with an extra λ-parameter:

n∑
k=0

(
n

k

)
x(x+ kλ)k−1(y − kλ)n−k = (x+ y)n. (1)

This convolution identity is fundamental in enumerative combinatorics and num-
ber theory. The reader can refer to [19] for a historical note. The known proofs can
briefly be described as follows:

• Generating function method; see [9] and Chu [3].
• Series rearrangement and finite differences: Chu [4].
• The classical Lagrange expansion formula; see [17, §4.5].
• Lattice path combinatorics; see [15, §4.5] and [16, Appendix].
• The Cauchy residue method of integral representation; see [8, §2.1].
• Gould–Hsu Inverse series relations: Gould–Hsu [12] and Chu–Hsu [6, 2].
• Riordan arrays (which can trace back to Lagrange expansion); see [18].

The aim of this short article is to offer new and simple proofs for (1) and two
other binomial identities via Taylor polynomials.
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§2. Proof of (1). Denote by P (y) the binomial sum in (1). Its mth derivative at
y = −x is determined by

P (m)(−x) = x

n−m∑
k=0

(n− k)!

(n− k −m)!

(
n

k

)
(x+ kλ)k−1(y − kλ)n−k−m

∣∣
y=−x

=
n! x

(n−m)!

n−m∑
k=0

(−1)n−m−k
(
n−m
k

)
(x+ kλ)n−m−1. (2)

To evaluate the last sum, we recall the difference operator ∆, which is defined
for a function f(y) at the point y by

∆f(y) = f(y + 1)− f(y).

By applying n times of ∆, we have the nth difference

∆nf(y) =

n∑
k=0

(−1)n−k
(
n

k

)
f(y + k).

In particular, when f(y) is a polynomial of degree m ≤ n with the leading coefficient
cm, then by induction, it is not hard to prove the important identity (see [13,
Equation 5.42])

∆nf(y) = n! cm χ(m = n), (3)

where χ is the logical function given by χ(true) = 1 and χ(false) = 0.
Therefore, the sum in (2) results in the (n−m)th difference of a polynomial of

degree n−m−1. Consequently, P (m)(−x) vanishes for 0 ≤ m < n and P (n)(−x) =
n!.

Because P (y) is a polynomial of degree n, we confirm Abel’s identity (1) by
expressing P (y) in terms of the Taylor polynomial at y = −x as follows:

P (y) =

n∑
m=0

(x+ y)m

m!
P (m)(−x) = (x+ y)n. �

§3. A binomial transformation. Gould [11, Equation 1.10] recorded a binomial
transformation which can be reproduced equivalently as

n∑
k=0

(
x+ 1

n− k

)
yk =

n∑
i=0

(
x− i
n− i

)
(1 + y)i. (4)

Observing that both sides of the above equality are polynomials of degree n in
y. Denote by Q(y) the sum on the right–hand side. Its Maclaurin polynomial
expression reads as

Q(y) =

n∑
k=0

yk

k!
Q(k)(0).
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Then we confirm (4) by computing the kth derivative of Q(y) in the following
manner

Q(k)(0) = k!

n∑
i=k

(
x− i
n− i

)(
i

k

)

= k!(−1)n−k
n∑

i=k

(
n− x− 1

n− i

)(
−k − 1

i− k

)
= k!(−1)n−k

(
n− k − x− 2

n− k

)
= k!

(
x+ 1

n− k

)
,

where the last step is justified by the Chu–Vandermonde convolution formula. �

§4. A binomial sum identity. Let m and n be the two nonnegative integers
with m ≤ n. There is an interesting binomial sum (see [20])

n∑
k=0

(−1)k
(
n

k

)
(y + kλ)m

x+ k
=

(y − xλ)m

x
(
x+n
n

) . (5)

Clearly, this is an identity between two polynomials of degree m in y. Let R(y)
stand for the sum on the left. Then its Taylor polynomial at y = xλ is given by

R(y) =

m∑
j=0

(y − xλ)j

j!
R(j)(xλ).

Evaluate the jth derivative by

R(j)(xλ) = j!

(
m

j

)
λm−j

n∑
k=0

(−1)k
(
n

k

)
(x+ k)m−j−1.

When 0 ≤ j < m, the last sum with respect to k is the nth difference of a polynomial
of degree m− j− 1 < n that equals zero in view of (3). Instead, we have for j = m

R(m)(xλ) =

n∑
k=0

(−1)k
(
n

k

)
m!

x+ k
.

Consequently, (5) will be confirmed if we can show that

n∑
k=0

(−1)k
(
n

k

)
1

x+ k
=

n!

(x)n+1
, (6)

where the shifted factorial is defined by

(x)0 = 1 and (x)n = x(x+ 1) · · · (x+ n− 1) for n = 1, 2, · · · .

In fact, it is routine to check that (6) follows from the partial fraction decomposition

n!

(x)n+1
=

n∑
k=0

Ak

x+ k

with the connection coefficients being determined by

Ak = lim
x→−k

n!(x+ k)

(x)n+1
=

(
n

k

)
(−1)k. �
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§5. Two companion formulae. For the formula (1), Abel [1] found also a com-
panion one

n∑
k=0

(
n

k

)
x(x+ kλ)k−1(y − nλ)(y − kλ)n−k−1 = (x+ y − nλ)(x+ y)n−1.

Besides, there exists a third one of Jensen type (cf. [14]) found by Gould [10]

n∑
k=0

(
n

k

)
(x+ kλ)k(y − kλ)n−k =

n∑
m=0

n!

m!
(x+ y)mλn−m.

Both of them reduce to the usual binomial theorem when λ = 0. They can be proved
by carrying out exactly the same procedure. The interested reader is encouraged
to do it as an exercise.
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