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ABSTRACT: Robust stability analysis of inverted pendulum system with a fixed linear quadratic 

feedback is carried out using µ  analysis tools. A mathematical model of inverted pendulum system is 

presented and linearized about the desired equilibrium point. A linear quadratic control feedback matrix 
is used in the configuration of the nominal inverted pendulum system for its stabilization. After this, 
uncertainties in the inverted pendulum with a fixed feedback, is modeled in linear fractional 
transformation form , which is suitable for structured singular value computation. Both parametric and 
modeling uncertainties are considered in the inverted pendulum system. After deriving out uncertain 
system model, mixed µ  analysis method which is a structured uncertainty analysis method, is used to 

compute the uncertainty bound that does not cause instability of the inverted pendulum under feedback. A 
simulation test for validity of the results is provided. 
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SABİT GERİBESLEMELİ TERS SARKAÇ SİSTEMİNİN 

YAPISAL GÜRBÜZ  KARARLILIK ANALİZİ 
 
ÖZET:  Sabit doğrusal-kuadratik kontrol altındaki ters sarkaç sistemindeki belirsizliklere karşı 

gürbüzlük analizi, µ  analiz araçları kullanılarak yapılmıştır. Ters sarkaç sisteminin matematiksel modeli 

verilip, çalışma noktası etrafında doğrusallaştırılmaktadır. Nominal ters sarkaç sisteminin 
kararlaştırılması için doğrusal-kuadratik kontrol geri besleme matrisi kullanılmaktadır. Yapısal tekil 
değer hesaplanmasında kullanılmak üzere, sabit doğrusal-kuadratik kontrol altında olan ters sarkaç 
sistemindeki belirsizlikler doğrusal kesirli dönüşümler kullanılarak modellenmektedir.  Ters sarkaç 
sistemindeki parametrik ve modellemeden kaynaklanan  belirsizlikler dikkate alınmıştır. Belirsizlik 
modeli oluşturulduktan sonra, karışık µ  analizi (bir yapısal belirsizlik analiz yöntemi) yöntemi 

kullanılarak, geri belsem altındaki ters sarkaç sisteminde kararsızlığa neden olmayan belirsizlik sınırı 
bulunmaktadır. Bulunan sonuçları doğrulayan simülasyonlar da verilmektedir. 
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I. INTRODUCTION 
In this paper, structured robust stability of inverted pendulum system with a fixed linear 

quadratic feedback is analyzed. Uncertainties in the pendulum system consist of both 

parametric and modeling uncertainties. We model these uncertainties suitably for 

structured robustness analysis, and compute uncertainty bounds for the stability of the 

inverted pendulum system.  

The inverted pendulum system, which has a rich dynamic structure, is used in numerous 

studies to test validity of new control strategies.  In the context of µ  analysis,  [1] 

utilizes an inverted pendulum model to test a controller in the presence of  uncertainties 

in both pendulum mass and length. In another study, [2] describes an efficient LMI-

based methodology to ensure various specifications of stability and this methodology is 

applied to the control of inverted pendulum with an uncertain model. In [3], loop 

shaping design procedure is used to design a robust controller for stabilizing an inverted 

pendulum system.  In another significant article, [4] shows a design of  robust digital 

controller using a blend of state space and frequency response methods for balancing an 

inverted pendulum on a moving cart. 

Our control objective is to keep the inverted pendulum at its vertically upright 

equilibrium position on a moving cart while controlling the cart position in the presence 

of uncertainties. In the analysis, we firstly present a mathematical model of inverted 

pendulum system. Secondly, we linearize this model about the desired equilibrium 

point. Following this, we use a fixed linear quadratic feedback to control the nominal 

system.  After this, we model the inverted pendulum as an uncertain system with a 

known structure. We consider masses of the cart and the pendulum, length of the 

pendulum as parametric uncertainties, modeling errors as   dynamic uncertainty in our 

model. In the concluding section, we use the mixed µ  analysis method, a structured 

uncertainty analysis method, to compute the uncertainty bound that does not cause 

instability of the inverted pendulum under feedback.  

 

II. NOMINAL MODEL OF INVERTED PENDULUM SYSTEM 
The inverted pendulum system is a pendulum attached to a moving cart (Figure 1) and 

is intrinsically unstable, that is, it may fall over any time in any direction unless a 

suitable control force u is applied. Here we consider only a two-dimensional problem so 



 

that the pendulum moves only in the x-y plane. For this inverted pendulum system; pM  

denotes mass of the pendulum which is assumed to be concentrated at the end of the 

pendulum.  The symbols l, cM , and b denote the length of the pendulum, mass of the 

cart, and the friction constant respectively. The angle of the pendulum from the vertical 

line is denoted byθ  and the distance in horizontal plane from the reference point is 

denoted by x.  

 
Figure 1. Inverted Pendulum system 

 

Nonlinear model of the inverted pendulum system shown in Figure 1 is as follows [5]: 
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where xx =:1 , xx &=:2 , θ=:3x , θ&=:4x  and u is the control input. The control objective 

is to keep the pendulum vertically upright about the equilibrium point )0,0(),( 43 =xx  

on a moving cart. This  may be termed as stabilization of the pendulum. As an initial 

step of satisfying the control objective we linearize (1) about the equilibrium point as  
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In the sequel, we use a typical set of parameter values given in Table 1 for the nominal 

system. 

Table 1. Typical parameter values for an inverted pendulum system. 

Parameters Symbol Value Unit 
Mass of the cart Mc 3 kg 
Mass of the pend. Mp 0.5 kg 
Length of the pend. l 0.5 m 
Friction constant b 2 kg/s 
Gravitational force g 9.8 m/s2 

 

III. LINEAR QUADRATIC CONTROL  OF THE INVERTED 

PENDULUM  

In this section linear quadratic controller (LQC), [5] is applied to nominal linear model 

of the inverted pendulum system. Linear model of the inverted pendulum system given 

by expression (2) can be represented compactly as 
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where [ ]TxxxxX 4321= . Let r be the reference signal that is required to be followed 

by the cart position x. Then the system states must follow xd=[r 0 0 0]T from the initial 

state x0=[0 0 0 0]T.  This may be done by constructing the error dynamics of the system. 

Therefore, we define the error in terms of system states and desired trajectory xd  as 

 

 

 

 

 

 



 

dxXe −=: .                              (4) 

Using this in expression (3), error dynamics can be written as 
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Figure 2: Block diagram of  the feedback system with error states 

Block diagram of feedback system with error states is given in Figure 2, and we use the 

control input u , which is common to systems (3) and (5), of the form 

Keu −=        (6) 

 where [ ]4321 kkkk:K = .  Clearly, driving e to the origin of the state space is 

equivalent to system states’ tracking of the desired trajectory. Using MATLAB, an LQC 

feedback matrix that drives e to the origin can be found [6] as  

[ ]09.3645.15046.2282.15K −−−−=    

 (7) 

Robustness of the inverted pendulum system with respect to a single parameter 

perturbation at a time, under a fixed linear quadratic controller, is considered in [6]. In 

the sequel, we use µ  analysis to analyze robustness of the inverted pendulum system 

with respect to many parameter perturbations occurring simultaneously. This requires a 

specific modeling technique, namely linear fractional transformation (LFT) technique, 

which decomposes the system into known and uncertain parts.  

IV. A BRIEF BACKGROUND OF THE STRUCTURED ROBUST 

STABILITY ANALYSIS 

A linear uncertain system can be represented as an interconnection of completely 

known linear block M and the uncertainty block ∆  (Figure 3).  



 

 

Figure 3.  Macro model of  inverted pendulum system with uncertainties 

The uncertainty block has the form ),,(diag 1 m∆∆=∆ K , where each subblock i∆  is 

either a  real scalar blocks RI ikii ∈δδ=∆ , , complex scalar block C,I ikii ∈δδ=∆  or 

a full complex block ii kk
i C ×∈∆ . Transfer function matrix M of the completely known 

block can be partitioned as 
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such that the uncertainty block ∆  interacts only with submatrix 11M . 

The structured singular value, )M( 11∆µ , of a matrix nnCM ×∈11  with respect to 

a block structure ∆   is defined as  
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If no ∆  makes ∆− 11MI  singular, the structured singular value is defined as 

011

∆

∆ =µ )M( . In (9), )(∆σ  denotes the  maximum singular value of ∆ . We may 

interpret this definition as, given a certain class of uncertainties, µ is the inverse of the 

size of the smallest uncertainty that causes the system to become unstable. 

Unfortunately, (9)  is  not suitable for computing µ  since the implied optimization 

problem may have multiple  local minima. The optimization problem given in (9) is 

known as NP hard and µ  computation has some complexity [7], [8]. So, in recent 

years, new formulas are developed to calculate structured singular value for robustness 

analysis. The mixed problems, which has both real and complex uncertainties in its 

uncertain block, can have fundamentally different properties from the purely complex 

µ  problem, and these properties have important implications for computation. A large 



 

body of  work focused on the development of efficient bound analysis of  considering 

both parametric and dynamic uncertainty [9], [10],  [11], [12].  

For the mixed uncertainty case, let 

} ofeigenvaluerealais  :max{)( 1111 MMR λλρ = , with   011 =ρ )M(R  if 11M  has 

no real eigenvalue. Also let for an uncertainty block ∆  , rm  denotes number of real 

scalar blocks, cm  denotes number of complex scalar blocks and Cm  denotes number of 

full complex blocks with nmmmm Ccr ≤++= . Given a block structure  
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where for any integer k , kI  denotes the kk ×  identity matrix. In order to develop lower 

bounds for µ  we need to define some sets of block diagonal scaling matrices: 
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For any matrix nnCM ×∈11 , and any compatible block structure κ  the lower  and  upper 

bounds can  be given as [10]: 
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Note that, the lower bound provides only a sufficient condition for instability and also 

returns a worst case ∆ , that is a worst case combination of  uncertain parameters for the 



 

problem given in Figure 3. On the other hand, the upper bound provides a sufficient 

condition for stability in the presence of a specified level of structured uncertainty. 

 

V. UNCERTAINTY MODELING OF INVERTED PENDULUM 

The term uncertainty refers to the differences or errors between models and reality and 

various types of uncertainties can arise in physical systems [13]. In the unstructured 

robust control design methods, the unmodeled dynamics usually covers the parametric 

uncertainties, which results in highly conservative results.  Representing uncertainties in 

a structured form gives rise to the most unconservative  results in terms of system 

stability. Uncertainty structure in this study consists of both unmodeled dynamics and 

parametric uncertainties. In this paper, we analyze effect of the structured uncertainties 

on the stability of the inverted pendulum in the mixed µ  analysis context.  The mixed  

µ  analysis has mature tools to deal with both unmodeled dynamics and parametric 

uncertainties [9].  

In order to exhibit the steps of obtaining the linear fractional transformation (LFT) [14] 

model of the inverted pendulum system, we firstly express its nominal model under 

LQC feedback in block diagram.  Under the LQC input  given by (6), and  using e=x-xd 

, one can write system dynamics (3) as 
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Noting that xd=[r 0 0 0]T , the system state dynamics above can be written in terms of 

system component quantities as 
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The dynamics in (16) contains suitable details for block diagram modeling. By using 

SIMULINK, the block diagram corresponding to (16) is presented in Figure 4.  

 

Figure 4. Block diagram of the inverted pendulum system under LQC feedback 

In our uncertainty modeling we consider the parametric uncertainties in cM , pM , l, 

and unmodeled dynamics arising from several simplifications in the original model and 

the linearization. The uncertain parameters’ possible variations about their nominal 

values can be represented as 
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One can use the block diagrams given in Figures 5.a and 4.b to represent P1 and P in 

LFT forms respectively. 



 

             

Figure 5.a. LFT model of uncertainty P1   Figure 5.b. LFT model of 

uncertainty P 

Unmodeled dynamics in our model, a multiplicative uncertainty added serially at the 

input of the system, has the form  

)1( WmmWuu δ+=       (19) 

with nominal system input u  and uncertainty weighting function 
)1100/(
)110/(1.0

+
+

=
s
sWm .  

Multiplicative uncertainty weighting function )(sWm  adds 10% and 100% 

multiplicative uncertainty at low and high frequencies respectively. Block diagram for 

this uncertainty is given in Figure 5.c.  

 
Figure 5.c Unmodeled uncertainty at the system input 

Using Figures 5.a-b for parametric uncertainties and Figure 5.c for unmodeled 

uncertainties, known part M  and the uncertain block ∆  of the overall system can be 

formed as in Figure 6. Input-output relationship of this system is characterized by an 

upper linear fractional transformation 

r),M(Fy U ∆= ,      (20) 

which we utilize to perform simulation that verifies validity of our µ computation in the 

next section. 



 

 

Figure 6. A detailed block diagram of the interconnection  M  and ∆   

VI. STRUCTURED  ROBUST STABILITY ANALYSIS OF THE 

SYSTEM 

For the inverted pendulum system modeled in the previous section, we compute the  µ  

bounds versus frequency using the µ  toolbox of MATLAB. In the computation, we 

provide algebraic representation of the uncertain block to MATLAB as 
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We also provide the algebraic representation of the known block 11M  as  
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Using (21) and (22), MATLAB commands [14] can be used for generation of µ 

graphics as a function of frequency. In Figure 7, lower and upper lines represent lower 

and upper µ  bounds respectively. The graphics shows that lower and upper µ  values 

over the considered frequency range are 5619.11 =γ   and 6074.12 =γ respectively.  

 
Figure 7: µ bounds  versus frequency graphics 

 

 



 

For a particular perturbation matrix ∆  that corresponds 5619.1=µ  the perturbed 

system (20) is unstable.  For all perturbation matrices ∆  that satisfies  
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 the perturbed system (20) is stable. For instance, the following 

perturbation matrix  
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satisfies 
2

1))((max
γ

σ <∆ jw
w

, hence this does not cause instability.  Step response of 

the inverted pendulum for this uncertainty matrix is given in Figure 8.  

 
Figure 8. Step response of the perturbed system (20) 

 

VII. CONCLUSION 
In this paper, a structured robust stability analysis of inverted pendulum system with a 

fixed LQC feedback is presented.  We provide a LFT model of the system which allows 

analysis of simultaneous parametric perturbations in masses of the pendulum  and the 

cart, length of the pendulum, and the unmodeled dynamics. For the system under 

consideration, simulations, as one of the them shown in Figure 8, have shown that a 62 

percent simultaneous perturbation from the nominal model does not harm the stability 

of the system. Under the given control law, this level of robustness can be viewed as 

satisfactory for a real time application. 
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