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STRUCTURED ROBUST STABILITY ANALYSIS OF AN
INVERTED PENDULUM SYSTEM WITH A
FIXEDFEEDBACK

Ahmet. YAZICI', Abdurrahman KARAMANCIOGLU!

ABSTRACT: Robust stability analysis of inverted pendulum system with a fixed linear quadratic
feedback is carried out using W analysis tools. A mathematical model of inverted pendulum system is
presented and linearized about the desired equilibrium point. A linear quadratic control feedback matrix
is used in the configuration of the nominal inverted pendulum system for its stabilization. After this,
uncertainties in the inverted pendulum with a fixed feedback, is modeled in linear fractional
transformation form , which is suitable for structured singular value computation. Both parametric and
modeling uncertainties are considered in the inverted pendulum system. After deriving out uncertain
system model, mixed |\ analysis method which is a structured uncertainty analysis method, is used to
compute the uncertainty bound that does not cause instability of the inverted pendulum under feedback. A

simulation test for validity of the results is provided.
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SABIT GERIBESLEMELI TERS SARKAC SISTEMININ
YAPISAL GURBUZ KARARLILIK ANALIZI

OZETZ Sabit dogrusal-kuadratik kontrol altindaki ters sarkag sistemindeki belirsizliklere karsi
guirbiizliik analizi, |\ analiz araglar kullanilarak yapinustir. Ters sarkag sisteminin matematiksel modeli

verilip, c¢alisma noktas1 etrafinda dogrusallagtirilmaktadr. Nominal ters sarka¢ sisteminin
kararlagtirimasi icin dogrusal-kuadratik kontrol geri besleme matrisi kullanimaktadir. Yapisal tekil
deger hesaplanmasinda kullanilmak iizere, sabit dogrusal-kuadratik kontrol altinda olan ters sarkag
sistemindeki belirsizlikler dogrusal kesirli doniigiimler kullanilarak modellenmektedir. Ters sarkag
sistemindeki parametrik ve modellemeden kaynaklanan belirsizlikler dikkate alinmistir. Belirsizlik

modeli olusturulduktan somra, karistk |\ analizi (bir yapisal belirsizlik analiz ydntemi) ydontemi

kullanilarak, geri belsem altindaki ters sarkag sisteminde kararsizliga neden olmayan belirsizlik sinir

bulunmaktadir. Bulunan sonug¢lar: dogrulayan simiilasyonlar da verilmektedir.
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1. INTRODUCTION

In this paper, structured robust stability of inverted pendulum system with a fixed linear
quadratic feedback is analyzed. Uncertainties in the pendulum system consist of both
parametric and modeling uncertainties. We model these uncertainties suitably for
structured robustness analysis, and compute uncertainty bounds for the stability of the
inverted pendulum system.

The inverted pendulum system, which has a rich dynamic structure, is used in numerous

studies to test validity of new control strategies. In the context of p analysis, [1]

utilizes an inverted pendulum model to test a controller in the presence of uncertainties
in both pendulum mass and length. In another study, [2] describes an efficient LMI-
based methodology to ensure various specifications of stability and this methodology is
applied to the control of inverted pendulum with an uncertain model. In [3], loop
shaping design procedure is used to design a robust controller for stabilizing an inverted
pendulum system. In another significant article, [4] shows a design of robust digital
controller using a blend of state space and frequency response methods for balancing an
inverted pendulum on a moving cart.

Our control objective is to keep the inverted pendulum at its vertically upright
equilibrium position on a moving cart while controlling the cart position in the presence
of uncertainties. In the analysis, we firstly present a mathematical model of inverted
pendulum system. Secondly, we linearize this model about the desired equilibrium
point. Following this, we use a fixed linear quadratic feedback to control the nominal
system. After this, we model the inverted pendulum as an uncertain system with a
known structure. We consider masses of the cart and the pendulum, length of the
pendulum as parametric uncertainties, modeling errors as dynamic uncertainty in our

model. In the concluding section, we use the mixed p analysis method, a structured

uncertainty analysis method, to compute the uncertainty bound that does not cause

instability of the inverted pendulum under feedback.

II. NOMINAL MODEL OF INVERTED PENDULUM SYSTEM
The inverted pendulum system is a pendulum attached to a moving cart (Figure 1) and
is intrinsically unstable, that is, it may fall over any time in any direction unless a

suitable control force u is applied. Here we consider only a two-dimensional problem so



that the pendulum moves only in the x-y plane. For this inverted pendulum system; M ,
denotes mass of the pendulum which is assumed to be concentrated at the end of the
pendulum. The symbols /, M., and b denote the length of the pendulum, mass of the
cart, and the friction constant respectively. The angle of the pendulum from the vertical

line is denoted by# and the distance in horizontal plane from the reference point is

denoted by x.
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Figure 1. Inverted Pendulum system

Nonlinear model of the inverted pendulum system shown in Figure 1 is as follows [5]:

X, = X,
—bx, + M Isin(x;)xi —M ,gsin(x;)cos(x;) +u

¥ = M, +M —M cos’

. . +M,—M, cos (x3) )
X3 =Xy

_ (bx, —u—M Isin(xy)x;)cos(x;) + (M, + M ,)gsin(x;)

X, =

I(M,+M, M, cos’(x;))
where x, :=x, x, =%, x; =6, x, := 0 and u is the control input. The control objective
is to keep the pendulum vertically upright about the equilibrium point (x;,x,) =(0,0)

on a moving cart. This may be termed as stabilization of the pendulum. As an initial

step of satisfying the control objective we linearize (1) about the equilibrium point as



M,g b 1
M, M, M,
X3 =X ' 2)
3 =Xy
(M. +M,)g b 1
M. M1 M

In the sequel, we use a typical set of parameter values given in Table 1 for the nominal
system.

Table 1. Typical parameter values for an inverted pendulum system.

Parameters Symbol | Value Unit
Mass of the cart M, 3 kg
Mass of the pend. | M, 0.5 kg
Length of the pend. |/ 0.5 m
Friction constant  |b 2 kg/s
Gravitational force | g 9.8 m/s”

IlIl. LINEAR QUADRATIC CONTROL OF THE INVERTED
PENDULUM

In this section linear quadratic controller (LQC), [5] is applied to nominal linear model
of the inverted pendulum system. Linear model of the inverted pendulum system given

by expression (2) can be represented compactly as

X =AX + Bu

ex 3)

where X =[x, x, x, x,] . Letr be the reference signal that is required to be followed

by the cart position x. Then the system states must follow x/=[r 0 0 0]" from the initial
state x,/=[0 0 0 0]". This may be done by constructing the error dynamics of the system.

Therefore, we define the error in terms of system states and desired trajectory x,; as



e=X-x,. 4)

Using this in expression (3), error dynamics can be written as

e=Ae+ Bu

: (5)
y=Ce+r
- e=2e+Bu = o a LA

Figure 2: Block diagram of the feedback system with error states

Block diagram of feedback system with error states is given in Figure 2, and we use the

control input # , which is common to systems (3) and (5), of the form
u=-Ke (6)

where K =[k, k, k, k,|. Clearly, driving e to the origin of the state space is

equivalent to system states’ tracking of the desired trajectory. Using MATLAB, an LQC

feedback matrix that drives e to the origin can be found [6] as

K=[-1582 —-2246 -150.45 —36.09]
(7)
Robustness of the inverted pendulum system with respect to a single parameter

perturbation at a time, under a fixed linear quadratic controller, is considered in [6]. In

the sequel, we use p analysis to analyze robustness of the inverted pendulum system

with respect to many parameter perturbations occurring simultaneously. This requires a
specific modeling technique, namely linear fractional transformation (LFT) technique,

which decomposes the system into known and uncertain parts.

1V. A BRIEF BACKGROUND OF THE STRUCTURED ROBUST
STABILITY ANALYSIS

A linear uncertain system can be represented as an interconnection of completely

known linear block M and the uncertainty block A (Figure 3).
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Figure 3. Macro model of inverted pendulum system with uncertainties
The uncertainty block has the form A =diag(A,,...,A, ), where each subblock A, is
either a real scalar blocks A, =96,/,,06, € R, complex scalar block A, =6,/,,06, € C or

a full complex block A, € C*** . Transfer function matrix M of the completely known
block can be partitioned as

_ M, M,
M = (8)
M, M,

such that the uncertainty block A interacts only with submatrix M, .

The structured singular value, u,(M,, ), of a matrix M,, € C"" with respect to

a block structure A is defined as
M - !
Ha(M,)= min{G(A) : det(I - M, A)=0}

)
If no A makes [-M, A singular, the structured singular value is defined as

w, (M, )iO. In (9), 6(A) denotes the maximum singular value of A. We may
interpret this definition as, given a certain class of uncertainties, p is the inverse of the
size of the smallest uncertainty that causes the system to become unstable.
Unfortunately, (9) is not suitable for computing u since the implied optimization
problem may have multiple local minima. The optimization problem given in (9) is

known as NP hard and g computation has some complexity [7], [8]. So, in recent

years, new formulas are developed to calculate structured singular value for robustness
analysis. The mixed problems, which has both real and complex uncertainties in its
uncertain block, can have fundamentally different properties from the purely complex

u problem, and these properties have important implications for computation. A large



body of work focused on the development of efficient bound analysis of considering
both parametric and dynamic uncertainty [9], [10], [11], [12].

For the mixed uncertainty case, let
pr(M,) :max{|/1|:l is a real eigenvalue of M,,}, with p,(M, )=0 if M, has
no real eigenvalue. Also let for an uncertainty block A ,m, denotes number of real
scalar blocks, m_ denotes number of complex scalar blocks and m_. denotes number of
full complex blocks with m =m_  +m_ +m_. < n. Given a block structure

K= (kl PR km,. h km,.+l PR kmr+m(, ; kmr+m(,+l PR km ) (10)
such that Z::l k, = n, uncertainty matrix A is a subset of diagonal matrices

AzblOCk dlag(Sflkl""anr]k”l ’Sflk” +1,"',8;1 ]k
L _ r U c

K

)Af)""Agnc)-'

my +mc

8/ R, 8 eC, AS e mmeritinne
(11)
where for any integer k, I, denotes the k x k identity matrix. In order to develop lower

bounds for ¢ we need to define some sets of block diagonal scaling matrices:

O, =el :8/ e[-11], 8780 =1 AN =1, | (12.)
A =block diag(D,,--+,D,, ., dllkmr+,n,.+1 oy Ay )

D, = (12.b)
0<D,=D; eC"*% 0<d eR

G, = lock diag(G,.....G,, 0, _,...0, ):G, =G| eC ] (12.c)

For any matrix M, € C"™", and any compatible block structure k the lower and upper

bounds can be given as [10]:

maxpp(OM,,)<p (M) (13)
0e0y
-1
wo (M, )< inf  inf {B:5 M—jG (1+G)"* <1y, (14)
gegL 0<BeR B
€l

Note that, the lower bound provides only a sufficient condition for instability and also

returns a worst case A, that is a worst case combination of uncertain parameters for the



problem given in Figure 3. On the other hand, the upper bound provides a sufficient

condition for stability in the presence of a specified level of structured uncertainty.

V. UNCERTAINTY MODELING OF INVERTED PENDULUM

The term uncertainty refers to the differences or errors between models and reality and
various types of uncertainties can arise in physical systems [13]. In the unstructured
robust control design methods, the unmodeled dynamics usually covers the parametric
uncertainties, which results in highly conservative results. Representing uncertainties in
a structured form gives rise to the most unconservative results in terms of system
stability. Uncertainty structure in this study consists of both unmodeled dynamics and
parametric uncertainties. In this paper, we analyze effect of the structured uncertainties

on the stability of the inverted pendulum in the mixed u analysis context. The mixed
4 analysis has mature tools to deal with both unmodeled dynamics and parametric

uncertainties [9].

In order to exhibit the steps of obtaining the linear fractional transformation (LFT) [14]
model of the inverted pendulum system, we firstly express its nominal model under
LQC feedback in block diagram. Under the LQC input given by (6), and using e=x-x,

, one can write system dynamics (3) as

X =(4-BK) X + BKx,

o (15)

Noting that x;~[r 0 0 0]" , the system state dynamics above can be written in terms of

system component quantities as

0 1 0 0 0
ko btk Mgtk ke ke
X: Mc Mc Mc ML X+ Mc
0 0 0 1 0 (16)
k,  b+k, (MC+Mp)g+k3 k, Kk
M M M1 M| L MI]



The dynamics in (16) contains suitable details for block diagram modeling. By using

SIMULINK, the block diagram corresponding to (16) is presented in Figure 4.
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Figure 4. Block diagram of the inverted pendulum system under LQC feedback

In our uncertainty modeling we consider the parametric uncertainties in M., M ,, [,

and unmodeled dynamics arising from several simplifications in the original model and
the linearization. The uncertain parameters’ possible variations about their nominal

values can be represented as

1 _ 1 1
- M, =M,1+M, 3, ), -

Lo _ , == (17)
M, M,(1+M_3, ) [ I(1+13,)

with =1<6,, , SMp ,8; <1, the normalization quantities M, =1, M, =1,/ =1 and

nominal parameters M . =3 M p = 0.5, =05 (Table 1). Parametric uncertainties in

equation (17) can be written using LFTs as

1 1
M_:FU(PMC’6MC)9 Mp :FL(PMP’SMp)a ;:FU(PIi’SZ) (18)
1 1
_Mcv M_ Mp mp Mp _lvar l:
where P, = L Py = Y , and P, = ik
Colem, —| " L1 0 1 =
v M l

One can use the block diagrams given in Figures 5.a and 4.b to represent 1/Pand P in

LFT forms respectively.
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Figure 5.a. LFT model of uncertainty 1/P Figure 5.b. LFT model of
uncertainty P
Unmodeled dynamics in our model, a multiplicative uncertainty added serially at the
input of the system, has the form

u=u(l+wW, o, ) (19)

| (s/10+1)

with nominal system input # and uncertainty weighting function W, = 0. .
(s/100+1)
Multiplicative uncertainty weighting function W, (s) adds 10% and 100%

multiplicative uncertainty at low and high frequencies respectively. Block diagram for

this uncertainty is given in Figure 5.c.
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Figure 5.c Unmodeled uncertainty at the system input
Using Figures 5.a-b for parametric uncertainties and Figure 5.c for unmodeled
uncertainties, known part M and the uncertain block A of the overall system can be
formed as in Figure 6. Input-output relationship of this system is characterized by an

upper linear fractional transformation
y=F,(M.A)r, (20)

which we utilize to perform simulation that verifies validity of our p computation in the

next section.
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Figure 6. A detailed block diagram of the interconnection M and A

VI. STRUCTURED ROBUST STABILITY ANALYSIS OF THE
SYSTEM

For the inverted pendulum system modeled in the previous section, we compute the
bounds versus frequency using the p toolbox of MATLAB. In the computation, we

provide algebraic representation of the uncertain block to MATLAB as

KIYRE

Oy, 1
A= ? 5 ; By, €R.B)y €R, 5 Ry, (s)eC.
I

8Wm (S)_
21)

We also provide the algebraic representation of the known block M, as



1

Myy(s)=

454 -*—417s3 +1617s2

0.17s5 +15‘6s4 -117s3 -39252 +2247s+1724 1254 +1252s3 +4852s2
-3‘353-304sz+2247s+1724 9‘8s3+9l452-6742s-5173 -6‘553 -56452

-12s4 -1252s3 -485252 0.3355+49s4

S +117s% +1796 53 + 734752 +134805 +10350
0 1245t 24838’ 774152 245 250357 970352 0.175° +207s +4145° +12905°
4 3 2 5 4 3 2 4 3 2

685 +687s> +393s -134805-10350 -s° -93s " +706s" +23565 -134805-10350 - 1145 -114s" -65.65~ +22475+1724
133.52 -134805-10350 19.75° +18285° -134805-10350 22352 +22475+1724

13352 +134805+10350 1975° -182852 +13480 5 +10350 22352 -20475-1724

13.7s% +13755> 4105552 25° -1865* 413755 +10555° 3757 485> + 54352 -5825-603.5

- 2255 28857 -3255° +34975 43621 - 725" -10715° -36175 > ~12205+517 ast 141787 161752

-*—166233 +5815 s2

0‘3355 +2854 -464s3 -91652 +8990s + 6898

+8990s + 6898
3 2 3 2 3 2
33s +304s -2247s-1724 -9.8s" -914s +6742s5+5173 6.54s +564s -8990s-6898
0.3355 -*—3154-22953-17552 -55-93s4+687s3+527s2 0.67s5 -*—57.654-91653-70352
4 3 2 4 3 2 4 3 2
12s  +178s +602s +203s-86 -36s -535s -1809s -609s+258.7 31.6s +453s +1314s -759s-1380

(22)

Using (21) and (22), MATLAB commands [14] can be used for generation of p

graphics as a function of frequency. In Figure 7, lower and upper lines represent lower

and upper p bounds respectively. The graphics shows that lower and upper p values

over the considered frequency range are y, =1.5619 and y, =1.6074 respectively.
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Figure 7: u bounds versus frequency graphics
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For a particular perturbation matrix A that corresponds u =1.5619 the perturbed

system (20) is unstable. For all perturbation matrices A that satisfies

max o (A(jw)) < € the perturbed system (20) is stable. For instance, the following
v V2

perturbation matrix

0.62211,

0.62211, (23)

A= 0.6221
~0.6221s5 +6.549

s+10.53

. _ 1 . . e
satisfies max o (A(jw)) < —, hence this does not cause instability. Step response of
v 2

the inverted pendulum for this uncertainty matrix is given in Figure 8.

Step Response
T T

Time (sec)

Figure 8. Step response of the perturbed system (20)

VII. CONCLUSION

In this paper, a structured robust stability analysis of inverted pendulum system with a
fixed LQC feedback is presented. We provide a LFT model of the system which allows
analysis of simultaneous parametric perturbations in masses of the pendulum and the
cart, length of the pendulum, and the unmodeled dynamics. For the system under
consideration, simulations, as one of the them shown in Figure 8, have shown that a 62
percent simultaneous perturbation from the nominal model does not harm the stability
of the system. Under the given control law, this level of robustness can be viewed as

satisfactory for a real time application.
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