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Abstract 
The two well-known production models in microeconomics are Cobb-Douglas and ACMS production functions. We study such production functions 

with  -inputs in terms of the differential-geometrical properties of their graphs. In particular, we investigate the production functions when their 

graphs have the second fundamental forms of constant length. We obtain that the ACMS production surface has the second fundamental forms of 

constant length if and only if the ACMS production function is a perfect substitute. Furthermore, in the case of Cobb-Douglas production function, 

we provide a non-existence result. 
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1. INTRODUCTION  

One of the arguments for modelling the production process in economics (on the firm or the aggregate levels) is the production 

function, expressing the relations between inputs (the factors contributing to the process) and level of output. It is based on the 

presumed choosing of technologically the best one among the techniques used in the production process. This is so that only if at least 

one of the inputs increases will the level of output increase [1,2].  

Let    be the set of all the positive real numbers. Then, mathematically, a production function is a mapping [3] 

       
     (       )   (       )  (1) 

where         are the inputs,   the level of output and     the number of the inputs. In principle, one assumes that   holds the 

following conditions: (i)       i.e. it has twice continuous partial derivatives; (ii)          ⁄     for every   *     +; (iii)   is 

 -homogeneous, i.e. 

 (         )   
  (       )  

for all (       )    
  and    . 

Notice that constant inputs are omitted. With the homogeneity condition of a production function, it is able to classify the property of 

return to scale. More clearly, we call that a production function has constant return to scale if the degree of homogeneity   is  . In 

addition, one has decreasing (increasing) return to scale if   is less than (greater than)  . For instance, fix     (resp.    ). Hence, 

when increased every input by    percent, then the level of output shows a rise of greater than (resp. less than)    percent. Fix now 

     Then, the level of output shows a rise of    percent when every input is increased by    percent. 

The production functions played a key role in calculating the social-economy damage and in solving production scarcity originated by 

Covid-19 breaking out in late 2019 [4–6]. Furthermore, they have numereous uses outside of economics, including biology [7,8], 

education [9,10], in engineering [11,12]. 
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In 2011, an interesting perspective on production functions was exhibited by Vilcu [3] where a production function is analysed by the 

differential-geometrical properties of its own graph. More clearly, the graph of the production function   given by (1) is actually a 

hypersurface    of the Euclidean space   
    parametrized by (see [13]) 

    
     

     

(       )   (       )  (         (       )) 

which we call production hypersurface. Hence, Vilcu’s perspective uses an argument characterizing the economic properties (i.e. the 

elasticity of production, the marginal rate of technical substitution, elasticity of substitution and etc.) of   in terms of the basic 

curvature invariants of   .  

We emphasize that although the first studies in this direction were published in early 2000s (see [14,15]), the serious results were 

firstly obtained in [3,13,16]. Afterwards, Chen published a series of papers (including homogeneous, weighted homogeneous, 

homothetic, quasi-sum, quasi-product production functions) jointly with Alodan, Deshmukh, Vilcu and Vilcu [17–26]. In addition, the 

first author of the present paper has some studies jointly with Ergut, Mihai, Yılmaz and Gülşen [27–30], relating to quasi-sum, quasi-

product, homothetic production functions. We also refer to [31,32]. 

In the cited papers above, the production functions have been analysed in terms of the Gauss-Kronecker curvature, the mean 

curvature, the sectional curvature, the Ricci curvature and the Riemann curvature tensor (for details, see [33]) as curvature invariants 

of the associated production hypersurfaces. As a new idea in this field, we analyse Cobb-Douglas and ACMS production functions 

and the associated production hypersurfaces in terms of the length of the second fundamental form. More explicitly, we do an analysis 

of Cobb-Douglas and ACMS production functions with  -inputs and their production surfaces when the second fundamental forms 

have constant length. We obtain that the ACMS production surface has a second fundamental form of constant length if and only if the 

ACMS production function is a perfect substitute. We also state that the Cobb-Douglas production surface cannot satisfy this property. 

The motivation of our problem is as follows: Let      be a regular surface and   ,    its principal curvatures. We call   

Weingarten surface if there is a relation given by [34], 

 (     )     (2) 

Notice that the relation (2) is equivalent to  (   )     where   and   are the Gaussian and mean curvatures of  . Hence, as trivial 

examples of Weingarten surfaces are when   or   are constants. Studying differential-geometrical properties of such surfaces is a 

classical subject, see [35].  

Denote by   and ‖ ‖  the second fundamental form of   and its squared length. On one hand, ‖ ‖  is equivalent to the trace of   , 

where   is the shape operator of  , yielding 

‖ ‖    
    

   (3) 

Therefore, the condition that ‖ ‖  is constant turns the surface   to be a Weingarten surface. On the other hand, the expression in the 

right-hand side of (3) is actually twice the so-called Casorati curvature [36], which is an important curvature invariant, see [37,38]. 

2. MATERIAL AND METHODS 

2.1 Curvature Invariants of Surfaces 

Let    be the Euclidean space of dimension   endowed with the Euclidean inner product 〈   〉 and ‖ ‖ the induced norm. Given a 

regular surface   in    and      an open subset. Denote by   a local parametrization on   such that 

        

      (   )   (   )  

The normal vector field   is 

  
     

‖     ‖
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where    is the partial derivative of   with respect to   and   the cross product in   . The components of the first fundamental form 

  (i.e. the induced metric from   ) are 

  〈     〉      〈     〉      〈     〉 

and those of the second fundamental form   

  〈     〉      〈     〉      〈     〉  

Let   be the Levi-Civita connection on   . Then, for any vector field   tangent to  , we have the formula of Weingarten 

      ( )  

where   is the shape operator. Then, the matrix of the shape operator , -  , -  , -  for the corresponding matrices , - and , - of 

the bilinear forms   and  , respectively. Let *     + be an orthonormal basis of   diagonalizing  . Hence, , -      ,     -, where 

   and    are the principal curvatures.  

The Gaussian curvature   and the mean curvature   are 

     ( )       

and 

       ( )  
     
 

  

One directly follows   
    

        . In terms of the components of   and  , 

  
     

     
 

and  

  
         

 (     )
  

Now fix          and assume that 

  
    

     (4) 

Three immediate examples appear when the condition (4) holds: The first is a plane with        ; the second is a circular 

cylinder whose one principal curvature is   and the other one nonzero constant; the third is a sphere whose both principal curvatures 

are nonzero constant. Those are known as isoparametric surfaces. 

Let  (   ) be a smooth real-valued function. We may locally assume the surface   as a graph of  . Then, 

  
          

 

(    
    

 )
  

and 

  
(    

 )             (    
 )   

 (    
    

 )
   

  

If the graph holds (4), then one gives the following partial differential equation (PDE), 

{(    
 )             (    

 )   }
 
  (    

    
 ) {          

  
 

 
(    

    
 )
 
}     (5) 

Hence, we may conclude that, in some sense, finding a surface with   
    

    is equivalent to obtain the solutions of the PDE 

given by (5).  

3. RESULTS AND DISCUSSION 

3.1 Generalized Cobb-Douglas Production Functions 



A y d ı n ,  G ü l / B o z o k  J  S c i  V o l  1  N o  2  P a g e  6 5 - 7 2  ( 2 0 2 3 )  

68 

Let       be some nonzero constants with      A generalized Cobb-Douglas production function with  -inputs is defined by  

       
                 

(   )   (   )         
(6) 

where       is the homogeneity degree of   [39]. We call that the graph of   is a Cobb-Douglas surface.  

In what follows, we will discuss the Cobb-Douglas surface with the condition (4). But, as a prior result, we give the following 

proposition. 

Proposition 1. The second fundamental form of the graph of the form (6) has a constant length if and only if it is a plane. 

Proof. By a direct computation, we have from (6) that 

   
 

 
   

   
 

 
   

    
 

  
 (   )  

    
 

  
    

    
 

  
 (   )  

 

We substitute these partial derivatives above into (5) and we write 

(   ) * (   )    (   )     (   )  +   

   (     )(   ) ((  )  (         )  )   ((  )  (         )  )     

 

(7) 

Notice here that the roles of the independent variables   and   are symmetric. Namely, when a statement holds with respect to one, so 

directly does with respect to the other one. Hence, (7) can be viewed as a sum of the powers of   (or  ). For example, (7) can be 

written as 

  (         ) 
    (         ) 

       (         ) 
       (         ) 

       (         ) 
     

   (         ) 
       (         ) 

       (         ) 
      

  (         ) 
      (         ) 

        (         ) 
        (         ) 

        

where   (         ),         , are the coefficient functions depending on the parameters         and  . Since   is an 

independent variable and the powers of   are linearly independent, every   (         )            must be zero. Hence, we may 

conclude as: 

   (         )   (  )
        

yielding either     or     or     because   is an independent variable. The second possibility is obviously eliminated. If   

 , then we understand from (4) that the principal curvatures    and    vanish, implying that the graph is a plane. If      then we 

may parametrize the graph as 

(   )  (       )  (       )   (     )  

which is a cylindrical surface whose rulings are parallel to (     ). However, in this case, one principal curvature vanishes and the 

other one is 

  (   )    

(   (    ) )   
  

which is obviously not constant. Hence, this is not our case, completing the proof. 
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We notice that Proposition 1 is a pure differential-geometrical result and not valid from the microeconomic perspective. Because, the 

original definition of a Cobb-Douglas production function allows none of       to vanish. Therefore, we have the following non-

existence result. 

Theorem 1. A Cobb-Douglas surface with second fundamental form of constant length does not exist. 

3.2 Generalized ACMS Production Functions 

Let           be some nonzero constants with      A generalized ACMS production function with  -inputs is defined by  

       
                 

(   )   (   )   ((  )  (  ) )  ⁄   
(8) 

where   is the homogeneity degree of   [40]. We call that the graph of   is an ACMS surface.  

 

We will discuss the ACMS surface with the condition (4). We first give the following proposition.  

Proposition 2. The second fundamental form of the graph of the form (8) has a constant length if and only if it is a plane. 

Proof. We set    (   )  (  )  (  ) . Then, by (8), a direct computation follows as: 

      
 
 
  
 

      
 
 
  
 

       
 
 
  
    

 
 
  
 

       
 
 
  
 

       
 
 
  
    

 
 
  
 

 

where 

     
       

     
       

     
  (   )     

     
   (   )      

     
    (   )(  )    

     
  (   )     

     
   (   )      

 

We now substitute the partial derivatives into (5), then we obtain: 

{(     ) 
 
 
  
 (     ) 

 
 
  
 (  

      
   ) 

  
 
  
 (  

              
   ) 

  
 
  
}
 

 

  {  (  
    

 ) 
  
 
  
} {(         ) 

  
 
  
 (         ) 

  
 
  
} 

  {  (  
    

 ) 
  

 
  
}
 

                            (9) 

As in the proof of Proposition 1, (9) can be viewed as an equation in  . Since it can be written as a sum of the powers of   where the 

terms are linearly independent, all the coefficients must be zero. We distinguish two cases:  

Case 1. Assume that    . Hence, the constant term, i.e.     , of this equation is  , implying that the graph is a plane. 
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Case 2. Assume that      If also    , then the function (8) is linear in both   and   and so its graph directly becomes a plane. In 

this case, there is nothing to prove. Otherwise, (9) reduces to  

(  (    
 )    (    

 ))   *  (  
    

 )+(    )   *  (  
    

 )+     

which can be viewed as a sum of the powers of  . Again, the coefficients of the powers of   are all zero. The coefficient of the term  

      is  (    ) , which must be zero. Similar to the proof of Proposition 1, the only possibility is that    . This completes the 

proof. 

On the other hand, in economics, goods that are completely substitutable with each other are called perfect substitutes. Also, we call a 

production function  (   ) as a perfect substitute if it is a linear function in both   and  . Hence, with Proposition 2 we have the 

following result. 

Theorem 2. The second fundamental form of the ACMS surface has a constant length if and only if the ACMS production function is 

a perfect substitute.  

4. CONCLUSION 

In this paper, we studied two well-known production models in microeconomics, Cobb-Douglas and ACMS production functions, in 

terms of the differential-geometrical properties of their graph surfaces. Having their graph surfaces a second fundamental form of 

constant length, we proved that a generalized ACMS production function is a perfect substitute. In the case of a Cobb-Douglas 

production function, a non-existence result was given. Although, as a first stage, we were only interested in the production functions 

with  -inputs, our results are open to extension to higher dimensions. 
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