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Abstract. This paper presents an analytic study of determining all the pos-

sible solutions of the Diophantine equations such that qk = JmJn and Jk =

qmqn. These give intersections of the Modified Pell and Jacobsthal numbers
too for the case where m = 1 or n = 1.

1. Introduction

It is well-known that the Pell, Modified Pell, and Jacobsthal numbers are defined
by the recurrence relations

P0 = 0, P1 = 1 and Pn+1 = 2Pn + Pn−1 for all n ⩾ 2, (1)

q0 = 1, q1 = 1 and qn+1 = 2qn + qn−1 for all n ⩾ 2, (2)

and
J0 = 0, J1 = 1 and Jn+1 = Jn + 2Jn−1 for all n ⩾ 2, (3)

respectively. These integer sequences have very interesting characteristics. For this
reason, a heavy interest has been devoted to investigation of the subject by a great
number of researchers. Here, it is proposed that two fundamental books given by
Vajda [1] and Koshy [2] are investigated for a piece of wide information.

As shown from Equations (1)-(3), all the desired terms of the related sequence
can be computed recursively by using the respective recurrence relation. Also, as a
second way, we can employ the following equations that are called Binet’s formulas:

Pn =
γn − δn

γ − δ
, qn =

γn + δn

γ + δ
, and Jn =

αn − βn

α− β
, (4)
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where γ and δ are the positive and negative roots of x2 − 2x− 1 = 0, and α and β
are the positive and negative roots of x2 − x− 2 = 0.

Up to the present, many articles have been governed related to the identities and
applications of the Modified Pell and Jacobsthal sequences. Let us briefly mention
some of the relevant research. In [3], Horadam gave the definition of the Modified
Pell numbers, including some elementary identities, and showed that Qn = 2qn,
where Qn is the nth Pell-Lucas numbers. In [4], the author defined the Jacobsthal
numbers and presented their characteristic identities. In [5], Daşdemir developed an
interesting matrix technique to find relationships between the Pell, Pell-Lucas, and
Modified Pell numbers. In [6] and [7], Daşdemir brought rich elementary context
related to the Jacobsthal and Jacobsthal-Lucas numbers to the available literature
by using some matrix identities. In [8], Arslan and Köken presented the Jacobsthal
and Jacobsthal-Lucas numbers with rational subscripts based on the idea of com-
puting square roots of the matrices of order 2 × 2. In [9], Catarino and Campos
introduced the Gaussian Modified Pell numbers, including Binet’s formula, the gen-
erating function, and some sum formula. In [10], Radicic computed determinants,
eigenvalues, and the values and boundaries of certain norms for a k-circulant matrix
involving the Pell Numbers. In [11], Daşdemir expanded the usual Mersene, Jacob-
sthal, and Jacobsthal-Lucas numbers to the ones with negative indexes. In [12],
Soykan and Göcen presented the definition, Binet formula, and generating functions
of the generalized hyperbolic Pell numbers over the bi-dimensional Clifford algebra.
In [13], Uygun defined the bi-periodic Jacobsthal and bi-periodic Jacobsthal-Lucas
numbers and discovered some features between them.

The above brief literature survey shows that many researchers have genuinely
interested in investigating the elementary identities and properties of the Modified
Pell numbers and the Jacobsthal numbers with structural configurations and this
trend is growing day by day. Motivated by these developments, in this paper, we
consider the Diophantine equations

Jk = qmqn (5)

and

qk = JmJn (6)

for any positive integer k, m, and n under m ≤ n. The fundamental outputs of the
paper are to determine the m, n, and k numbers that satisfy Equations (5) and (6).

2. Auxiliary Descriptions

The following will be used extensively in the rest of the paper

Definition 1. Let η be an algebraic number of degree d with minimal primitive
polynomial over

a0x
d + a1x

d−1 + · · ·+ ad = a0
∏d

i=1

(
x− η(i)

)
,
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where a0 is positive and η(i) is the conjugate of η. Then,

h (η) =
1

d

(
log |a0|+

∑d

i=1
log

(
max

{∣∣∣η(i)∣∣∣ , 1})) , (7)

is called the logarithmic height of η.

It should be noted that this function satisfies the following properties:

h (α∓ β) ⩽ h (α) + h (β) + log 2, h
(
αβ∓1

)
⩽ h (α) + h (β) , and h (αs) = sh (α) .

Theorem 1 (Matveev [14]). Let η1, η2, . . . , ηs be real algebraic numbers and let
b1, b2, . . . , bs be nonzero rational integers. Let dK be the degree of the number field
Q (η1, η2, . . . , ηs) over Q and let Aj be the positive real number defined by

Aj ⩾ h′ (ηj) = max
{
dKh(ηj),

∣∣log (ηj)∣∣ , 0.16} for j = 1, 2, . . . , l.

Put

Λ = η1η2 . . . ηl − 1 and D = max {|b1| , . . . , |bl|} .
If Λ ̸= 0, then

log (|Λ|) > −1.4× 30l+3 × l4.5 × d2K × (1 + log (dL)) (1 + log (D))A1A2...Al.

Lemma 1 (Dujella and Pethö [16]). Let M be a positive integer, p/q be a convergent
of the continued fraction of the irrational τ such that q > 6M , and let A, B, τ be
positive rational numbers with A > 0 and B > 1. Let ε = ∥µq∥−M ∥τq∥, where ∥·∥
is the distance from the nearest integer. If ε > 0, then there is no integer solution
(m,n, k) of inequality

0 < mτ − n+ µ < AB−k

with

m ⩽ M and k ⩾
log (Aq/ε)

logB
.

Lemma 2. Let k be a positive integer and let x, y, and z be positive real numbers.

Further, let
√
x and

√
z be irrational numbers. Then,

√
x(y +

√
z)

k
is an irrational

number.

Proof. Introduce A :=
√
x(y +

√
z)

k
. From Binomial expansion, we can write

A =
√
x

k∑
i=0

(
k
i

)
yk−i

(√
z
)i

=
√
x

[(
k
0

)
yk +

(
k
1

)
yk−1

√
z +

(
k
2

)
yk−2

(√
z
)2

+ . . .+

(
k
k

)(√
z
)k]

.

If k is even, then we have

A =
√
x (B + C) = B

√
x+ C

√
x,
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where

B := yk +

(
k
2

)
yk−2

(√
z
)2

+ . . .+

(
k

k − 2

)
y2
(√

z
)k−2

+
(√

z
)k
,

C :=

(
k
1

)
yk−1

(√
z
)1

+ . . .+

(
k

k − 1

)
y
(√

z
)k−1

.

Here, B ∈ Q, C ∈ R − Q, and B,C > 0. C
√
x can be rational or irrational

depending on xz. However, B
√
x ∈ R−Q due to B ∈ Q. As a result, A ∈ R−Q.

When k is odd, a similar evaluation can be done. This completes the proof. □

3. Main Results

In this section, we present the fundamental outcomes of the paper.

Theorem 2. Let k, m, and n be any positive integers m ⩽ n. Then, all the
solutions to Equation (5) are

(k,m, n) ∈ {(1, 1, 1) , (2, 1, 1) , (3, 1, 2) , (6, 2, 3)} (8)

and the ones of Equation (6)

(k,m, n) ∈ {(1, 1, 1) , (1, 1, 2) , (1, 2, 2) , (2, 1, 3) , (2, 2, 3)} . (9)

Proof. For validation, we apply a proof strategy of two steps. To this aim, appro-
priate boundaries will be computed separately for Equations (5) and (6). First, let
us consider Equation (5) by considering the equations

αn−2 ⩽ Jn ⩽ αn−1 (10)

and
γn−1 ⩽ qn ⩽ γn. (11)

These can be proved easily by applying the induction method n. Then, we can
write

α k−2 ⩽ J k = qn.qm ⩽ γm+n and α k−1 ⩾ J k = qn.qm ⩾ γm+n−2.

and

1 +
log γ

logα
(m+ n− 2) ⩽ k ⩽ 2 +

log γ

logα
(m+ n) ,

concluding k < 4n. Further, using the Binet’s formulas of the Jacobsthal and
Modified Pell numbers yields∣∣∣∣αk

3
− γn+m

4

∣∣∣∣ =

∣∣∣∣∣βk

3
+

γnδm + γmδn + δn+m

4

∣∣∣∣∣ <
∣∣∣∣∣βk

3
+

3γn−m

4

∣∣∣∣∣
<

3

2
max

{
|β|k, γn−m

}
=

3γn−m

2
or equally ∣∣∣∣43αkγ−n−m − 1

∣∣∣∣ < 6

γ2m
. (12)
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Considering the Matveev’s theroem, we consider the following case:

Λ1 =
4

3
αkγ−n−m−1, l = 3, η1 =

1

3
, η2 = α, η3 = γ, d1 = 1, d2 = k+2, d3 = −n−m.

Here, it is easy to verify Λ1 ̸= 0. If the reverse were true anyway, 4
3α

k = γn+m

would have to be. But, while 4
3α

k ∈ Q, γn+m /∈ Q. In this case, the assertion is

true. If choosing η1, η2, η3 ∈ L := Q
(√

2
)
, dL = 2. This means that

h (η1) = log 3, h (η2) = logα, h (η3) =
log γ

2
, A1 = 2 log 3, A2 = 2 logα, A3 = log γ

and D = 4n. As a result, we have

log |Λ1| > −2.61× 1012 (1 + log 4n) . (13)

As compared Equation (12) to Equation (13), we finally get

m log γ + log 3 < 1.4× 1012 (1 + log 4n) . (14)

Doing some mathematical arrangements by using the Binet’s formulas in Equa-
tions (4), we compute ∣∣∣∣ 2

3qm
αkγ−n − 1

∣∣∣∣ < 2

γn
. (15)

Accordingly, from Matveev’s theorem, the following equations can be obtained:

Λ2 =
2

3qm
αkγ−n − 1, l = 3, η1 = 3qm, η2 = α, η3 = γ, d1 = −1, d2 = k + 1,

and, d3 = −n.

h (η2) = logα, h (η3) =
1

2
log γ A2 = 2 logα, andA3 = log γ.

It should be noted that η1 is also a root of the polynomial 2x2 − 9Pm
2. Then,

h (η1) =
1

2
(log 1 + log |3qm|+ log |−3qm|) = log qm + log 3 ⩽ m log γ + log 3.

From Equation (15), we have

A1 = 2.8× 1012 (1 + log 4n) > 2h (η1) .

Letting D = 4n. In this case, by Lemma 2, we can find

log |Λ2| > −3.32× 1024(1 + log 4n)
2
. (16)

and from Equation (15),

log |Λ2| < log 2− n log γ. (17)

Solving Equations (16) and (17) together, we get

n < 1.72× 1028 and k < 4n. (18)
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A similar method can be applied to Equation (6). Here, to reduce the size of
the current paper, we neglect an explicit proof. But, for Equation (6), we get the
following boundaries:

n < 9× 1028 and k < 3n. (19)

Accordingly, from both Equations (18) and (19), our widest solution range is as
follows.

k < 4n and n < 9× 1028. (20)

Everything is ok but since our last range is not economical, investigating a so-
lution is very difficult. Therefore, we will take an additional approach, taking into
account four different situations.

Case I: For the case where m ⩾ 2 in Equation (12), we define

Γ1 := k logα− (n+m) log γ + log
4

3
,

or in another form, ∣∣eΓ1 − 1
∣∣ = |Λ1| <

6

γ2m
<

1

5
, (21)

which means that |Γ1| < 1
4 . By the way, |x| < 1

4 , |x| <
3
2 |e

x − 1| holds for x ∈ R
without the loss of generality. For the case where x = Γ1, we obtain

|Γ1| <
9

γ2m
. (22)

Due to Λ1 ̸= 0, Γ1 ̸= 0 too. As a result, Γ1 < 0 or Γ1 > 0. When Γ1 > 0,

0 < k

(
logα

log γ

)
− (n+m) +

(
log(4/3)

log γ

)
<

9

(log γ) γ2m
<

11

γ2m
.

According to Dujella and Pethö’s lemma for M = 3.6× 1029, we get

τ =
logα

log γ
, µ =

log (4/3)

log γ
, A = 11, and B = γ2. (23)

τ = [a0, a1, ...] is turned on to the continued fraction as follows:

[a0, ..., a60] =
p60
q60

=
6332847229674209482244367144203

8052552813322770308759378039685

such that 6M < 2.2 × 1030 < q. As a result, ε = ∥µq∥ − M ∥τq∥ > 0.41. This
means that m ⩽ 42. Also, for the case where Γ1 < 0, a similar result can be found.

Case II: In Equation (15) for n > 1 under the same assumptions, we find that
n ⩽ 89.

Case III: In Equation (6) for the case m ⩾ 4, we conclude that m ⩽ 109.
Case IV: Similarly, In Equation (6) for the case where n > 1, we can obtain

that n ⩽ 117.
According to all the above results, we obtain the widest range such as n ⩽ 117

and k < 469. If checking the possible cases by using a PC algorithm composed of in
Mathematica, we see the intersection set such that {1, 3}. This exhausts the proof.
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[8] Arslan, S., Köken, F., The Jacobsthal and Jacobsthal-Lucas numbers via square roots of
matrices, Int. Math. Forum., 11(11) (2016), 513–520. http://doi.org/10.12988/imf.2016.6442

[9] Catarino, P., Campos, H., A note on Gaussian Modified Pell numbers, Jour-

nal of Information and Optimization Sciences, 39(6) (2018), 1363–1371.
http://doi.org/10.1080/02522667.2018.1471267

[10] Radicic, B., On k-circulant matrices involving the Pell numbers, Results in Mathematics,
74(4) (2019), 200. https://doi.org/10.1007/s00025-019-1121-9
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