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Abstract

In this work, we consider the problem of finding explicit parametrizations for non-degenerate
helicoidal surfaces with prescribed curvatures in some conformally flat pseudo-spaces with
conformal pseudo-metrics whose conformal factors are related to three types of generic
cylindrical functions. In the first two, we get a two-parameter family of these surfaces with
prescribed extrinsic curvature or mean curvature given by smooth functions. In the last
one, we discover a one-parameter family when both curvatures of these surfaces are zero;
however, we find a two-parameter family when either one of those curvatures is zero. Also,
we support them with examples.

1. Introduction

Mathematics is a branch of science that examines the properties of both abstract shapes and measurable quantities through
equivalences. When the abstract shape is a smooth manifold, the term diffeomorphism refers to the idea that two manifolds are
equivalent in terms of differentiability. Isometry is a concept that expresses metrical equivalence between two Riemannian
manifolds. The angle and distance between two directions are both preserved in the concept of isometry. Furthermore, the
term conformal is a more general concept than isometry, in which only the angle is preserved but not the distance. Let g and ḡ
denote the metrics of two Riemannian (or pseudo-Riemannian) manifolds, respectively. These Riemannian manifolds are said
to be conformally equivalent if there exists a differentiable function λ , known as a conformal factor, that provides the equality

g=
1

λ 2 ḡ.

It is common knowledge that when the metric ḡ is the Euclidean metric, the Euclidean space R3 is conformally equivalent
to the sphere S3 (or the hyperbolic space H3) through suitable conformal factors. The Minkowski space R3

1 and the de Sitter
S3

1 (or the anti-de Sitter H3
1) are conformally equivalent in accordance with the Minkowski metric ḡ. Conformally flat spaces

with a bounded conformal factor have gained more attention in recent years. Keep in mind that selecting such a conformal
factor results in the metric becoming complete, and as a result, the space in question is referred to as a complete Riemannian
manifold.
Particular types of special surfaces, such as rotational and helicoidal surfaces, are surveyed in conformally flat spaces. The
construction of a helicoidal surface, in contrast to that of a rotational surface, is performed using screw motions, which include
a translation in addition to a rotation around an axis. The problem of finding the explicit parameterization of helicoidal
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surfaces are done in a wide variety of spaces. It should not be surprising that the properties of such surfaces remain unchanged
under screw motions. So, it is important to determine the proper conformal factor if you want to conduct surveys of the
above-mentioned surfaces in conformally flat spaces. A function f is said to be invariant under a transformation T of space
into itself if the property f (T x) = f (x) holds for all x. If the conformal factor λ is a function satisfying this condition, then it
makes sense to think of such surfaces in conformally flat spaces. An estimation for this kind of function can be found in the
cartesian equation of standard geometric shapes like the sphere and the cylinder. Unlike the spherical function, which is only
invariant under rotational symmetry, the cylindrical function is invariant under both rotational symmetry and translational
symmetry. See [1, 2] for information on surveys carried out in the context of the spherical function. Refer to [3, 4, 5, 6, 7, 8]
for the other one.
In a recent survey, Yerlikaya introduces the conformally flat pseudo-space of dimensional three and presents a non-degenerate
surface’s curvatures in this space. After investigating the presence of helicoidal surfaces in some conformally flat pseudo-spaces,
the author works on the problem of determining the explicit parametrization of those surfaces. The author means by ”some
pseudo-spaces” that it is a conformally flat pseudo-space with a pseudo-metric that corresponds to the determined conformal
factor, where the author preferred such a way that this pseudo-metric is a solution to the famous Einstein field equation. The
process for determining such a conformal factor, which was just explained as being significant, is carried out in accordance
with the causal character of the axis of helicoidal surfaces (see [8] for detail). In this study, we discuss the same problem for
generic cylindrical conformal factors, taking the causal character of the axis into account once again.

2. Preliminaries

2.1. Basic Notations

Equipped the Minkowski space R3
1 with a conformally flat pseudo-metric specified by the angle-bracket notation

〈w1,w2〉gλ
=

1
λ 2 (p)

〈w1,w2〉L , ∀w1,w2 ∈ TpR3
1, ∀p ∈ R3

1,

the resulting space is said to be the complete pseudo-Riemannian manifold if the conformal factor λ is bounded. From now on,
unless otherwise stated, we shall refer to this pseudo-manifold as the conformally flat pseudo-space and represented by F1

3.
Here, note that the pseudo-metric 〈,〉L is the Minkowski metric whose coefficients are

〈e1,e1〉L =−1,
〈
ei,e j

〉
L = 1 for 2≤ i = j ≤ 3,

〈
ei,e j

〉
L = 0, for 1≤ i 6= j ≤ 3.

On the other hand, let M be a non-degenerate surface in F1
3. Given the Gaussian curvature K and the mean curvature H of the

surface M in R3
1, both the extrinsic and mean curvatures of M are calculated as

∼
KE = εh2−2Hλh+λ 2K (2.1)

and

∼
H = λH− εh, ε = 〈N,N〉 (2.2)

respectively. For the unit normal vector field N of M, the function h holds h = h(s, t) = ∑
3
j=1 N j ∂λ

∂x j
, where x j for 1≤ j ≤ 3 is

an usual coordinate system of R3
1 [8].

2.2. The Process for Determining Proper Conformal Factors

Conformally flat spaces acquire special qualities by means of their conformal factors. If a space with a conformal factor λ

has a transformation T that satisfies the equation λ (T x) = λ (x) for all x, then the space is invariant under the transformation
T along an axis, as stated in the introduction. Thereby, it makes sense in this space to consider surfaces generated by the
transformation T , because the properties of such surfaces remain unchanged under the one T . The infinitesimal isometry group,
which consists of both the rotation and translation transformations of space, is represented by its Killing vector field. In [8], the
author performs a calculation to determine the Killing vector field for conformal factors that correspond to the causal character
of the axis.
Since we will be discussing helicoidal surfaces in this work, we consider that the transformation T must be both rotational and
translational. The type of function that is invariant under both rotational and translational transformations is of the cylindrical
type.
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The spacelike axis: In this case, we take the conformal factor λh in

λh : R3
1→ R, (x1,x2,x3)→ λh (x1,x2,x3) =

√
x2

2− x2
1,

which is directly related to a Lorentzian hyperbolic cylinder with x3-axis in R3
1. In [8], taking the procedure of determining the

Killing vector field into account, for the determined conformal factor above, we compute the Killing vector field V in
(
F1

3
)

λh
as

V = c1

(
x2

∂

∂x1
+ x1

∂

∂x2

)
+ c2

∂

∂x3

for some constants c1 and c2. This means that the corresponding isometry group consists of the translation along the x3 axis
given by

T (x1,x2,x3) = (x1,x2,x3 + t) (2.3)

and the rotation around the x3 axis given by

R(x1,x2,x3) = (x1 cosh t + x2 sinh t,x1 sinh t + x2 cosh t,x3) , (2.4)

where (x1,x2,x3) ∈ R3
1 and t ∈ R.

Remark 2.1. When considering the conformal factor λh, it is evident that Eqs. (2.3) and (2.4) both satisfy the function
invariance mentioned in the introduction.

So, we can maintain the following process.

When applying the profile curve γ(s) = (0,s,n(s)) to Eq. (2.4) together with Eq. (2.3), i.e., cosh t sinh t 0
sinh t cosh t 0

0 0 1

 0
s

n(s)

+ c

 0
0
t

 ,

the resulting surface is said to be a helicoidal surface in
(
F1

3
)

λh
with the spacelike axis of rotation, and so its parametrization is

represented by

X : I×R→
(
F1

3
)

λh
;(s, t)→ X (s, t) =

(
ssinh t,scosh t,n(s)+ ct

)
, (2.5)

where n(s) is a smooth function and c is a constant.

The timelike axis: In this case, we determine the conformal factor λc as

λc : R3
1→ R, (x1,x2,x3)→ λh (x1,x2,x3) =

√
x2

2 + x2
3.

This is related to a Lorentzian circular cylinder with x1-axis in R3
1. Similarly, we compute the Killing vector field V in

(
F1

3
)

λc
as

V = c1
∂

∂x1
+ c2

(
−x3

∂

∂x2
+ x2

∂

∂x3

)

for some constants c1 and c2. This means that the corresponding isometry group consists of the translation along the x1 axis
given by

T (x1,x2,x3) = (x1 + t,x2,x3) (2.6)

and the rotation around the x1 axis given by

R(x1,x2,x3) = (x1,x2 cos t− x3 sin t,x2 sin t + x3 cos t) , (2.7)

where (x1,x2,x3) ∈ R3
1 and t ∈ R.

Remark 2.2. When considering the conformal factor λc, it is evident that Eqs. (2.6) and (2.7) both satisfy the function
invariance mentioned in the introduction.
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In a manner that is analogous to the process that was just outlined, using Eq. (2.7) together with Eq. (2.6), we get a helicoidal
surface in

(
F1

3
)

λc
with the timelike axis of rotation, and so its parametrization is represented by

X : I×R→
(
F1

3
)

λc
;(s, t)→ X (s, t) =

(
n(s)+ ct,scos t,ssin t

)
. (2.8)

The lightlike axis: In this case, we determine the conformal factor λp as

λp : R3
1→ R, (x1,x2,x3)→ λp (x1,x2,x3) =

√
x2− x1.

This is related to a Lorentzian parabolic cylinder with (1,1,0)-axis in R3
1. Thus, we compute the Killing vector field V in(

F1
3
)

λp
as

V = c1

(
−x3

∂

∂x1
− x3

∂

∂x2
+(−x1 + x2)

∂

∂x3

)
+ c2

(
∂

∂x1
+

∂

∂x2

)
.

for some constants c1 and c2. This means that the corresponding isometry group consists of the translation along the (1,1,0)
axis given by

T (x1,x2,x3) = (x1 + t,x2 + t,x3) (2.9)

and the rotation around the (1,1,0) axis given by

R(x1,x2,x3) =

((
1+ t2/2

)
x1−

(
t2/2

)
x2 + tx3,

(
t2/2

)
x1 +

(
1− t2/2

)
x2 + tx3, tx1− tx2 + x3

)
, (2.10)

where (x1,x2,x3) ∈ R3
1 and t ∈ R.

Remark 2.3. When considering the conformal factor λp, it is evident that Eqs. (2.9) and (2.10) both satisfy the function
invariance mentioned in the introduction.

Similarly, from Eqs. (2.10) and (2.9), we have a helicoidal surface in
(
F1

3
)

λp
with the lightlike axis of rotation generated by

the profile curve γ(s) = (s,n(s),0). A parametrization of this surface is as follows

X : I×R→
(
F1

3
)

λp
;(s, t)→ X (s, t) =

((
1+ t2/2

)
s−
(
t2/2

)
n(s)+ ct,

(
t2/2

)
s+
(
1− t2/2

)
n(s)+ ct,(s−n(s)) t

)
. (2.11)

3. Results

Firstly, let’s take a look at the helicoidal surface with the spacelike axis of rotation given by Eq. (2.5). For this surface, we have

K(s) =
s3n′n′′+ c2

[−c2 + s2 (1+n′2)] |−c2 + s2 (1+n′2)|
(3.1)

and

H(s) =−
s2n′3 +n′

(
−2c2 + s2

)
+ sn′′

(
−c2 + s2

)
2 [−c2 + s2 (1+n′2)] |−c2 + s2 (1+n′2)| 12

, (3.2)

where the first one is the Gaussian curvature and the other one is the mean curvature. Assuming that EG−F2 = c2−
s2
(
1+n′2

)
< 0, meanings that this surface is timelike, Eqs. (3.1) and (3.2) yield

K(s) =
s3n′n′′+ c2[

−c2 + s2 (1+n′2)
]2 (3.3)

and

H(s) =−
s2n′3 +n′

(
−2c2 + s2

)
+ sn′′

(
−c2 + s2

)
2
[
−c2 + s2 (1+n′2)

] 3
2

, (3.4)
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respectively. For the determined conformal factor λh, we have

3

∑
j=1

N j
λ, j =

sn′√
−c2 + s2 (1+n′2)

. (3.5)

Inserting Eqs. (3.3), (3.4) and (3.5) into Eqs. (2.1) and (2.2), we get

∼
KEλh

=

s2
(

sn′n′′
(
−c2 +2s2

)
+2s2n′4 +n′2

(
2s2−3c2

)
+ c2

)
[
−c2 + s2 (1+n′2)

]2 (3.6)

and

∼
Hλh

=−
s
(

sn′′
(
−c2 + s2

)
+3s2n′3 +n′

(
3s2−4c2

))
2
[
−c2 + s2 (1+n′2)

] 3
2

. (3.7)

In order to find a solution to Eq. (3.6), we turn Eq. (3.6) into

A′(s)+
(

5
s
+

4s
c2−2s2

)
A(s) =

4
c2−2s2 +

2
s2

∼
KEλh

(s), (3.8)

where

A(s) =
sn′2− s

−c2 + s2 (1+n′2)
. (3.9)

The general solution to Eq. (3.8) becomes

A(s) =
c2−2s2

s5

[∫ s5

c2−2s2

{
4

c2−2s2 +
2
s2

∼
KEλh

(s)
}

ds+ c1

]
, (3.10)

where c1 is constant. When we compare Eq. (3.9) with Eq. (3.10), we obtain[
s2
(

s4−ψ
(
s
))]

n′2(s) = s6 +
(
s2− c2)

ψ(s), (3.11)

where

ψ(s) =
(
c2−2s2)[∫ s5

c2−2s2

{
4

c2−2s2 +
2
s2

∼
KEλh

(s)
}

ds+ c1

]
. (3.12)

The next theorem can now be established:

Theorem 3.1. Let γ(s) = (0,s,n(s)) be a profile curve of the timelike helicoidal surface (2.5) in
(
F1

3
)

λh
. Assuming its extrinsic

curvature at the point (0,s,n(s)) is represented by
∼
KEλh

(s), there exists an open subinterval
∼
I ⊂ I concerning c1 such that the

function n(s) is

n(s) =±
∫ √∣∣s6 +(s2− c2)ψ(s)

∣∣
|s|
√∣∣s4−ψ(s)

∣∣ ds+ c2, (3.13)

where ψ(s) is given by Eq.(3.12) and c2 is a constant. Also, for the designated constant c1 and some constants c and c2, there
exists the two-parameter family of curves such that

γ(s;
∼
KEλh

(s),c,c1,c2) =

0,s,±
∫ √∣∣s6 +(s2− c2)ψ(s)

∣∣
|s|
√

s4−ψ(s)
ds+ c2

 , s ∈
∼
I ∩

(
R\
(
−c/
√

2,c/
√

2
))

(3.14)
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Proof. For the known function
∼
KEλh

: I→ R referred to as the extrinsic curvature of the helicoidal surface (2.5), we have Eq.

(3.11). For an arbitrary number c1, we establish a function F (s,c1) = s4−ψ on the product of sub-intervals containing the
numbers s0 and

∼
c1 which satisfy the equality

∼
c1 =−

(∫ s5

c2−2s2

{
4

c2−2s2 +
2
s2

∼
KEλh

(s)
}

ds

)
(s0) .

Based on the function F to be continuous, we find a product set
∼
I × J where Eq. (3.11) turns into

n′2(s) =
s6 +

(
s2− c2

)
ψ(s)

s2
(

s4−ψ
(
s
)) ,

which is the equation whose integration gives Eq. (3.13). Combining Eqs. (3.9) and (3.10), we obtain Eq. (3.14).

Theorem 3.2. Let c and c2 be arbitrary constants. Thus, for any c1 and a smooth function
∼
KEλh

, setting an open subinterval
∼
I

of I in which the function n(s) given by Eq. (3.13) is defined, we can construct the two-parameter family of timelike helicoidal

surfaces defined on
∼
I ×R⊂ R2, with the extrinsic curvature

∼
KEλh

(s), with the profile curve γ(s;
∼
KEλh

(s),c,c1,c2), s ∈
∼
I .

Proof. Eq. (3.13) is a solution to Eq. (3.8), which implies the requirement that concludes the proof. When considering the

sub-intervals that are stated in the proof of Theorem (3.1), for two numbers c1 ∈ J, c2 ∈ R, a function
∼
KEλh

(s) and c ∈ R, we

obtain the desired family defined on
∼
I ×R⊂ R2.

Now considering Eq. (3.7), we constitute

B′(s)+
4
s

B(s) =− 2
s2

∼
Hλh

(s), s 6= 0 (3.15)

where

B(s) =
n′√

−c2 + s2 (1+n′2)
, (3.16)

which implies that the general solution to Eq. (3.15) becomes

B(s) =− 1
s4

[∫
2s2∼Hλh

(s) ds+ c1

]
, (3.17)

where c1 is constant. With Eqs. (3.16) and (3.17), we have[
s2

(
s6−

(∫
2s2∼Hλh

(s) ds+ c1

)2
)]

n′2(s) =
(
s2− c2)(∫ 2s2∼Hλh

(s) ds+ c1

)2

.

Theorem 3.3. Let γ(s) = (0,s,n(s)) be a profile curve of the timelike helicoidal surface (2.5) in
(
F1

3
)

λh
. Assuming its mean

curvature at the point (0,s,n(s)) is represented by
∼
Hλh

(s), there exists an open subinterval
∼
I ⊂ I relating to c1 such that the

function n(s) is

n(s) =±
∫ √

|s2− c2|
∣∣∣∣∫ 2s2

∼
Hλh

(s) ds+ c1

∣∣∣∣
|s|

(∣∣∣∣s6−
(∫

2s2
∼
Hλh

(s) ds+ c1

)2∣∣∣∣
) 1

2
ds+ c2, (3.18)

where c2 is a constant. Also, for the designated constant c1 and some constants c and c2, there exists the two-parameter family
of curves such that

γ(s;
∼
Hλh

(s),c,c1,c2) =

0,s,
∫ √

s2− c2

∣∣∣∣∫ 2s2
∼
Hλh

(s) ds+ c1

∣∣∣∣
|s|

(
s6−

(∫
2s2
∼
Hλh

(s) ds+ c1

)2
) 1

2
ds+ c2

 , s ∈
∼
I ∩ (R\(−c,c)) . (3.19)
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Proof. Define the function F to be (s,c1)→ s6−
(∫

2s2
∼
Hλh

(s) ds+ c1

)2

. So, the technique for proving that Eqs. (3.18) and

(3.19) can be obtained for the known function
∼
Hλh

referred to as the mean curvature of the helicoidal surface (2.5) is the same
as that of Theorem (3.1).

Example 3.4. Let the mean curvature be
∼
Hλh

(s) =− 1
s , which implies that the function F amounts s6− (s2 +c1)

2. So, we get
the inequality s2(1−s)< c1 < s2(1+s) such that F is positive. Establish two functions f (s) := s2(1+s) and g(s) := s2(1−s).

For c1 = 0, consider the interval
(

11/10,
√

2
)

. Thus, the number c1 falls in the interval
(
2−
√

8,2+
√

8
)
. In this way, we

determine the sub-interval
∼
I of I to be

(
11/10,

√
2
)

in accordance with the positivity of F . Ultimately, for c2 = 0 and c = 1,
Eq. (3.19) lead into

γ(s) =
(

0,s, lns
)
, s ∈

(
11/10,

√
2
)
.

Replacing the last one into Eq. (2.5), we get

X (s, t) =
(

ssinh t,scosh t, lns+ t
)
,

which is the parametrization of a timelike helicoidal surface.

Figure 3.1: The graphic belongs to a timelike helicoidal surface of spacelike axis of rotation with
∼
Hλh

(s) =− 1
s

Theorem 3.5. Let c and c2 be arbitrary constants. Thus, for any c1 and a smooth function
∼
Hλh

, setting an open subinterval
∼
I

of I in which the function n(s) given by Eq. (3.18) is defined, we can construct the two-parameter family of timelike helicoidal

surfaces defined on
∼
I ×R⊂ R2, with the mean curvature

∼
Hλh

(s), with the profile curve γ(s;
∼
Hλh

(s),c,c1,c2), s ∈
∼
I .

Proof. The process for proving that the desired family can be construct is the same as that of Theorem (3.2).

Remark 3.6. It is important to remember that analogous outcomes may be obtained if we pick EG−F2 = c2−s2
(
1+n′2

)
> 0,

meanings that the helicoidal surface in
(
F1

3
)

λh
is spacelike.

Now, we consider the helicoidal surface given by Eq. (2.8). For this surface, taking EG−F2 =−c2 + s2
(
1−n′2

)
> 0 into

account, we have

K(s) =
−s3n′n′′+ c2[

−c2 + s2 (1−n′2)
]2 (3.20)
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and

H(s) =
s2n′3 +n′

(
2c2− s2

)
− sn′′

(
−c2 + s2

)
2
[
−c2 + s2 (1−n′2)

] 3
2

. (3.21)

Also, we get

3

∑
j=1

N j
λ, j =−

sn′√
−c2 + s2 (1−n′2)

. (3.22)

Considering Eqs. (3.20), (3.21) and (3.22) together, from Eqs. (2.1) and (2.2), we obtain

∼
KEλh

=

s2
(

sn′n′′
(
c2−2s2

)
+2s2n′4 +n′2

(
3c2−2s2

)
+ c2

)
[
−c2 + s2 (1−n′2)

]2 (3.23)

and

∼
Hλh

=

s
(

sn′′
(
c2− s2

)
+3s2n′3 +n′

(
4c2−3s2

))
2
[
−c2 + s2 (1−n′2)

] 3
2

. (3.24)

In a similar way, Eq. (3.23) turns into

A′(s)+
(

5
s
− 4s

2s2− c2

)
A(s) =

4
2s2− c2 −

2
s2

∼
KEλc

(s), (3.25)

where

A(s) =
sn′2 + s

−c2 + s2 (1−n′2)
. (3.26)

The general solution to Eq. (3.25) becomes

A(s) =
2s2− c2

s5

[∫ s5

2s2− c2

{
4

2s2− c2 −
2
s2

∼
KEλc

(s)
}

ds+ c1

]
, (3.27)

where c1 is constant. Comparing Eqs. (3.26) with (3.27), we have[
s2
(

s4 +ψ
(
s
))]

n′2(s) =−s6 +
(
s2− c2)

ψ(s), (3.28)

where

ψ(s) =
(
2s2− c2)[∫ s5

2s2− c2

{
4

2s2− c2 −
2
s2

∼
KEλc

(s)
}

ds+ c1

]
.

In light of the assumed sign of EG−F2, it follows that s4 +ψ(s) =
s4(2s2−c2)
−c2+s2−s2n′2 > 0. Thus, from (3.28), we can write

n(s) =±
∫ √∣∣∣(s2− c2)ψ(s)− s6

∣∣∣
|s|
√

s4 +ψ(s)
ds+ c2 (3.29)

Theorem 3.7. Let γ(s) = (n(s),s,0) be a profile curve of the spacelike helicoidal surface (2.8) in
(
F1

3
)

λc
. Assuming its extrinsic

curvature at the point (n(s),s,0) is represented by
∼
KEλc

(s), for some constant c, c1 and c2, there exists the two-parameter
family of the spacelike helicoidal surface constituted by curves

γ(s;
∼
KEλc

(s),c,c1,c2) =

±∫
√∣∣∣(s2− c2)ψ(s)− s6

∣∣∣
|s|
√

s4 +ψ(s)
ds+ c2,s,0

 , s ∈ R\(−c,c) .
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Inversely, let c and c2 be arbitrary constants. Thus, for any c1 and a smooth function
∼
KEλc

(s), we can construct the two-

parameter family of spacelike helicoidal surfaces defined on
∼
I ×R⊂ R2, with the extrinsic curvature

∼
KEλc

(s), with the profile

curve γ(s;
∼
KEλc

(s),c,c1,c2), s ∈
∼
I .

Proof. For the known function
∼
KEλc

, it is seen that the function n(s) takes Eq. (3.29), which means that concludes the necessity.
By defining the function F to be

(s,c1)→ s4 +
(
2s2− c2)[∫ s5

2s2− c2

{
4

2s2− c2 −
2
s2

∼
KEλc

(s)
}

ds+ c1

]
,

it is possible to perform the inverse of the proof in a manner similar to Theorem (3.1).

Example 3.8. Let the extrinsic curvature be
∼
KEλc

(s) =
2s2(6s2+5)

(2s2+1)
2 . For c1 = 0, we find ψ(s) =− s2(3s4+1)

2s2+1 . For c1, using Eq.

(3.29), we get the profile curve to be γ(s) =
(√

3s+
√

2+ t,s,0
)

. Thus, we write the parametrization of the corresponding
helicoidal surface as

X (s, t) =
(√

3s+
√

2+ t,scos t,ssin t
)
.

Figure 3.2: The graphic belongs to a spacelike helicoidal surface of timelike axis of rotation with
∼
KEλc

(s) =
2s2(6s2+5)
(2s2+1)2

In a similar way, from Eq. (3.24), we write

B′(s)+
4
s

B(s) =− 2
s2

∼
Hλc(s), s 6= 0 (3.30)

where

B(s) =
n′√

−c2 + s2 (1−n′2)
. (3.31)

The general solution to Eq. (3.30) becomes

B(s) =− 1
s4

[∫
2s2∼Hλc(s) ds+ c1

]
, (3.32)

where c1 is constant. From Eq. (3.31) and Eq. (3.32), we obtain

n(s) =±
∫ √

s2− c2

∣∣∣∣∫ 2s2
∼
Hλc(s) ds+ c1

∣∣∣∣
|s|

(
s6 +

(∫
2s2
∼
Hλc(s) ds+ c1

)2
) 1

2
ds+ c2,
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Theorem 3.9. Let γ(s) = (n(s),s,0) be a profile curve of the spacelike helicoidal surface (2.8) in
(
F1

3
)

λc
. Assuming its mean

curvature at the point (n(s),s,0) is represented by
∼
Hλc(s), for some constant c, c1 and c2, there exists the two-parameter family

of the spacelike helicoidal surface constituted by curves

γ(s;
∼
Hλc(s),c,c1,c2) =


∫ √

s2− c2

∣∣∣∣∫ 2s2
∼
Hλc(s) ds+ c1

∣∣∣∣
|s|

(
s6 +

(∫
2s2
∼
Hλc(s) ds+ c1

)2
) 1

2
ds+ c2,s,0

 , s ∈ R\(−c,c)

Inversely, let c and c2 be arbitrary constants. Thus, for any c1 and a smooth function
∼
Hλc(s), we can construct the two-

parameter family of spacelike helicoidal surfaces defined on
∼
I ×R⊂ R2, with the mean curvature

∼
Hλc(s), with the profile

curve γ(s;
∼
Hλc(s),c,c1,c2), s ∈

∼
I .

Proof. If the function
∼
Hλc(s) is known and by defining the function F to be

(s,c1)→ s6 +

(∫
2s2∼Hλc(s) ds+ c1

)2

,

then the proof is reduced to nothing more than the proof of Theorem (3.7).

Remark 3.10. It is important to remember that analogous outcomes may be obtained if we pick EG−F2 =−c2+s2
(
1−n′2

)
<

0, meanings that the helicoidal surface in
(
F1

3
)

λc
is timelike.

Finally, for the helicoidal surface given by Eq. (2.11), we have

K(s) =
n′′ (n− s)3 + c2 (1−n′)3

(1−n′)
[
(n− s)2 (n′+1)+ c2 (1−n′)

]2 (3.33)

and

H(s) =−n′′ (n− s)3 +2c2 (1−n′)3 +(n− s)2 (n′+1)(1−n′)2

2
[
(1−n′)

(
(n− s)2 (n′+1)+ c2 (1−n′)

)] 3
2

. (3.34)

Assuming EG−F2 < 0, observe that 1−n′ > 0 and taking the conformal factor λp into account, we compute as

3

∑
j=1

N j
λ, j =

√
n− s(1−n′)

2

√
(1−n′)

(
(n− s)2 (n′+1)+ c2 (1−n′)

) . (3.35)

Inserting Eqs. (3.33), (3.34) and (3.35) into Eqs. (2.1) and (2.2), we get

∼
KEλp

=

3(n− s)
(

2n′′ (n− s)3 +(n− s)2 (n′+1)(1−n′)2 +3c2 (1−n′)3
)

4(1−n′)

[
(n− s)2 (n′+1)+ c2 (1−n′)

]2 (3.36)

and

∼
Hλp =−

√
n− s

(
n′′ (n− s)3 +2(n− s)2 (n′+1)(1−n′)2 +3c2 (1−n′)3

)

2

[
(1−n′)

(
(n− s)2 (n′+1)+ c2 (1−n′)

)] 3
2

. (3.37)

It is difficult to determine the general solution to Eqs. (3.36) and (3.37) unless in a few specific cases.
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First, we look at the case where both
∼
KEλp

and
∼
Hλp amount mutually to zero. Thus, by using n(s) 6= s, Eqs. (3.36) and (3.37)

turn into

2n′′ (n− s)3 +(n− s)2 (n′+1
)(

1−n′
)2

+3c2 (1−n′
)3

= 0 (3.38)

n′′ (n− s)3 +2(n− s)2 (n′+1
)(

1−n′
)2

+3c2 (1−n′
)3

= 0. (3.39)

By Eqs. (3.38) and (3.39) , we obtain

(n− s)2 (1+n′
)
+ c2 (1−n′

)
= 0. (3.40)

Assigned n(s)− s = p(s), we turn Eq. (3.40) into(
p2− c2) p′+2p2 = 0. (3.41)

Then, the general solution to Eq. (3.41) is

p(s) =−(s+ c1)±
√
(s+ c1)

2− c2,

where c1 is an integration constant. From n(s)− s = p(s), we find

n(s) = c1±
√
(s+ c1)

2− c2, c1 ∈ R.

Hence, we construct a one-parameter family of curves

γ(s;n(s),c,c1) =

(
s,c1±

√
(s+ c1)

2− c2,0
)
.

As a result, with Eq. (2.11), the helicoidal surface turns into

X (s, t) =

((
1+

t2

2

)
s− t2

2

(
c1±

√
(s+ c1)

2− c2

)
+ ct,

t2

2
s+
(

1− t2

2

)(
c1±

√
(s+ c1)

2− c2

)
+ ct,

((
s− c1∓

√
(s+ c1)

2− c2

))
t

)
.

We will talk about what Eq. (3.36) turns into when the extrinsic curvature
∼
KEλp

is zero, which is the situation in which Eq.
(3.38) only is valid. In that case, we turn Eq. (3.36) into

2p3 p′′+
(

p2−3c2) p′3 +2p2 p′2 = 0, (3.42)

where n(s)− s = p(s). Assigned p′(s) to
∼
p(s), Eq. (3.42) turns into

1
∼
p

(
1
∼
p

)′
− 1

p
1
∼
p
− p2−3c2

2p3 = 0. (3.43)

If we put 1
∼
p
= w(p), Eq. (3.43) turns into

dw
d p
− 1

p
w− p2−3c2

2p3 = 0. (3.44)

The general solution to Eq. (3.44) is

w(p) =
2c1 p3− p2 + c2

2p2 ,

where c1 is a constant. Thus, the function n = n(s) supplies the equality

c1n3− (3c1s+1)n2 +
(
3c1s2−2c2

)
n− c1s3 +2c2s+ s2− c2 = 0, (3.45)

where c2 is an integration constant.
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Example 3.11. For c1 = 0, from Eq. (3.45), we find n(s) =−c2±
√
(s+ c2)

2− c2,s ∈ (−∞,−c− c2)∪ (c− c2,∞). Using Eq.
(2.11), we write

X (s, t) =

((
1+

t2

2

)
s− t2

2

(
−c2±

√
(s+ c2)

2− c2

)
+ ct,

t2

2
s+
(

1− t2

2

)(
−c2±

√
(s+ c2)

2− c2

)
+ ct,

((
s+ c2∓

√
(s+ c2)

2− c2

))
t

)
.

We now plot it putting for c2 = 0 and c = 3.

Figure 3.3: The graphic belongs to a minimal timelike helicoidal surface of lightlike axes of rotation with
∼
KEλp

= 0

Finally, we take an interest in Eq. (3.39), which requires a timelike helicoidal minimal surface. Similarly, the function n(s)
provides

2c1n6−12c1sn5 +30c1s2n4−40c1s3n3 +5
(
6c1s4−1

)
n2 (3.46)

−2
(

6c1s5 +5c2

)
n+2c1s6 +5s2 +10c2s−5c2 = 0.

Example 3.12. For c1 = 0, from Eq. (3.46), we get n(s) =−c2±
√

(s+ c2)
2−5c2,s ∈

(
−∞,−

√
5c− c2

)
∪
(√

5c− c2,∞
)

,
in which by Eq. (2.11), the parametric form of a timelike helicoidal minimal surface turns into

X (s, t) =

((
1+

t2

2

)
s− t2

2

(
−c2±

√
(s+ c2)

2−5c2

)
+ ct,

t2

2
s+
(

1− t2

2

)(
−c2±

√
(s+ c2)

2−5c2

)
+ ct,((

s+ c2∓
√

(s+ c2)
2−5c2

))
t

)
.

We now plot it putting for c2 = 0 and c = 3.
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Figure 3.4: The graphic belongs to a minimal timelike helicoidal surface of lightlike axes of rotation with
∼
KEλp

= 0

Remark 3.13. Observe that both helicoidal surfaces mentioned above, say Examples (3.11) and (3.12) satisfy both
∼
KEλp

= 0

and
∼
Hλp = 0.

Remark 3.14. It is important to remember that analogous outcomes may be obtained if we pick

EG−F2 =
(
n′−1

)(
(n− s)2 (n′+1

)
− c2 (n′−1

))
> 0.

Article Information

Acknowledgements: The authors would like to express their sincere thanks to the editor and the anonymous reviewers for
their helpful comments and suggestions.

Author’s Contributions: The authors contributed equally to the writing of this paper.

Conflict of Interest Disclosure: No potential conflict of interest was declared by the author.

Copyright Statement: Authors own the copyright of their work published in the journal and their work is published under the
CC BY-NC 4.0 license.

Supporting/Supporting Organizations: No grants were received from any public, private or non-profit organizations for this
research.

Ethical Approval and Participant Consent: It is declared that during the preparation process of this study, scientific and
ethical principles were followed and all the studies benefited from are stated in the bibliography.

Plagiarism Statement: This article was scanned by the plagiarism program. No plagiarism detected.

Availability of Data and Materials: Not applicable.

References

[1] A. V. Corro, R. Pina, M. A. Souza, Surfaces of rotation with constant extrinsic curvature in a conformally flat 3-space, Results Math., 60 (2011),
225–234.

[2] A. V. Corro, M. A. Souza, R. Pina, Classes of Weingarten surfaces in S2×R, Houston J. Math., 46 (2020), 651-654.
[3] B. P. Lima, P. A. Souza, B. M. Vieira, Helicoidal hypersurfaces and graphs in conformally flat spaces, Results Math., 77 (2022), 1-16.
[4] K. O. Araujo, N. Cui, R. S. Pina, Helicoidal minimal surfaces in a conformally flat 3-space, Bull. Korean Math., 53(2) (2016), 531-540.
[5] K. O. Araujo, A. V. Corro, R. S. Pina, M. A. Souza, Complete surfaces with zero curvatures in conformally flat spaces, Publ. Math. Debrecen., 96(3-4)

(2020), 363-376.
[6] C. W. Lee, J. W. Lee, D. W. Yoon, On helicoidal surfaces in a conformally flat 3-space, Mediterr. J. Math., 14 (2017), 1-9.
[7] C. W. Lee, J. W. Lee, D. W. Yoon, Helicoidal surfaces with prescribed curvatures in a conformally flat 3-space, Georgian Math. J., 28(5) (2021),

755-763.
[8] F. Yerlikaya, Helicoidal surfaces in some conformally flat pseudo-spaces of dimensional three, Int. J. Geom. Methods Mod., 20(3) (2023), 2350052-76


	Introduction
	Preliminaries
	Basic Notations
	The Process for Determining Proper Conformal Factors

	Results

