

Konuralp Journal of Mathematics

Research Paper Journal Homepage: www.dergipark.gov.tr/konuralpjournalmath e-ISSN: 2147-625X

Reeb Flow Invariant Unit Tangent Sphere Bundles with the Kaluza-Klein Metric

Murat Altunbas¹

¹*Department of Mathematics, Faculty of Science and Arts, Erzincan Binali Yıldırım University, Erzincan, Turkiye ¨*

Abstract

Let (M, g) be an *n*−dimensional Riemannian manifold and T_1M its tangent sphere bundle with the contact metric structure $(\tilde{G}, \eta, \phi, \xi)$, where \tilde{G} is the Kaluza-Klein metric. Let $h = \frac{1}{2} \mathfrak{L}_{\xi} \phi$ be the structural operator and $l = \bar{R}(\cdot, \xi) \xi$ be the characteristic Jacobi operator on *T*₁*M*. In this paper, we find some conditions for the Reeb flow invariancy of the (0,2)− type tensors *L* and *H* defined by $L(\tilde{X}, \tilde{Y}) = g(L\tilde{X}, \tilde{Y})$ and $H(\tilde{X}, \tilde{Y}) = g(h\tilde{X}, \tilde{Y})$ for all vector fields \tilde{X} and \tilde{Y} on T_1M .

Keywords: Contact metric structure; Jacobi operator; Kaluza-Klein metric; tangent sphere bundle. 2010 Mathematics Subject Classification: 53C25; 53D10.

1. Introduction

Let (M, g) be a Riemannan manifold and T_1M its unit tangent sphere bundle. The standard contact structure on T_1M is given with respect to the Sasaki metric. A generalization of the Sasaki metric is the Kaluza-Klein metric. Certain geometric properties of unit tangent sphere bundles with respect to the Kaluza-Klein metric and compatible contact structures were studied by some authors (see for example [\[1\]](#page-3-0),[\[7\]](#page-3-1),[\[8\]](#page-3-2)). An important problem on *T*₁*M* with a contact metric structure $(\eta, \phi, \xi, \overline{g})$ is to study the geodesic flow generated by the Reeb vector field ξ . This is called the Reeb flow and it leaves some structure tensors invariant. It is always true for ξ and η , since $\mathfrak{L}_{\xi} \xi = 0$ and $\mathfrak{L}_{\xi} \eta = 0$, where \mathcal{L}_{ξ} denotes the Lie differentiation in the direction ξ. On the other hand, Tashiro showed that \mathcal{L}_{ξ} *g* = 0 if and only if (*M*,*g*) has constant curvature $c = 1$,[\[10\]](#page-3-3). However, there exist two fundamental tensors on T_1M , so called the structural operator $h = \frac{1}{2} \mathfrak{L}_{\xi} \phi$ and the characteristic Jacobi operator $l = \overline{R}(\cdot, \xi)\xi$. Boeckx *et al.* showed that T_1M fulfills $\mathcal{L}_{\xi}h = 0$ if and only if (M, g) is of constant curvature $c = 1$ and T_1M fulfills $\mathcal{L}_{\xi}l = 0$ if and only if (M,g) is of constant curvature $c = 0$ or $c = 1$, [\[6\]](#page-3-4). In these papers, the unit tangent sphere bundles were considered with the standard contact metric structure.

In this paper, we deal with two $(0,2)$ -type tensors L and H defined by $L(\tilde{X}, \tilde{Y}) = g(L\tilde{X}, \tilde{Y})$ and $H(\tilde{X}, \tilde{Y}) = g(L\tilde{X}, \tilde{Y})$ for all vector fields \tilde{X} and \tilde{Y} on T_1M and investigate the conditions under which these tensors are preserved by the geodesic flow. We endow unit the tangent sphere bundle T_1M with the Kaluza-Klein metric. Similar problems were considered in [\[9\]](#page-3-5) with respect to the standard contact metric structure.

2. Preliminaries

In this section, we give some basic facts about contact metric manifolds. All manifolds are assumed to be smooth and connected. We may refer to [\[5\]](#page-3-6) for more information about contact metric geometry.

Let \bar{M} be a $(2n-1)$ dimensional differentiable manifold. If \bar{M} admits a global 1-form η (a contact form) such that $\eta \wedge (d\eta)^n \neq 0$, then it is called a contact manifold. When η is given, there exists a unique vector field ξ (characteristic vector field) such that $\eta(\xi) = 1$ and $d\eta(\xi, \bar{X}) = 0$ for all vector fields \bar{X} on \bar{M} . Moreover, a Riemannian metric \bar{g} is called an associated metric if there exists a (1,1)−tensor ϕ such that

$$
\eta(\bar{X}) = g(\bar{X}, \xi), d\eta(\bar{X}, \bar{Y}) = \bar{g}(\bar{X}, \phi\bar{Y}), \ \phi^2 \bar{X} = -\bar{X} + \eta(\bar{X})\xi,
$$
\n(2.1)

for all vector fields \bar{X} , \bar{Y} on \bar{M} . It follows that

$$
\phi\xi=0,\ \eta\circ\phi=0,\ \bar{g}(\phi\bar{X},\phi\bar{Y})=\bar{g}(\bar{X},\bar{Y})-\eta(\bar{X})\eta(\bar{Y}).
$$

The quartet $(\eta, \bar{g}, \phi, \xi)$ satisfying [\(2.1\)](#page-0-0) is called a contact metric structure and the quintet $(\bar{M}, \eta, \bar{g}, \phi, \xi)$ a contact metric manifold.

Let \bar{M} be a contact metric manifold. The structural operator *h* is defined by $h = \frac{1}{2} \mathcal{L}_{\xi} \phi$, where \mathcal{L} is the Lie differentiation operator. The operator *h* is self-adjoint and it satisfies the following relations:

$$
h\xi=0,\ h\phi=-\phi h,\ \bar{\nabla}_{\bar{X}}\xi=-\phi \overline{X}-\phi h\overline{X},\ (\bar{\nabla}_{\xi}h)\phi=-\phi(\bar{\nabla}_{\xi}h),
$$

where $\bar{\nabla}$ is the Levi-Civita connection of \bar{g} .

We denote by \bar{R} the Riemannian curvature tensor defined by

$$
\bar{R}(\bar{X},\bar{Y})\bar{Z}=\nabla_{\overline{X}}(\nabla_{\overline{Y}}\overline{Z})-\nabla_{\overline{Y}}(\nabla_{\overline{X}}\overline{Z})-\nabla_{[\overline{X},\overline{Y}]}\overline{Z}
$$

for all vector fields \bar{X} , \bar{Y} , \bar{Z} on \bar{M} .

The characteristic Jacobi operator is a (1,1)−tensor field and defined by $l = \overline{R}(\cdot, \xi) \xi$. We have

$$
l = \phi l\phi - 2(h^2 + \phi^2), \tag{2.2}
$$

$$
\overline{\nabla}_{\xi}h = \phi - \phi l - \phi h^2. \tag{2.3}
$$

Let (*M*,*g*) be an *n*−Riemannian manifold with the Levi-Civita connection ∇. The tangent bundle *TM* of *M* is a 2*n*−dimensional manifold with the projection map $\pi : TM \to M$, $\pi(p, u) = p$. The *g*−natural metric *G* on *TM* is defined by, [\[4\]](#page-3-7)

$$
\begin{cases}\nG(X^h,Y^h) = (\alpha_1 + \alpha_3)(r^2)g(X,Y) + (\beta_1 + \beta_3)(r^2)g(X,u)g(Y,u), \\
G(X^h,Y^v) = \alpha_2(r^2)g(X,Y) + \beta_2(r^2)g(X,u)g(Y,u), \\
G(X^v,Y^v) = \alpha_1(r^2)g(X,Y) + \beta_1(r^2)g(X,u)g(Y,u),\n\end{cases}
$$

for all vector fields X, Y on M, where $\alpha_i, \beta_i : \mathbb{R}^+ \to \mathbb{R}$, $i = 1, 2, 3$ are smooth functions, $r^2 = g(u, u)$ and X^h, X^v denote the horizontal lift and the vertical lift of *X*, respectively.

The unit tangent sphere bundle *T*₁*M* is a hypersurface of *TM* defined by $T_1M = \{(x, u) \in TM : g(u, u) = 1\}$. By definition, the *g*−natural metric on T_1M is the restriction of the *g*−natural metric of *TM* to its hypersurface T_1M . The *g*−natural metric on T_1M is defined by

$$
\begin{cases}\n\bar{G}(X^h, Y^h) = (a+c)g(X, Y) + \beta(r^2)g(X, u)g(Y, u), \\
\bar{G}(X^h, Y^v) = bg(X, Y), \\
\bar{G}(X^v, Y^v) = ag(X, Y),\n\end{cases}
$$

where $a, b, c \in \mathbb{R}$ and $\beta : [0, \infty) \to \mathbb{R}$. The vector field $N = \frac{1}{\sqrt{a+b}}$ $\frac{1}{(a+c+d)\varphi}[-bu^h + (a+c+d)u^v]$ is the unit normal vector field, where $d = \beta(1)$ and $\varphi = a(a+c+d) - b^2$. The tangential lift X^t is given by $X^t = X^v - \sqrt{\frac{\varphi}{a+c+d}} g(X,u) N$. Since the tangent space $(T_1M)_{(x,u)}$ of T_1M at

$$
(x, u)
$$
 is spanned by vectors of the form X^h and Y^t , the Riemannian metric g on T_1M , induced from G, is completely determined by

$$
\begin{cases}\n\bar{G}(X^h, Y^h) = (a+c)g(X, Y) + dg(X, u)g(Y, u), \\
\bar{G}(X^h, Y^t) = bg(X, Y), \\
\bar{G}(X^t, Y^t) = ag(X, Y) - \frac{\varphi}{a+c+d}g(X, u)g(Y, u),\n\end{cases}
$$
\n(2.4)

for all vector fields *X*,*Y* on *M*. The particular cases of the metric *G* are listed below:

- i) The Sasaki metric if $a = 1$, $b = c = d = 0$,
- ii) The Cheeger-Gromoll type metric if $b = d = 0$, $a = 1/2^m$, $c = 1 a$,
- iii) The Kaluza-Klein type metric if $b = 0$ (and $a, a + c > 0, a + c + d > 0$),
- iv) The Kaluza-Klein metric if $b = d = 0$ (and *a*, $a + c > 0$).

In this paper, we deal with the Kaluza-Klein metric. From (2.4) , the Kaluza-Klein metric \tilde{G} is defined by

$$
\begin{cases}\n\tilde{G}(X^h, Y^h) = (a+c)g(X, Y), \\
\tilde{G}(X^h, Y^t) = 0, \\
\tilde{G}(X^t, Y^t) = a(g(X, Y) - g(X, u)g(Y, u)).\n\end{cases}
$$
\n(2.5)

The Levi-Civita connection $\tilde{\nabla}$ of \tilde{G} is given by, [\[7\]](#page-3-1)

$$
\tilde{\nabla}_{X^h} Y^h = (\nabla_X Y)^h - \frac{1}{2} (R(X, Y)u)^v,
$$
\n
$$
\tilde{\nabla}_{X^h} Y^t = (\nabla_X Y)^t + \frac{a}{2(a+c)} (R(u, Y)X)^h,
$$
\n
$$
\tilde{\nabla}_{X^t} Y^h = \frac{a}{2(a+c)} (R(u, X)Y)^h,
$$
\n
$$
\tilde{\nabla}_{X^t} Y^t = -g(Y, u)X^t.
$$
\n(2.6)

where ∇ and *R* are the Levi-Civita connection and the Riemannian curvature tensor of *g*, respectively. For the characteristic Jacobi operator *l*, we need only two components of the Riemannian curvature tensor \tilde{R} which are given by

$$
\widetilde{R}(X^t, Y^h)Z^h = -\frac{1}{2}\{R(Y,Z)(X-g(X,u)u)\}^t + \frac{a}{4(a+c)}\{R(Y,R(u,X)Z)u\}^t - \frac{a}{2(a+c)}\{(\nabla_Y R)(u,X)Z\}^h, (2.7)
$$

$$
\widetilde{R}(X^t, Y^h)Z^h = (R(X,Y)Z)^h + \frac{a}{2(a+c)}\{R(u,R(X,Y)u)Z\}^h - \frac{a}{4(a+c)}\{R(u,R(Y,Z)u)X - R(u,R(X,Z)u)Y\}^h + \frac{1}{2}\{(\nabla_Z R)(X,Y)u\}^t
$$

for all vector fields *X*,*Y*,*Z* on *M*, [\[3\]](#page-3-8).

From [\[2\]](#page-3-9), we have a contact metric structure $(\tilde{G}, \eta, \phi, \xi)$ on T_1M satisfying

$$
\xi = 2u^h, \ \phi X^t = \frac{1}{4(a+c)}(-X^h + \frac{1}{2}g(X, u)\xi), \ \phi X^h = \frac{1}{4a}X^t, \eta(X^h) = \frac{1}{2}g(X, u), \eta(X^t) = 0. \tag{2.8}
$$

We also have

$$
hX^{t} = \frac{1}{4a}X^{t} - \frac{1}{4(a+c)}(R_{u}X)^{t},
$$

\n
$$
hX^{h} = -\frac{1}{4a}X^{h} + \frac{1}{8a}g(X,u)\xi + \frac{1}{4(a+c)}(R_{u}X)^{h},
$$
\n(2.9)

where $R_u = R(\cdot, u)u$ is the Jacobi operator associated with the unit vector *u*. Using formulae [\(2.7\)](#page-1-1), we obtain

$$
lX^{t} = \frac{a}{a+c}(R_{u}^{2}X)^{t} + \frac{2a}{a+c}(R_{u}^{\prime}X)^{t},
$$

\n
$$
lX^{h} = 4(R_{u}X)^{h} - \frac{3a}{a+c}(R_{u}^{2}X)^{h} + 2(R_{u}^{\prime}X)^{t},
$$
\n(2.10)

where $R_u^2 X = R(R(\cdot, u)u, u)u$ and $R'_u = (\nabla_u R)(\cdot, u)u$. Using [\(2.3\)](#page-1-2), [\(2.8\)](#page-2-0) and [\(2.9\)](#page-2-1) we get

$$
(\tilde{\nabla}_{\xi} h)X^{t} = \frac{-1}{32a(a+c)^{2}} (R_{u}X)^{h} + \frac{16a(a+c)+1}{64(a+c)^{3}} (R_{u}^{2}X)^{h} - \frac{1}{2(a+c)} (R_{u}'X)^{t} + (\frac{1-16a^{2}}{64a^{2}(a+c)}) (X^{h} - g(X,u)u^{h}),
$$
\n
$$
(\tilde{\nabla}_{\xi} h)X^{h} = \frac{-64a(a+c)+2}{64a^{2}(a+c)} (R_{u}X)^{t} + \frac{48a(a+c)-1}{64a(a+c)^{2}} (R_{u}^{2}X)^{t} + \frac{1}{2(a+c)} (R_{u}'X)^{h} + \frac{16a^{2}-1}{64a^{3}} X^{t}.
$$
\n(2.11)

From (2.6) and (2.10) , we get

$$
(\tilde{\nabla}_{\xi}l)X^{t} = \frac{4a}{a+c}(R_{u}^{\prime}R_{u}X + R_{u}R_{u}^{\prime}X)^{t} + \frac{4a}{a+c}(R_{u}^{\prime\prime}X + R_{u}^{2}X - \frac{a}{a+c}R_{u}^{3}X)^{h},
$$

\n
$$
(\tilde{\nabla}_{\xi}l)X^{h} = 8(R_{u}^{\prime}X - \frac{a}{a+c}(R_{u}^{\prime}R_{u}X + R_{u}R_{u}^{\prime}X))^{h} + 4(R_{u}^{\prime\prime}X + R_{u}^{2}X - \frac{a}{a+c}R_{u}^{3}X)^{t}.
$$
\n(2.12)

3. Lie differentiations of the tensor fields *L* and *H*

Theorem 3.1. Let (M, g) be a space with constant curvature k and T_1M be its unit tangent sphere bundle with the contact metric structure *defined by [\(2.8\)](#page-2-0). Then T₁ <i>M* fulfills $\mathfrak{L}_{\xi} L = 0$ *if the following system of equations is satisfied*

$$
\begin{cases}\n\frac{32a^2(a+c)-a}{8(a+c)^3}k^3 + \frac{8a+3-32a(a+c)}{8(a+c)^2}k^2 - \frac{4a+1}{a+c}k = 0, \\
\frac{4a(8a+c)-1}{8(a+c)^2}k^3 + \frac{8a+3-32a(a+c)}{8(a+c)}k^2 - \frac{4a+1}{4a^2}k = 0.\n\end{cases}
$$
\n(3.1)

Proof. From [\[9\]](#page-3-5), we know that $\mathfrak{L}_{\xi}L = 0$ is equivalent to

$$
\tilde{\nabla}_{\xi} l = l\phi - \phi l + l\phi h - h\phi l. \tag{3.2}
$$

If (M, g) is a space with constant curvature *k*, then equations [\(2.9\)](#page-2-1)-[\(2.12\)](#page-2-3) reduce to

$$
hX^{t} = \left(\frac{1}{4a} - \frac{k}{4(a+c)}\right)X^{t}, \quad hX^{h} = \left(\frac{-1}{4a} + \frac{k}{4(a+c)}\right)(X^{h} - g(X, u)u^{h}),
$$
\n
$$
lX^{t} = \frac{a}{a+c}k^{2}X^{t}, \quad lX^{h} = (4k - \frac{3a}{a+c}k^{2})(X^{h} - g(X, u)u^{h}),
$$
\n
$$
lX^{t} = \left(\frac{-1}{(2a)(a+c)^{2}}k + \frac{16a(a+c) + 1}{(2a)(a+c)^{3}}k^{2} + \frac{1 - 16a^{2}}{(4a+c)^{2}}(X^{h} - g(X, u)u^{h}),
$$
\n(3.3)

$$
(\tilde{\nabla}_{\xi} h)X^{t} = \left(\frac{-1}{32a(a+c)^{2}}k + \frac{16a(a+c)+1}{64(a+c)^{3}}k^{2} + \frac{1-16a}{64a^{2}(a+c)}\right)(X^{h} - g(X, u)u^{h}),
$$

$$
(\tilde{\nabla}_{\xi} h)X^{h} = \left(\frac{-64a(a+c)+2}{64a^{2}(a+c)}k + \frac{48a(a+c)-1}{64a(a+c)^{2}}k^{2} + \frac{16a^{2}-1}{64a^{3}}\right)X^{t},
$$

$$
(\tilde{\nabla}_{\xi} l)X^{t} = \frac{4a}{a+c}(k^{2} - \frac{a}{a+c}k^{3})(X^{h} - g(X, u)u^{h}),
$$

$$
(\tilde{\nabla}_{\xi} l)X^{h} = 4(k^{2} - \frac{a}{a+c}k^{3})X^{t}.
$$

Using equations (3.3) in (3.2) , we obtain equation (3.1) .

 \Box

Example 3.2. It is clear that if (M, g) is a space with constant curvature 0, then T_1M with the contact metric structure defined by [\(2.8\)](#page-2-0) *satisfies* $\mathfrak{L}_{\xi} L = 0$.

Theorem 3.3. Let (M, g) be a space with constant curvature k and T_1M be its unit tangent sphere bundle with the contact metric structure *defined by [\(2.8\)](#page-2-0). Then T₁ <i>M* fulfills $\mathfrak{L}_F H = 0$ *if the following system of equations is satisfied*

$$
\begin{cases}\n\frac{16a(a+c)+1}{64(a+c)^3}k^2 + \frac{4a-1}{32a(a+c)^2}k + \frac{-16a^2 - 8a + 1}{64a^2(a+c)} = 0, \\
\frac{48a(a+c)-1}{64a(a+c)^2}k^2 + \frac{8a+2 - 64a(a+c)}{64a(a+c)^2}k + \frac{16a^2 - 8a - 1}{64a^3} = 0.\n\end{cases}
$$
\n(3.4)

Proof. From [\[9\]](#page-3-5), we know that $\mathfrak{L}_{\xi}H = 0$ is equivalent to

$$
\tilde{\nabla}_{\xi}h = 2h\phi. \tag{3.5}
$$

Using equations (3.3) in (3.5) , we occur equation (3.4) .

Corollary 3.4. [\[9\]](#page-3-5) Let (M, g) be a space with constant curvature -1 or 1. Then T_1M with the standard contact metric structure fulfills $\mathfrak{L}_{\xi} H = 0.$

Article Information

Acknowledgements: The authors would like to express their sincere thanks to the editor and the anonymous reviewers for their helpful comments and suggestions.

Author's contributions: All authors contributed equally to the writing of this paper. All authors read and approved the final manuscript.

Conflict of Interest Disclosure: No potential conflict of interest was declared by the author.

Copyright Statement: Authors own the copyright of their work published in the journal and their work is published under the CC BY-NC 4.0 license.

Supporting/Supporting Organizations: No grants were received from any public, private or non-profit organizations for this research.

Ethical Approval and Participant Consent: It is declared that during the preparation process of this study, scientific and ethical principles were followed and all the studies benefited from are stated in the bibliography.

Plagiarism Statement: This article was scanned by the plagiarism program. No plagiarism detected.

Availability of data and materials: Not applicable

References

- [1] M.T.K. Abbassi, N. Amri and G. Calvaruso, Kaluza-Klein type Ricci solitons on unit tangent sphere bundles, Differ. Geom. Appl., Vol:59, (2018), 184-203. [2] M. T. K. Abbassi and G. Calvaruso, g-Natural Contact Metrics on Unit Tangent Sphere Bundles, Monatshefte fur Mathematik, Vol:151, (2007), 89-109. ¨
-
- [3] M.T.K. Abbassi and O. Kowalski, On g-natural metrics with constant scalar curvature on unit tangent sphere bundles, Topics in Almost Hermitian Geometry and related fields, Vol:1, (2005), 1-29.
- [4] M.T.K Abbassi and M. Sarih, On natural metrics on tangent bundles of Riemannian manifolds, Arch Math (Brno), Vol:41, (2005) 71-92.
- [5] Blair, D.E., *Riemannian geometry of contact and symplectic manifolds*, Birkhauser, Boston, 2010.
- [6] E. Boeckx, J. T. Cho and S. H. Chun, Flow invariant structures on unit tangent bundles, Publ. Math. Debrecen, Vol:70, (2007), 167-178.
- [7] G. Calvaruso and D. Perrone, Geometry of Kaluza–Klein metrics on the sphere *S* 3 , Annali di Matematica Pura ed Applicata, Vol:192, (2013), 879-900.
- [8] G. Calvaruso and D. Perrone, Metrics of Kaluza-Klein type on the anti-de Sitter space H_1^3 , Math. Nachr. Vol:287, (2014), 885-902.
- [9] J.T. Cho and S.H. Chun, Reeb flow invariant unit tangent sphere bundles, Honam Mathematical Journal, Vol:36 (4), (2014), 805-812.
- [10] Y. Tashiro, On contact structures of unit tangent sphere bundles, Tohoku Math. J., Vol:21 (1969), 117-143.

 \Box