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ABSTRACT 

In this article, we implemented the Fourier Adomian Decomposition Method (FADM) which depends on the 

Fourier transform method and the Adomian decomposition method to solve Fisher-type equations. Besides, two 

examples are represented to show the accuracy and validity of the proposed method. 
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ÖZ 

Bu makalede, Fisher tipi denklemleri çözmek için Fourier dönüşüm metodu ve Adomian Ayrıştırma Metoduna 

bağlı Fourier Adomian ayrıştırma metodunu (FADM) uyguladık. Ayrıca önerilen metodun dogrulugunu 

göstermek için iki örnek verildi. 

Anahtar Kelimeler- Fourier Dönüşüm Metodu, Fisher Denklem, Adomian Ayrıştırma Metodu 
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I. INTRODUCTION 

The Fisher-type equations are a class of partial differential equations commonly used to model the spatial 

dynamics of population growth and propagation. Named after biologist and statistician R.A. Fisher, these equations 

play a crucial role in understanding the spread and distribution of biological species, epidemics, and other 

phenomena with spatial components [1,2]. Several methods for solving Fisher-type equations have been developed 

by many researchers. Humaira and Shah [3] have employed Laplace Adomian decomposition method to solve the 

general Fisher’s equation. In [4], Yıldırım and Bayram, implemented the reduced differential transform method 

(RDTM) to construct explicit /exact solutions of Fisher-type equations. Ağırseven and Öziş [5] used the homotopy 

perturbation method for solving Fisher type equations. In addition, Bhalekar and Patade [6] used the decomposition 

method to give an analytical solution to Fisher’s equation. Other methods for the Fishers equation are the Exp-

function method [7], Q-function method [8], Adomian decomposition method [9], Laplace transform, and new 

homotopy perturbation methods [10]. In this article, we propose a method, namely, The Fourier Adomian 

Decomposition Method (FADM) to solve Fisher-type equations given by 

 𝑢𝑡 = 𝑢𝑥𝑥 + 𝛼𝑢(1 − 𝑢).                                                                                 (1) 

The paper is organized as follows: In Section 2, basic definitions and theorems related to the Fourier 

transform and Adomian decomposition method. In Section 3, some examples have been given for the solution of 

the fisher equation by using FADM. Finally, we have given a conclusion. 

In this article, the Fisher-type equations have been solved using the proposed method for several reasons: 

Firstly, FADM is known for its versatility, it can handle nonlinear problems like Fisher-type equations with relative 

ease. Its ability to break down complex problems into more manageable parts makes it a valuable tool in the 

researcher's toolbox. Secondly, FADM has a solid theoretical foundation. Leveraging the Fourier transform and 

the Adomian polynomials, it provides a systematic and efficient way to approximate solutions. This method allows 

you to express the solution as a series, making it easier to work with and potentially yielding more accurate results. 

Finally, FADM often proves computationally efficient, especially when dealing with problems that might be 

challenging for other numerical methods. This can save valuable time and resources in the research process. The 

choice to use FADM boils down to its adaptability, theoretical robustness, and computational efficiency, which 

are essential when tackling complex Fisher-type equations. 

II. PRELIMINARIES AND THEOREMS 

            Definition 2.1. : [12] The Fourier transform of 𝑓(𝑡) is given by 

     ℱ[𝑓(𝑡)] = 𝐹(𝑤) = ∫ 𝑓(𝑡). 𝑒−𝑖𝑤𝑡𝑑𝑡
∞

−∞

                                                                                                                    (2) 

Definition 2.2. : [12] The inverse Fourier transform of 𝐹(𝑤) is given by 

    𝑓(𝑡) = ℱ−1[𝐹(𝑤)] =
1

2𝜋
∫ 𝐹(𝑤). 𝑒𝑖𝑤𝑡𝑑𝑡

∞

−∞

                                                                                                           (3) 

Theorem 2.1.[11-12] (Linearity of Fourier Transform) If ℱ[𝑓1(𝑡)] = 𝐹1(𝑤), ℱ[𝑓2(𝑡)] = 𝐹2(𝑤), then  

ℱ[𝑟1. 𝑓1(𝑡) + 𝑟2. 𝑓2(𝑡)] = 𝑟1. 𝐹1(𝑤) + 𝑟2. 𝐹2(𝑤), 

where 𝑟1, 𝑟2  are arbitrary constants. 

           Theorem 2.2.[11-12] Let 𝑓(𝑡) be continuous or partially continuous in (−∞, ∞), and 

𝑓(𝑡), 𝑓′(𝑡), 𝑓′′(𝑡), … , 𝑓(𝑛−1)(𝑡) → 0 for |𝑡| → ∞. Also, if 𝑓(𝑡), 𝑓′(𝑡), 𝑓′′(𝑡), … , 𝑓(𝑛−1)(𝑡) are absolutely 

integrable in (−∞, ∞), then 

   ℱ[𝑓(𝑛)(𝑡)] = (𝑖𝑤)𝑛ℱ[𝑓(𝑡)]                                                                                                                                        (4) 

           Definition 2.3. The Dirac delta function is given by 

𝛿(𝑡) = {
0, 𝑡 ≠ 0

∞,    𝑡 = 0      
 

           Some properties of the Dirac Delta distribution are as follows [12]: 

             i.  ∫ 𝛿(𝑡)𝑑𝑡 = 1
∞

−∞
  

            ii.  ∫ 𝑓(𝑡). 𝛿(𝑡 − 𝑡0)𝑑𝑡 = 𝑓(𝑡0)
∞

−∞
                                                              (5)                                                 
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            iii. ∫ 𝑓(𝑡). 𝛿(𝑛)(𝑡 − 𝑡0)𝑑𝑡 = (−1)𝑛 . 𝑓(𝑛)(𝑡0)
∞

−∞
                                               (6)                                          

                                                  

            iv.  (𝑡 − 𝑡0)𝑛𝛿(𝑛)(𝑡0) = (−1)𝑛𝑛! 𝛿(𝑡 − 𝑡0)                                                                                                             (7)                                                 

                                                  

Where 𝛿(𝑡 − 𝑡0) is given by 

                 𝛿(𝑡 − 𝑡0) = {
0,      𝑡 ≠ 𝑡0

∞,    𝑡 = 𝑡0
 

Theorem 2.3. [11-12] The Fourier transform of 𝛿(𝑡) is 1.  

Theorem 2.4.[11-13] The Fourier transforms for some functions are following 

       𝑖)ℱ[1] = 2𝜋. 𝛿(𝑤) 

       𝑖𝑖) ℱ[𝑡𝑛] = 2𝜋. 𝑖𝑛. 𝛿(𝑛)(𝑤) 

       𝑖𝑖𝑖)ℱ[𝑒𝑖𝑤0𝑡] = 2𝜋𝛿(𝑤 − 𝑤0) 

        𝑖𝑣)ℱ[𝑒𝑎𝑡] = 2𝜋𝛿(𝑤 + 𝑖𝑎) 

 

Lemma 1.  The Fourier Transform of Partial derivative functions are following: 

       ℱ [
𝜕𝑓

𝜕𝑥
] = 𝑖𝑤𝐹(𝑤, 𝑦)                                       (8) 

       ℱ [
𝜕𝑓

𝜕𝑦
] =

𝜕𝐹(𝑤,𝑦)

𝜕𝑦
                                                                         (9) 

       ℱ [
𝜕2𝑓

𝜕𝑥2] = −𝑤2𝐹(𝑤, 𝑦)                                                (10)   

       ℱ [
𝜕2𝑓

𝜕𝑦2] =
𝜕2𝐹(𝑤,𝑦)

𝜕𝑦2                            (11) 

 

III. FADM FOR FISHER’S EQUATION 

In this section, we will show the reliability of the proposed method and its compatibility with some real 

physical processes. 

Consider the following general form of the nonlinear diffusion equation with the specified initial 

condition: 

 𝑢𝑡 = 𝑢𝑥𝑥 + 𝐹(𝑢)                                       (12)                                              

 𝑢(𝑥, 0) = 𝑓(𝑥)                    (13) 

 

where 𝐹(𝑢) is a continuous nonlinear function that satisfies the conditions 

𝐹(0) = 𝐹(1) = 0 

𝐹′(0) > 0 > 𝐹′(1) 

𝐹(𝑢) > 0, 0 < 𝑢 < 1 

The methodology consists of applying Fourier transform first on both sides of Eq. (12) 

 

ℱ(𝑢𝑡) = ℱ(𝑢𝑥𝑥) + ℱ(𝐹(𝑢)) 

 

Using the differentiation property of Fourier transform, we get 

 

              
𝜕𝑈(𝑤,𝑡)

𝜕𝑡
= (𝑖𝑤)2𝑈(𝑤, 𝑡) +  ℱ(𝐹(𝑢))                                                                                                       (14) 

The second step in the Fourier Adomian decomposition method is that we represent solution as an infinite 

series given by 

𝑢(𝑥, 𝑡) = ∑ 𝑢𝑛(𝑥, 𝑡) = 𝑢0(𝑥, 𝑡) + 𝑢1(𝑥, 𝑡) + 𝑢2(𝑥, 𝑡) + ⋯

∞

𝑛=0

 

Where the component 𝑢𝑛(𝑥, 𝑡), 𝑛 ≥ 0 will be determined in a recursive manner. 

Also, by applying inverse Fourier transform to Eq (14), our required recursive relation is given below 

ℱ−1 [
𝜕𝑈(𝑤, 𝑡)

𝜕𝑡
] = −ℱ−1(𝑤2𝑈(𝑤, 𝑡))+ℱ−1 ( ℱ(𝐹(𝑢))) 

𝜕𝑢𝑛+1

𝜕𝑡
= −ℱ−1(𝑤2𝑈𝑛(𝑤, 𝑡)) + ℱ−1(ℱ(𝐴𝑛)), 𝑛 ≥ 0 



BŞEÜ Fen Bilimleri Dergisi / BSEU Journal of Science, 2024, 11(2): 270-275 

M. DÜZ, A. ISSA 

 273 

 

Where 𝑢0 = 𝑢(𝑥, 0) = 𝑓(𝑥) from the initial condition, and 𝐴𝑛′𝑠 are the Adomian polynomials.  

 

Example 1: [3,5,6,9,10] Consider the following Fisher’s equation  

 

                𝑢𝑡 = 𝑢𝑥𝑥 + 𝛼𝑢(1 − 𝑢)                                                                                                                                           (15) 

 

with initial condition   𝑢(𝑥, 0) = 𝜆 for 𝛼 = 1  

 

The exact solution of Eq (15) is 

𝑢(𝑥, 𝑡) =
𝜆𝑒𝑡

1 − 𝜆 + 𝜆𝑒𝑡
 

 

By using Fourier transform of Eq (15), we obtain 

 

ℱ(𝑢𝑡) = ℱ(𝑢𝑥𝑥) + ℱ(𝑢) − ℱ(𝑢2) 

 
𝜕𝑈(𝑤, 𝑡)

𝜕𝑡
= (𝑖𝑤)2𝑈(𝑤, 𝑡) +  ℱ(𝑢) − ℱ(𝑢2) 

 

Now, using the inverse Fourier transform of the previous equation, we obtain 

 

ℱ−1 [
𝜕𝑈(𝑤, 𝑡)

𝜕𝑡
] = −ℱ−1(𝑤2𝑈(𝑤, 𝑡))+ℱ−1( ℱ(𝑢)) − ℱ−1(ℱ(𝑢2)) 

 
𝜕𝑢𝑛+1

𝜕𝑡
= −ℱ−1(𝑤2𝑈𝑛(𝑤, 𝑡)) + 𝑢𝑛 − ℱ−1(ℱ(𝐴𝑛)) 

 

The first few components of 𝑢𝑛(𝑥, 𝑡) are given by 

 

𝑢0 = 𝜆,   𝐴0 = 𝑢0
2,      𝑈0(𝑤, 𝑡) = ℱ(𝑢0) = ℱ(𝜆) = 2𝜋𝜆. 𝛿(𝑤) 

 
𝜕𝑢1

𝜕𝑡
= −ℱ−1(𝑤2𝑈0(𝑤, 𝑡)) + 𝑢0 − ℱ−1(ℱ(𝐴0)) = 𝑢0 − 𝑢0

2 = 𝜆 − 𝜆2 

𝑢1 = 𝜆𝑡 − 𝜆2𝑡, 𝐴1 = 2𝑢0. 𝑢1 = 2𝜆(𝜆𝑡 − 𝜆2𝑡), 𝑈1(𝑤, 𝑡) = ℱ(𝑢1) = 2𝜋𝛿. (𝜆𝑡 − 𝜆2𝑡) 

 
𝜕𝑢2

𝜕𝑡
= −ℱ−1(𝑤2𝑈1(𝑤, 𝑡)) + 𝑢1 − ℱ−1(ℱ(𝐴1)) == −ℱ−1(𝑤22𝜋𝛿(𝜆𝑡 − 𝜆2𝑡)) + (𝜆𝑡 − 𝜆2𝑡) − 2𝜆(𝜆𝑡 − 𝜆2𝑡)

= 𝜆𝑡 − 𝜆2𝑡 − 2𝜆2𝑡 + 2𝜆3𝑡 

𝑢2 =
𝜆𝑡2

2
−

3𝜆2𝑡2

2
+ 𝜆3𝑡2, 

𝐴2 = 2𝑢0. 𝑢2 + 𝑢1
2 = (2𝜆2 − 5𝜆3 + 3𝜆4)𝑡2 

𝑈2(𝑤, 𝑡) = ℱ(𝑢2) = 2𝜋𝛿 (
𝜆𝑡2

2
−

3𝜆2𝑡2

2
+ 𝜆3𝑡2) 

 
𝜕𝑢3

𝜕𝑡
= −ℱ−1(𝑤2𝑈2(𝑤, 𝑡)) + 𝑢2 − ℱ−1(ℱ(𝐴2))

= −ℱ−1 (𝑤22𝜋𝛿 (
𝜆𝑡2

2
−

3𝜆2𝑡2

2
+ 𝜆3𝑡2)) +

𝜆𝑡2

2
−

3𝜆2𝑡2

2
+ 𝜆3𝑡2 − (2𝜆2 − 5𝜆3 + 3𝜆4)𝑡2

=
𝜆𝑡2

2
−

3𝜆2𝑡2

2
+ 𝜆3𝑡2 − (2𝜆2 − 5𝜆3 + 3𝜆4)𝑡2 

 

𝑢3 = (
𝜆

2
−

7𝜆2

2
+ 6𝜆3 − 3𝜆4)

𝑡3

3
 

⋮ 
 

and so on. Therefore, on taking the sum of the above iterations, we get 
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𝑢(𝑥, 𝑡) = ∑ 𝑢𝑛(𝑥, 𝑡) =

∞

𝑛=0

𝜆 + ( 𝜆 − 𝜆2)𝑡 + (
𝜆

2
−

3𝜆2

2
+ 𝜆3) 𝑡2 + (

𝜆

6
−

7𝜆2

6
+ 2𝜆3 − 𝜆4) 𝑡3 + ⋯ 

Which leads to the exact solution of equation (15) 

𝑢(𝑥, 𝑡) =
𝜆𝑒𝑡

1 − 𝜆 + 𝜆𝑒𝑡
 

 

Example 2[𝟓, 𝟔] Consider the following Fisher’s equation  

 
        𝑢𝑡 = 𝑢𝑥𝑥 + 6𝑢(1 − 𝑢)                                                                                                                                           (16) 

 

with initial condition  𝑢(𝑥, 0) =
1

(1+𝑒𝑥)2 

 

By using Fourier transform of Eq (16), we obtain 

 

ℱ(𝑢𝑡) = ℱ(𝑢𝑥𝑥) + 6ℱ(𝑢) − 6ℱ(𝑢2) 

 
𝜕𝑈(𝑤, 𝑡)

𝜕𝑡
= (𝑖𝑤)2𝑈(𝑤, 𝑡) + 6ℱ(𝑢) − 6ℱ(𝑢2) 

 

Now, using the inverse Fourier transform of the previous equation, we obtain 

 
𝜕𝑢𝑛+1

𝜕𝑡
= −ℱ−1(𝑤2𝑈𝑛(𝑤, 𝑡)) + ℱ−1(ℱ(𝐴𝑛)) 

The first few components of 𝑢𝑛(𝑥, 𝑡) are given by 

 

𝑢0 =
1

(1+𝑒𝑥)2 , 𝐴0 = 6𝑢0 − 6𝑢0
2 

𝜕𝑢1

𝜕𝑡
= −ℱ−1(𝑤2𝑈0(𝑤, 𝑡)) + 𝐴0 =

𝜕2𝑢0

𝜕𝑥2
+ 6𝑢0 − 6𝑢0

2 =
4𝑒2𝑥 − 2𝑒𝑥

(1 + 𝑒𝑥)4
+

6

(1 + 𝑒𝑥)2
−

6

(1 + 𝑒𝑥)4
=

10𝑒𝑥

(1 + 𝑒𝑥)3
 

𝑢1(𝑥, 𝑡) =
10𝑒𝑥𝑡

(1 + 𝑒𝑥)3
 

 

𝐴1 = 6𝑢1 − 12𝑢0𝑢1 

𝜕𝑢2

𝜕𝑡
= −ℱ−1(𝑤2𝑈1(𝑤, 𝑡)) + 𝐴1 =

𝜕2𝑢1

𝜕𝑥2
+ 𝐴1 =

50𝑒𝑥(𝑒2𝑥 − 1)

(1 + 𝑒𝑥)4
𝑡 

𝑢2(𝑥, 𝑡) =
25𝑒𝑥(𝑒2𝑥 − 1)

(1 + 𝑒𝑥)4
𝑡2 

𝐴2 = 6𝑢2 − 12𝑢0𝑢2 − 6𝑢1
2 

 

𝜕𝑢3

𝜕𝑡
= −ℱ−1(𝑤2𝑈2(𝑤, 𝑡)) + 𝐴2 =

𝜕2𝑢2

𝜕𝑥2
+ 𝐴2 = −125

𝑒𝑥(−1 + 7𝑒𝑥 − 4𝑒2𝑥)

(1 + 𝑒𝑥)5
𝑡2 

𝑢3(𝑥, 𝑡) = −
125

3

𝑒𝑥(−1 + 7𝑒𝑥 − 4𝑒2𝑥)

(1 + 𝑒𝑥)5
𝑡3 

⋮ 
 

and so on. Therefore, on taking the sum of the above iterations, we get 

 

𝑢(𝑥, 𝑡) =
1

(1 + 𝑒𝑥)2
+

10𝑒𝑥𝑡

(1 + 𝑒𝑥)3
+

25𝑒𝑥(𝑒2𝑥 − 1)

(1 + 𝑒𝑥)4
𝑡2 −

125

3

𝑒𝑥(−1 + 7𝑒𝑥 − 4𝑒2𝑥)

(1 + 𝑒𝑥)5
𝑡3 + ⋯ 

 

Which matches highly accurately with the literature 

IV. CONCLUSION  

In this study, employing the Fourier Adomian Decomposition Method (FADM) to solve Fisher-type 

equations has proven to be a good choice. Through its versatile approach, FADM effectively handles the inherent 

nonlinearity of Fisher equations, providing a systematic framework for obtaining accurate approximations. The 

theoretical underpinnings of FADM, utilizing Fourier transform and Adomian polynomials, contribute to the 

method's reliability and efficiency. The ability to decompose complex problems into more manageable 
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components facilitates a clearer understanding of the solution process. Furthermore, FADM showcases its prowess, 

demonstrating efficiency in tackling challenges that may pose difficulties for other numerical methods. This 

computational advantage translates to saved time and resources in the research endeavour. Finally, the application 

of FADM in solving Fisher-type equations emerges as a robust and efficient methodology, offering a promising 

avenue for researchers seeking accurate solutions to complex mathematical problems in various scientific domains. 
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