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Abstract
In this paper, we introduce the (p, q)-Lotka-Volterra competition model which is extension
of classical Lotka-Volterra competition model. The main purpose is to give some results on
the existence and non-existence of positive solutions. Upper and lower solutions technique
and comparison arguments plays a significant role in our main proof.
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1. Introduction
As an important mathematical area, nonlinear partial diferential equations have been

one of the most active research fields in the 21st century. Modelling and analyzing the
dynamics of biological populations by means of differential equations is one of the primary
concerns of many applied scientists. During the past few years, Lotka-Volterra models
have been extensively studied in various disciplines of science and engineering fields for
the description of different applied problems. A particular model which has been widely
investigated is the following Lotka-Volterra system:{

du
dt = k1∆u+ u[a− bu− cv], t > 0,
dv
dt = k2∆v + v[d− eu− fv], t > 0. (1.1)

Here the equations are assumed to be satisfied in a cylinder x ∈ Ω̄, t ∈ (0,∞), where Ω
is an open, bounded, smooth domain in Rn. These equations are supplemented by linear
boundary conditions on ∂Ω × (0,∞). The solutions to (1.1) represent population densities
for the competing species.

The Lotka-Volterra system is the most fundamental model of the population dynamics
of species in a competition/predator-prey/cooperating relationship. As such, it has been
studied extensively, and much is known about its properties. Nonetheless, there is still
much to be discovered. In particular, despite the apparent simplicity of the equations, it
appears difficult to determine analytical expressions for their solution.
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In [2] by the method of upper and lower solutions and its associated monotone itera-
tions, existence and non-existence results was derived for both the scalar problem and for
systems with fractional diffusion. Also, in [7], the authors gave simple extensions of the
Lotka-Volterra prey-Predator model.

In this paper, we are concerned with the existence and non-existence of positive solutions
to the (p, q)-Lotka-Volterra model of the form:

−∆pu = aup−1 − ur−1 − αup−1vq−1, x ∈ Ω,
−∆qv = bvq−1 − vs−1 − βup−1vq−1, x ∈ Ω,
u = 0 = v, x ∈ ∂Ω,

(1.2)

where ∆p denotes the p-Laplacian operator defined by ∆pz = div (|∇z|p−2∇z), p, q > 1,
r > p, s > q, a, b > 0, α, β ≥ 0 and Ω ⊆ RN is a bounded region with smooth boundary ∂Ω
with N ≥ 1. Here, u and v denote the densities of two species in Ω (the habitat), which is
surrounded by inhospitable areas due to the homogeneous Dirichlet boundary conditions.
In (1.2) we assume that the species diffuse following the (p, q)-Laplacian. In fact, the
(p, q)-Laplacian operator acts as the diffusive mechanism describing the migration of u
and v throughout Ω.

If p = q = 2 ( The Laplace operator) and r = s = 3, then (1.2) becomes the classical
Lotka-Volterra model which has been extensively studied by many scholars, the interested
readers may refer to [9–11, 13, 16, 19–21, 25, 26] and the references therein. This paper is
motivated, in part, by the mathematical difficulty posed by the (p, q)-Laplacian operator
compared to the Laplacian operator ( p = q = 2 ).

During the last few decades, there has been growing interest in the investigation of
various composite type operators such as the (p, q)-Laplacian. This operator has a wide
range of applications in physics and related sciences like chemical reaction design [3], bio-
physics [12], plasma physics [24] and models of elementary particles [6]. Furthermore,
(1.2) arises in the theory of quasiregular and quasiconformal mappings or in the study of
non-Newtonian fluids ( see [4]). In the non-Newtonian fluids theory, the pair (p, q) is a
characteristic quantity of the medium. Media with (p, q) > (2, 2) are called dilatant fluids
and those with (p, q) < (2, 2) are called pseudoplastics. If (p, q) = (2, 2), they are Newto-
nian fluids. One can refer to [5,14,17,22,23] for some existence results of (p, q)-Laplacian
systems.

Our first result deals with the existence of positive solution for (1.2) which has (p, q)-
Laplacian operator. Let λp, λq be the respective first eigenvalues of −∆p, −∆q with Dirich-
let boundary conditions and ϕp, ϕq be the corresponding eigenfunctions with ϕp, ϕq > 0; Ω
and ∥ϕp∥∞ = 1 = ∥ϕq∥∞. Further, by Hopf’s lemma |∇ϕp|, |∇ϕq| > 0 on ∂Ω. We establish:

Theorem 1.1 Let c = min{a, b} and γ = max{α, β}. If c > max{(p/p − 1)p−1λp, (q/q −
1)q−1λq}, then there exists γ∗ such that for γ < γ∗, system (1.2) has a positive solution.

Next we will establish a nonexistence result for our model.

Theorem 1.2 Let d = max{a, b}. Then there exists λ0 > 0 such that for 0 < d < λ0,
system (1.2) has no nontrivial nonnegative weak solution.

This article is organized as follows. In Section 2, we will recall some important results
that are required for the development of this paper. Section 3 is dedicated to the proof of
Theorem 1.1. Section 4 contains the proof of Theorem 1.2
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2. Preliminaries
In this section, we recall some results concerning a lower and upper-solution method

(see [1]) for (p, q)-Laplacian system.

Definition 2.1. A pair of functions (u, v) ∈ W 1,p
0 (Ω) × W 1,q

0 (Ω) is said to be a (weak)
solution of (1.2), if for any w ∈ C∞

0 (Ω), we have

∫
Ω

|∇u|p−2 ∇u · ∇w dx =
∫

Ω

(
aup−1 − ur−1 − αup−1vq−1

)
w dx,

and ∫
Ω

|∇v|q−2 ∇v · ∇w dx =
∫

Ω

(
bvq−1 − vs−1 − βup−1vq−1

)
w dx.

We establish Theorem 1.1 by the method of lower and upper-solution.

Definition 2.2. We say that the pair (ψ1, ψ2) ∈ W 1,p(Ω) ∩ C(Ω) × W 1,q(Ω) ∩ C(Ω)
is a weak lower solution of (1.1) if ψ1, ψ2 ≤ 0 on ∈ ∂Ω and

∫
Ω

|∇ψ1|p−2 ∇ψ1 · ∇w dx ≤
∫

Ω
(aψp−1

1 − ψr−1
1 − αψp−1

1 ψq−1
2 )w dx,∫

Ω
|∇ψ2|q−2 ∇ψ2 · ∇w dx ≤

∫
Ω

(bψq−1
2 − ψs−1

2 − βψp−1
1 ψq−1

2 )w dx,

for all w ∈ W = {w ∈ C∞
0 (Ω)|w ≥ 0, x ∈ Ω}.

Similarly one defines a weak upper solution (z1, z2) of system (1.1), by considering the
reversed inequalities in the above definition.

Notation. If u, v ∈ C(Ω), with u(x) ≤ v(x) for a.e. x ∈ Ω, we denote by [u, v] the
set {w ∈ C(Ω) : u(x) ≤ w(x) ≤ v(x), a.e. x ∈ Ω}.

Then the following lower-upper solution result holds.

Lemma 2.3.( [8], p. 269). Let (ψ1, ψ2) and (z1, z2) be lower and upper solutions of
(1.2) respectively such that (ψ1, ψ2) ≤ (z1, z2), in Ω. Then (1.2) has a solution (u, v) ∈
W 1,p(Ω) ∩ C(Ω) ×W 1,q(Ω) ∩ C(Ω) such that (u, v) ∈ [(ψ1, ψ2), (z1, z2)].

3. Proof of Theorem 1.1
In this section, we use lower and upper solution method to prove Theorem 1.1. We

adapt and extend the ideas used in [15,18] to construct a crucial lower-solution.

Construction of lower-solution: Let k1, k1 > 0 be such that k1 ≤
(

1
2 [a−( p

p−1)p−1λp]
)1/r−p

and k2 ≤
(

1
2 [b− ( q

q−1)q−1λq]
)1/s−q

. Define (ψ1, ψ2) = (k1ϕ
p

p−1
p , k2ϕ

q
q−1
q ). Let w ∈ W. Then,

a calculation shows that
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∫
Ω

|∇ψ1|p−2 ∇ψ1 · ∇w dx = kp−1
1 ( p

p− 1
)p−1

∫
Ω
ϕp |∇ϕp|p−2 ∇ϕp · ∇w dx

= kp−1
1 ( p

p− 1
)p−1

∫
Ω

[
|∇ϕp|p−2 ∇ϕp · ∇(ϕpw) − |∇ϕp|pw

]
dx

= kp−1
1 ( p

p− 1
)p−1

∫
Ω

(λp ϕ
p
p − |∇ϕp|p)w dx.

and ∫
Ω

(aψp−1
1 − ψr−1

1 − αψp−1
1 ψq−1

2 )w dx

=
∫

Ω
(akp−1

1 ϕp
p − kr−1

1 ϕ
p(r−1)

p−1
p − αkp−1

1 kq−1
2 ϕp

pϕ
q
q)w dx.

Similarly ∫
Ω

|∇ψ2|q−2 ∇ψ2 · ∇w dx = kq−1
2 ( q

q − 1
)q−1

∫
Ω

(λq ϕ
q
q − |∇ϕq|q)w dx,

and ∫
Ω

(bψq−1
2 − ψs−1

2 − βψp−1
1 ψq−1

2 )w dx

=
∫

Ω
(bkq−1

2 ϕq
q − ks−1

2 ϕ
q(s−1)

q−1
q − βkp−1

1 kq−1
2 ϕp

pϕ
q
q)w dx.

Since |∇ϕp| > 0 on ∂Ω, and ϕp ∈ C∞(Ω̄), then, by continuity, there exist a δ neighbor-
hood of Ω̄, say Ω̄δ := {x ∈ Ω : dist(x, ∂Ω) ≤ δ} and η > 0 such that |∇ϕp| ≥ η in Ω̄δ and
similarly, |∇ϕq| ≥ η in Ω̄δ. Let

γ∗ = min
{(p/p− 1)p−1ηp

kq−1
2

,
(q/q − 1)q−1ηq

kp−1
1

,

1
2 [a− ( p

p−1)p−1λp]
kq−1

2
,

1
2 [b− ( q

q−1)q−1λq]
kp−1

1

}
.

To prove (ψ1, ψ2) is a lower-solution of (1.2), we need to establish:

kp−1
1 ( p

p− 1
)p−1

∫
Ω

(λp ϕ
p
p − |∇ϕp|p)wdx

≤
∫

Ω
(akp−1

1 ϕp
p − kr−1

1 ϕ
p(r−1)

p−1
p − αkp−1

1 kq−1
2 ϕp

pϕ
q
q)wdx, (3.1)

and

kq−1
2 ( q

q − 1
)q−1

∫
Ω

(λqϕ
q
q − |∇ϕq|q)wdx

≤
∫

Ω
(bkq−1

2 ϕq
q − ks−1

2 ϕ
q(s−1)

q−1
q − βkp−1

1 kq−1
2 ϕp

pϕ
q
q)wdx, (3.2)

in Ω if γ < γ∗. To achieve (3.1) we split the term kp−1
1 ( p

p−1)p−1λpϕ
p
p into three parts,

namely,

kp−1
1 ( p

p− 1
)p−1λpϕ

p
p = akp−1

1 ϕp
p − 1

2
kp−1

1 ϕp
p

(
a− ( p

p− 1
)p−1λp

)
− 1

2
kp−1

1 ϕp
p

(
a− ( p

p− 1
)p−1λp

)
.

Now to prove (3.1) holds in Ω, it is enough to show the following three inequalities:

−1
2
kp−1

1 ϕp
p

(
a− ( p

p− 1
)p−1λp

)
≤ −kr−1

1 ϕ
p(r−1)

p−1
p , in Ω, (3.3)
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−1
2
kp−1

1 ϕp
p

(
a− ( p

p− 1
)p−1λp

)
≤ −αkp−1

1 kq−1
2 ϕp

pϕ
q
q, in Ω \ Ω̄δ, (3.4)

−kp−1
1 ( p

p− 1
)p−1|∇ϕp|p ≤ −αkp−1

1 kq−1
2 ϕp

pϕ
q
q, in Ω̄δ. (3.5)

Since ∥ϕp∥∞ = 1, from the choice of k1,
(
a− ( p

p−1)p−1λp

)
≥ 2kr−p

1 ϕ
p(r−1)

p−1
p . Hence,

−1
2
kp−1

1 ϕp
p

(
a− ( p

p− 1
)p−1λp

)
≤ −kr−1

1 ϕ
p(r−1)

p−1
p . (3.6)

In Ω \ Ω̄δ, since ∥ϕp∥∞ = 1 = ∥ϕq∥∞, using γ <
1
2

(
a−( p

p−1 )p−1λp

)
kq−1

2
, we have

−1
2
kp−1

1 ϕp
p

(
a− ( p

p− 1
)p−1λp

)
≤ −αkp−1

1 kq−1
2 ϕp

pϕ
q
q. (3.7)

Next, we know that γ <
( p

p−1 )p−1ηp

kq−1
2

, and |∇ϕp| ≥ η, in Ωδ. Thus

−kp−1
1 ( p

p− 1
)p−1|∇ϕp|p ≤ −kp−1

1 ( p

p− 1
)p−1ηp

≤ −γkp−1
1 kq−1

2

≤ −αkp−1
1 kq−1

2 ∥ϕp∥p
∞∥ϕq∥q

∞

≤ −αkp−1
1 kq−1

2 ϕp
pϕ

q
q.

(3.8)

From (3.6),(3.7) and (3.8) we see that the inequalities (3.3), (3.4), (3.5) hold in Ω, if
γ < γ∗. Therefore,∫

Ω
|∇ψ1|p−2 ∇ψ1 · ∇w dx ≤

∫
Ω

(aψp−1
1 − ψr−1

1 − αψp−1
1 ψq−1

2 )w dx.

Similarly ∫
Ω

|∇ψ2|q−2 ∇ψ2 · ∇w dx ≤
∫

Ω
(bψq−1

2 − ψs−1
2 − βψp−1

1 ψq−1
2 )w dx.

Thus, (ψ1, ψ2) is a lower solution to (1.2).

Construction of upper-solution: Let ep, eq be the solution of −∆ζeζ = 1 in Ω, eζ = 0
on ∂Ω for ζ = p, q. Let G1(y) = ayp−1 − yr−1 and G2(y) = byq−1 − ys−1. Since G′

1(y) =
yp−2[a(p − 1) − (r − 1)yr−p], G1(y) ≤ L1 = G1(y1), where y1 = [a(p − 1)/(r − 1)]1/(r−p).

Similarly, G2(y) ≤ L2 = G2(y2), where y2 = [b(q − 1)/(s− 1)]1/(s−q). Let

(z1, z2) =
(
L

1/p−1
1 ep(x), L1/q−1

2 eq(x)
)
.

Then for w ∈ W,∫
Ω

|∇z1|p−2 ∇z1 · ∇w dx =
∫

Ω
L1w dx

≥
∫

Ω
(azp−1

1 − zr−1
1 )w dx

≥
∫

Ω
(azp−1

1 − zr−1
1 − αzp−1

1 zq−1
2 )w dx

Similarly ∫
Ω

|∇z2|q−2 ∇z2 · ∇w dx ≥
∫

Ω
(bzq−1

2 − zs−1
2 − βzp−1

1 zq−1
2 )w dx.
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Clearly z1, z2 ≥ 0 on ∂Ω and hence (z1, z2) is a upper-solution of (1.2).

Proof of Theorem 1.1. Let (ψ1, ψ2) is a lower solution to (1.2) for γ < γ∗ ( as con-
structed in the previous subsection). Then we can construct a upper solution (z1, z2) of
(1.2) ( as constructed in the previous subsection). Further, since z1, z2 > 0 in Ω̄, we can
choose L1 ≫ 1 and L2 ≫ 1 such that (z1, z2) ≥ (ψ1, ψ2) in Ω̄. Hence by Lemma 2.3, (1.2)
has a positive solution (u, v) ∈ [(ψ1, ψ2), (z1, z2)] and Theorem 1.1 is proven.

4. Proof of Theorem 1.2
Proof. Let (u, v) be a nontrivial nonnegative solution of (1.2). We prove Theorem

1.2 by arriving at a contradiction. Multiplying the equations of u and v by u and v,
respectively and then integrating over Ω, we have∫

Ω
|∇u|p dx =

∫
Ω

(
aup−1 − ur−1 − αup−1vq−1

)
u dx,

and ∫
Ω

|∇v|2 dx =
∫

Ω

(
bvq−1 − vs−1 − βup−1vq−1

)
v dx.

Note that

λp = inf
z∈W 1,p

0

∫
Ω |∇z|p dx∫

Ω z
pdx

, λq = inf
z∈W 1,q

0

∫
Ω |∇z|q dx∫

Ω z
qdx

.

Combining, we obtain

λp

∫
Ω
updx+ λq

∫
Ω
vqdx ≤

∫
Ω

(aup − ur − αupvq−1) dx+
∫

Ω
(bvq − vs − βup−1vq) dx.

Hence

(λp − a)
∫

Ω
updx+ (λq − b)

∫
Ω
vqdx

≤ −
∫

Ω
(ur + αupvq−1) dx−

∫
Ω

(vs + βup−1vq) dx

≤ 0,

which is a contradiction if 0 < d < λ0 = min{λp, λq}, and we finish the proof of Theo-
rem 1.2. Acknowledgment. This research is funded by Babol Noshirvani University
Technology, research grant No P/M/1109.
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