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Abstract

This paper studies the fundamental properties of Benford’s Law which investigates the
distribution of the first digits’ appearance within datasets. The purpose and the useful-
ness of the research developed within the paper are to identify additional distributions,
beyond those already investigated, that conform to the Benford distribution. As a main
contribution, we state and prove with the new approach that the Pareto distribution and
appropriate constant times Weibull density function, under some parameter constraint,
obey Benford’s Law. Further, with the statistical tests and simulation method, we
quantify how the fit varies as the parameters of the Pareto distribution change. As
Benford’s Law is one of the main used approaches for detecting data manipulations and
frauds in practice, we use that methodology to consider eventual manipulations in a set of
data from the financial reports of three private hospitals operating in Serbia. Moreover,
we present the conformity of the Weibull distribution to Benford’s Law through the
analysis of real-world data, where in the Weibull distribution demonstrates a good fit,
even proof of that conformity is a known result in the literature. By demonstrating the
adherence of Benford’s characteristics to the Pareto and Weibull distributions, commonly
employed for modeling in various fields, those findings can be utilized in many practical
studies.
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1. Introduction
Benford’s Law is a complex mathematical method that predicts the distribution of digits

for a wide variety of datasets including financial reports, stock prices and survey results.
The Law is in general, one complex mathematical method and tool with the application
for the detection of irregularities in a large dataset, i.e., it is a tool for determining whether
investigated real-life statements contain errors or fraud. It actually describes the relative
frequency distribution for leading digits in datasets. The Law claims that leading digits
in data derived from measurements do not follow uniform distribution, which is in con-
tradiction with our intuition. Actually, it claims that many numerical datasets follow the
trend that leading digits 1-9 appear with decreasing logarithmic distribution, where digit
1 appears with the largest frequency, almost 30% and digit 9 with a frequency of 4.58%.

Many statistical techniques become increasingly important when mass data (Big Data)
needs to be analyzed. For example, Bayerstadler et al. [3] introduces a predictive model
for detecting fraud and abuse in health insurance which utilizes a manually reviewed claims
dataset and employs a multinomial Bayesian latent variable approach and the estimation
of model parameters is based on a Markov Chain Monte Carlo (MCMC) algorithm using
Bayesian shrinkage techniques. Fraud detection in motor insurance was applied in [5],
with a Bayesian model with latent variables.

On the other side, many authors have studied and applied Benford’s Law for fraud and
some error detection. Initially, the phenomenon of the relative frequency distribution for
leading digits of numbers in datasets was investigated by Newcomb [27]. Almost 60 years
later, Benford came to a similar conclusion and formally defined it in [4]. Application in
the area of accounting was presented in [42]. Nigrini [28] wrote about the application of the
Law in the detection of fraud, in the area of accounting, auditing and taxation. The Law
has been subjected to an investigation by many researchers after Nigrini’s initial paper in
the area of forensic accounting, for example, see [10,22,29,31,33,38,40] and many others.
Further, Hill [18] pointed out that Benford’s Law is a phenomenon that is empirically
provable and suggested a strict proof of the Law based on mathematical theory. He defined
the probability frame of the Law and also proved that a combination of two distributions
can give Benford’s distribution, even if they do not follow Benford’s distribution. The
first time Benford’s Law was used to detect errors in economic data by Varian [41], with
application in economic forecasts. After that, the method was used by Michalski and
Stoltz to detect errors in macroeconomic data [25]. Application of Benford’s Law and
possibilities for its use in international and governmental macroeconomic statistics can be
found in [16,20,32]. A guide for detecting errors in transaction data was given in [30,31].
Investigation of Benford’s Law in the field of online social networks was given in [11,14,15].
Also, the Law was used to check the reported number of COVID-19 cases. In [2, 43], the
Law was used to detect whether the countries manipulated COVID-19 data during the
pandemic.

Due to the unexpected outcomes obtained from conventional statistical tests and proce-
dures when evaluating small data samples, certain authors have suggested a novel test to
examine whether the data conforms to Benford’s Law distribution, for example, see [26].
Hill [19] asks the question: which common distribution functions obey Benford’s Law.
Leemis et al. [23] used numerical simulations and considered several distributions with
different parameters. Approximation of the exponential distribution function with Ben-
ford’s Law is shown by Engel and Leuenberger [12]. In [7, 9], authors studied with the
numerical simulations that the Weibull and the Inverse Gamma distributions are close to
the Law. Particularly, in [7], authors successfully use the approach of complex Fourier
transformation and Poisson summation technique to argue that the Weibull distribution
is close to the Law. Note that our study reaches similar conclusions utilizing a new
theoretical approach. Scott and Fasli [37] showed that the Log-normal distribution, as
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widely used in applications for modeling natural phenomena, also conforms to the Law
and Rodriguez [36] showed that with the numerical simulation. Balado and Silvestre [1]
examines general expressions for the joint distributions of the k most significant digits of
continuous random variables. Additionally, it presents the general convergence Law for
the distribution of the j-th significant digit, with a particular focus on Pareto random vari-
ables. However, our approach differs significantly from the aforementioned works, as we
focus on studying the density functions and their expressions to theoretically demonstrate
conformity with Benford’s Law.

The aim of this paper is to investigate whether some other distributions than those
examined so far, follow Benford’s Law. We are especially interested in distributions that
are used in the modeling of many practical problems. We consider real datasets from
the financial report of three private hospitals operating in Serbia during the COVID-19
pandemic. The new theoretical results are presented within two theorems, employing
a completely novel approach not previously used in the literature. The newly proposed
method merits attention, as its primary contribution is the avoidance of complex tech-
niques. As an auxiliary result, we represent that the transformed uniform variable follows
Benford’s distribution. As a first main result, we prove that the Pareto distribution with
some constraint of the shape parameter a follows Benford’s Law. As a second main result,
we prove that the Weibull distribution with the same constraint is approximately Ben-
ford’s distribution. Furthermore, we perform simulation studies to confirm the obtained
theoretical results. Moreover, we intend to apply this methodology in the healthcare sec-
tor, for the case of three private hospitals operating in Serbia. In particular, individually
for each hospital’s dataset, we apply two statistical tests to assess the adherence of the
data to Benford’s Law, which aims to evaluate potential manipulation and fraud.

The paper is organized as follows: Section 2 gives some mathematical preliminaries,
including some basic definitions and theorems and an analysis of Benford’s Law. In Section
3, we present the main theoretical result that the Pareto and Weibull distributions, with
some constraint of the parameter, follow Benford’s Law. In Section 4, we conduct a
simulation study with real data. Finally, in the last section, we provide some final remarks
and directions for future research.

2. Preliminaries and analytic of Benford’s Law
One useful consequence of Benford’s Law is the fact that a path of appearance of some

digits may indicate not only fraud, but it is also possible errors in data or bias in data
presentation, [28]. Note that Benford’s Law has the primary purpose of showing that data
may not be accurate and if there are no coincidences with Benford’s Law it is necessary
to use deeper analysis to detect potential errors in data. Also, if there are coincidental
digits with Benford’s Law that does not immediately mean that there is no fraud. It is
important to remark that positive and negative values have the same treatment in testing
with Benford’s Law, as also values with decimal numbers. Note that there are limitations
to Benford’s Law applicability, such as with small samples, coded data, perfectly uniform
distributions, psychologically rounded numbers and mathematical sequences, such as the
square roots and reciprocals of consecutive positive integers [34]. For further limitations
of the Benford’s Law applicability see [10,31].

We first list standard definitions and the main theorem, which gives us conditions under
which random variable follows Benford’s Law, generally in the base B. We focus on the
random variable with positive support since the Pareto distribution random variable takes
values in [b, +∞), where b > 0 is the scale parameter of the distribution and we consider
the Weibull distribution on positive support.

For every real number x there exists the integer part ⌊x⌋ and the fractional part ⟨x⟩ of
x, where x can be expressed uniquely as x = ⌊x⌋ + ⟨x⟩. It is satisfied that ⌊x⌋ = max{k ∈
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Z : k ≤ x} and ⟨x⟩ = x − ⌊x⌋. For example, ⌊3⌋ = 3 and ⟨3⟩ = 0, while ⌊10e⌋ = 27 and
⟨10e⟩ = 0.182...

The main notation that concerns Benford’s Law is the leading significant digits and
more generally, the significand of a number. The next two definitions are given in the [13].
Definition 2.1. (Significand, [13]) For any positive number x > 0 and base B, x is
represented as x = SB(x) · Bk(x), where SB(x) ∈ [1, B) is called the significand of x
and integer k(x) (necessarily unique) represents the exponent. For negative number x,
SB(x) = SB(−x) and for convenience, SB(0) = 0.

We focus on a general case and then consider the decimal number system, i.e., B = 10.
Definition 2.2. (Benford’s Law, [13]) A (real-valued) random variable X follows Ben-
ford’s Law in base B if and only if for all t ∈ [1, B),

P{SB(X) ≤ t} = logB(t),
in particular,

P{FSD = d} = logB

(d + 1
d

)
= logB

(
1 + 1

d

)
, d ∈ {1, 2, ..., B − 1},

where FSD stands for first significant digit of X, that is the first (leftmost) digit of SB(X).

The next important result is given within the following theorem (Theorem 2.3 in [13])
and we use it to prove one of our main results in the paper, namely that the Pareto
distribution under parameter constraint follows Benford’s Law.
Theorem 2.3. ( [13]) A random variable X > 0, follows Benford’s Law in base B if
and only if the random variable Y = ⟨logB(X)⟩, the fraction part of logB(X) is uniformly
distributed in [0, 1].
Proof. Let X > 0 be a random variable. For all y ∈ [0, 1), the next equations are satisfied,

P{Y ≤ y} = P{⟨logB(X)⟩ ≤ y}
= P{logB(X) − ⌊logB(X)⌋ ≤ y}

= P{logB(X) ∈
∪

k∈Z

[k, k + y]}

= P{X ∈
∪

k∈Z

[Bk, Bk+y]}

= P{SB(X) ≤ By}. (2.1)
By Definition 2.2 a random variable X is Benford if and only if

P{SB(X) ≤ By} = logB(By) = y

for all y ∈ [0, 1) and by above calculations that is equivalent with the condition that
Y = ⟨logB(X)⟩ is uniformly distributed in [0, 1] and the proof is completed. □

Further, we focus on the decimal number system, i.e., B = 10. For the random vari-
able X which follows Benford’s Law, the probability of an occurrence of the first digit is
obtained by the next formula [31],

P{D1(X) = d1} = log
(
1 + 1

d1

)
, d1 ∈ {1, 2, ..., 9}, (2.2)

where D1(X) is a random variable representing the first digit of S(X) (where S(·) = S10(·))
and d1 is a digit on the first position in the number that takes value in the set of all possible
outcomes.



Statistical analysis of fitting Pareto and Weibull distributions with Benford’s Law 5

In Equation (2.3) the probabilities of occurrence for the higher-order digits up to the
last digit are derived, whereas higher-order digits appear with an equal probability of 0.1
which is identical to a uniform distribution,

P{Dk(X) = dk} =
9∑

d1=1

9∑
d2=0

...
9∑

dk−1=0
log

(
1 + 1∑k

i=1 10k−idi

)
, (2.3)

where Dk(X) is a random variable representing the digit on the k-th position of the random
variable and dk is a digit on that position, dk ∈ {0, 1, ..., 9}, see [21].

It is possible to extend Benford’s Law on the first k digits in the number. The appro-
priate formula is summarized within the next corollary that can be found in [33].

Corollary 2.4. A random variable X follows Benford’s Law if and only if

P{D1(X) = d1, D2(X) = d2, ..., Dk(X) = dk} = log
(
1 + 1∑k

i=1 10k−idi

)
, (2.4)

for all k ∈ N , all d1 ∈ {1, 2, ..., 9} and all di ∈ {0, 1, ..., 9}, i ≥ 2.

3. Main results
As the auxiliary result in this paper, we give the next theorem, which idea we used to

prove that appropriate constant times the Weibull density function, under one parameter
constraint, can be approximated with the Benford distribution. The first part of that
result was given in [17] and the second part can be found as an example in the literature,
but we give the proof here.

Theorem 3.1. If Y = 10X , where X has uniform distribution in [0, 1], then Y is Benford
random variable and it is satisfied fY (y) = 1

y ln 10 , where fY (y) is appropriate density
function for Y .

Proof. Let Y = 10X , where X has the uniform distribution in [0, 1]. From Definition 2.1,
for y ∈ [1, 10) it is satisfied y = S(y) · 10k(y) = S(y) · 100 = S(y), then S(Y ) = Y . We may
conclude:

P{S(Y ) ≤ t} = P{Y ≤ t} = P{10X ≤ t} = P{X ≤ log t} = log t, t ∈ [1, 10),

and Y = 10X has a Benford distribution. Further, we have to prove the second part of
the theorem. For transformation y = 10x, we have x = h(y) = log y, for y ∈ [1, 10) and
fY (y)dy = fX(h(y))|h′(y)|dy = fX(x)dx. It is satisfied:

fY (y) = fX(x)dx

dy
,

and with x = log y = ln y
ln 10 , it can be calculated that

dx

dy
= 1

y ln 10
,

and fY (y) = 1
y ln 10 , what is the claim of the theorem. □

The first main result in this paper claims that the Pareto distribution with two param-
eters a and b, follows Benford’s Law when the shape parameter a is sufficiently small. We
derive an expression of the distribution of the fraction of log transformation of a random
variable with the Pareto distribution in any number system B and show that it is uni-
formly distributed in [0, 1]. It means that the distribution follows Benford’s Law, what is
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the claim of Theorem 2.3.

Theorem 3.2. Let X be a random variable that has the Pareto distribution with the
shape parameter a and the location parameter b. Let FB(y) be the cdf of Y = ⟨logB(X)⟩
for y ∈ [0, 1]. Then F

′
B(y) can be expressed as

F
′
B(y) = ba · a ln B · B−a(k1−1+y)

Ba − 1
, (3.1)

which approaches 1 for sufficiently small parameter a, where k1 = ⌊ ln b
ln B ⌋ + 1.

Proof. Let X be a random variable that has the Pareto distribution, where FX(x) =
1 − bax−a, x ≥ b, a, b > 0 and let a be a sufficiently small parameter. Further, we will find
the cdf of ⟨logB(X)⟩ and show that its first derivative is almost 1. By further calculations
we obtain,

FB(y) = P{⟨logB(X)⟩ ∈ [0, y]}

=
+∞∑

k=−∞
P{logB(X) ∈ [k, k + y]}

=
+∞∑

k=−∞
P{X ∈ [Bk, Bk+y]}

=
+∞∑

k=k1

(FX(Bk+y) − FX(Bk)), (3.2)

where Bk ≥ b, B > 1 and then k ≥ ln b

ln B
and k1 = ⌊ ln b

ln B ⌋ + 1. After some calculations, we
may obtain,

FB(y) = ba(1 − B−ay)
+∞∑

k=k1

(B−a)k

= ba(1 − B−ay) B−ak1

1 − B−a

= baB−ak1(1 − B−ay) Ba

Ba − 1

= baB−a(k1−1)(1 − B−ay)
Ba − 1

(3.3)

and

F
′
B(y) = baB−a(k1−1) · a ln B · B−ay

Ba − 1

= ba · a ln B · B−a(k1−1+y)

Ba − 1
. (3.4)

When parameter a is sufficiently small, then term ba approaches to 1, B−a(k1−1+y) ap-
proaches to 1, a ln B = ln(1 + (Ba − 1)) approaches to Ba − 1 and F

′
B(y) approaches to 1

and we have proved the theorem. □
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With the previous theorem, we proved that the Pareto distribution follows Benford’s
Law. Furthermore, motivated with Theorem 3.1 the second main result in this paper
is given in the next theorem and it claims that appropriate constant times the Weibull
density function, under one parameter constraint, can be approximate with the Benford
distribution.

Theorem 3.3. Let X be a random variable which has two-parameter Weibull distribution
with parameters a and b (X ∼ W2(a, b)), where a is a shape parameter, b is a scale param-
eter and a, b > 0. For sufficiently small parameter a, c · fX(x) can be approximate with
the Benford distribution, where c = e

a ln 10
and fX(x) is a density function of X.

Proof. Let X be a random variable that has two-parameter Weibull distribution, X ∼
W2(a, b). Following the Weibull distribution property (page 74 in [8]) we have

X = b · (− ln Y )1/a,

where Y is uniformly distributed in (0, 1). Under transformation of the random variables,
we obtain

fY (y) = fX(h(y))|h′(y)|,

where x = h(y) = b · (− ln y)1/a. Further,

1 = fX(x) · |b · 1
a

(− ln y)
1
a

−1 ·
(

− 1
y

)
|

= fX(x) · |b · 1
a

·
x
b(

x
b

)a ·
(

− e

(x

b

)a)
|,

and from the previous equation, we have

fX(x) = a

x
·
(x

b

)a
· e

−
(x

b

)a

.

For sufficiently small parameter a, term
(x

b

)a
approaches to 1 and e

−
(x

b

)a

approaches to
1
e

, then we obtain that fX(x) approaches to a

x
· 1 · 1

e
and also e

a ln 10
· fX(x) approaches

to 1
x ln 10

, and with this the statement of the theorem is proved.
□

4. A simulation study and real data application
In order to assess the fitting of the observed datasets to Benford’s Law we perform two

following tests: Z-test and Chi-square test.
For the Z-test, to obtain the statistical significance of the deviations in the expected

and the observed proportion, we calculate the Z-statistic for the appropriate digit. The
formula is given with the next equation, [31]:

Zi =
|poi − pi| − 1

2n√
pi(1−pi)

n

, (4.1)
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where Zi is Z-statistic for the digit i (i = 1, ..., 9), poi is the observed frequency proportion
of the digit i, pi is the expected frequency proportion of the digit i according to Benford’s
Law, n is the number of observations of the examined variable, the term 1

2n is Yates’
correction factor and it is used when it is smaller than the absolute difference |poi − pi| in
the numerator.

For this test, the null hypothesis claims that the observed proportion does not sta-
tistically differ from the expected proportion based on Benford’s Law. We will give all
calculations with a 5% level of significance.

The second test which we applied is the Chi-square test. While the Z-test tests each
digit separately (what is its lack), this test is conducted over all digits at the same time
(simultaneously) (for example, see [6, 10, 39]). This test explores whether the observed
frequency statistically differs from the expected frequency based on Benford’s Law and
the null hypothesis is that the distribution of all digits confirms the expected distribution
under Benford’s Law. If the test rejects the null hypothesis then this is a signal for data
manipulation and it is recommended to look deeper into the data.

When we consider the first position, the Chi-square statistic is determined with the
next formula:

χ2 =
9∑

i=1

(
Oi − Ei

)2

Ei
, (4.2)

where Oi is the observed frequency of the digit i, Ei is the expected frequency of the
digit i implied by the Benford’s Law (Ei = npi), n is the number of observations for the
examined variable. Statistic χ2 has eight degrees of freedom, i.e., χ2 = χ2

(8). When we
consider this test we will give all calculations with a 5% level of significance.

4.1. A simulation study with the Pareto distribution
To empirically validate the theoretically derived results, we generate random samples

from the Pareto distribution, keeping the scale parameter b fixed and varying the shape
parameter a (ensuring a remains sufficiently small, i.e., parameter a close to zero, but not
equal to zero).

Table 1 presents the results of the Z-test conducted on the data that follows the Pareto
distribution with parameters a = 0.03 and b = 1.5. The differences (between observed and
Benford’s Law frequencies) which are presented in the table are not statistically significant
for each digit (Z-statistic is less than 1.96).
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Table 1. Result of Z-test for the first digit in the simulation of the Pareto distri-
bution when a = 0.03 and b = 1.5.

Digit Count Frequency Benford’s Absolute Z-Statistic
Law difference

1 28 0.35 0.301 0.049 0.9554
2 13 0.1625 0.1761 0.0136 0.3193
3 9 0.1125 0.1249 0.0124 0.3355
4 12 0.15 0.0969 0.0531 1.60549
5 4 0.05 0.0792 0.0292 0.9671
6 3 0.0375 0.067 0.0295 1.0553
7 4 0.05 0.058 0.008 0.3061
8 3 0.0375 0.0512 0.0137 0.5559
9 4 0.05 0.0458 0.0042 0.1797∑

80 1 1
Source: Authors’ calculations.

Testing with the Chi-square test, results for the Pareto distribution when a = 0.03 and
b = 1.5 are presented in Table 2. According to this test, the observed test statistic is
equal to 5.4612, while the critical value is equal to 15.51 (with α = 0.05 and 8 degrees of
freedom), the null hypothesis can not be rejected, etc. it can be concluded that the first
digit of the Pareto distribution follows Benford’s Law.

Table 2. Result of Chi-square test for the first digit in the simulation of the
Pareto distribution when a = 0.03 and b = 1.5.

Digit Obs. frq. Benford’s Exp. freq. (Oi − Ei)2/Ei

Oi Law Ei

1 28 0.301 24.08 0.6381
2 13 0.1761 14.088 0.084
3 9 0.1249 9.992 0.0985
4 12 0.0969 7.752 2.3278
5 4 0.0792 6.336 0.8612
6 3 0.067 5.36 1.0391
7 4 0.058 4.64 0.0883
8 3 0.0512 4.096 0.2932
9 4 0.0458 3.664 0.0308∑

80 1 80 5.4612
Source: Authors’ calculations.

Testing with Z-test, results for the Pareto distribution when a = 0.1 and b = 1.5 are
presented in Table 3. The differences (between observed and Benford’s Law frequencies)
which are presented in the table are not statistically significant at all digits (Z-statistic is
less than 1.96). That result suggests that attention may be given to other tests.

Testing with the Chi-square test, results for the Pareto distribution when a = 0.1 and
b = 1.5 are presented in Table 4. According to this test, the observed test statistic is equal
to 6.95, while the critical value is equal to 15.51 (with α = 0.05 and 8 degrees of freedom),
the null hypothesis can not be rejected, etc. it can be concluded that the first digit of the
Pareto distribution follows Benford’s Law.
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Table 3. Result of Z-test for the first digit in the simulation of the Pareto distri-
bution when a = 0.1 and b = 1.5.

Digit Count Frequency Benford’s Absolute Z-Statistic
Law difference

1 19 0.2375 0.301 0.0635 1.2382
2 11 0.1375 0.1761 0.0386 0.9064
3 14 0.175 0.1249 0.0501 1.3554
4 6 0.075 0.0969 0.0219 0.662
5 9 0.1125 0.0792 0.0333 1.1029
6 7 0.0875 0.067 0.0205 0.7333
7 4 0.05 0.058 0.008 0.306
8 4 0.05 0.0512 0.0012 0.0487
9 6 0.075 0.0458 0.0292 1.2493∑

80 1 1
Source: Authors’ calculations.

Table 4. Result of Chi-square test for the first digit in the simulation of the
Pareto distribution when a = 0.1 and b = 1.5.

Digit Obs. freq. Benford’s Exp. freq. (Oi − Ei)2/Ei

Oi Law Ei

1 19 0.301 24.08 1.07169
2 11 0.1761 14.088 0.6768
3 14 0.1249 9.992 1.60769
4 6 0.075 7.752 0.3959
5 9 0.0792 6.336 1.12
6 7 0.067 5.36 0.5
7 4 0.058 4.64 0.088
8 4 0.0512 4.096 0.00225
9 6 0.0458 3.664 1.489∑

80 1 80 6.9539
Source: Authors’ calculations.

Testing with Z-test, results for the Pareto distribution when a = 0.01 and b = 1.5 are
presented in Table 5. The differences (between observed and Benford’s Law frequencies)
which are presented in the table are not statistically significant at all digits (Z-statistic is
less than 1.96). That result suggests that attention may be given to other tests.

Testing with the Chi-square test, results for the Pareto distribution when a = 0.01 and
b = 1.5 are presented in Table 6. According to this test, the observed test statistic is
equal to 11.32, while the critical value is equal to 15.51 (with α = 0.05 and 8 degrees of
freedom), the null hypothesis can not be rejected, etc. it can be concluded that the first
digit of the Pareto distribution follows Benford’s Law.
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Table 5. Result of Z-test for the first digit in the simulation of the Pareto distri-
bution when a = 0.01 and b = 1.5.

Digit Count Frequency Benford’s Absolute Z-Statistic
Law difference

1 21 0.2625 0.301 0.0385 0.7507
2 14 0.175 0.1761 0.0011 0.0258
3 7 0.0875 0.1249 0.0374 1.0118
4 11 0.1375 0.0969 0.0406 1.2275
5 11 0.1375 0.0792 0.0583 1.9309
6 3 0.0375 0.067 0.0295 1.0553
7 4 0.05 0.058 0.008 0.3061
8 2 0.025 0.0512 0.0262 1.0632
9 7 0.0875 0.0458 0.0417 1.7841∑

80 1 1
Source: Authors’ calculations.

Table 6. Result of Chi-square test for the first digit in the simulation of the
Pareto distribution when a = 0.01 and b = 1.5.

Digit Obs. freq. Benford’s Exp. freq. (Oi − Ei)2/Ei

Oi Law Ei

1 21 0.301 24.08 0.3939
2 14 0.1761 14.088 0.0005
3 7 0.1249 9.992 0.8959
4 11 0.0969 7.752 1.3608
5 11 0.0792 6.336 3.4332
6 3 0.067 5.36 1.039
7 4 0.058 4.64 0.08827
8 2 0.0512 4.096 1.0725
9 7 0.0458 3.3664 3.037∑

80 1 80 11.3218
Source: Authors’ calculations.

From the previous analysis, with simulations of Pareto distribution for different values
of shape parameter a (sufficiently small) and fixed scale parameter b, we confirmed our
theoretical result from the previous section, that Pareto distribution follows Benford’s
Law, using a Chi-square test. The whole approach can be applied to any other parameter
settings, with sufficiently small parameter a.

4.2. Real data application
Motivated by the current problems in the health system under the influence of the

COVID-19 pandemic, we decided to focus on the field of health insurance. As a commonly
employed method for identifying potential anomalies in datasets, Benford’s Law is utilized
to investigate irregularities within the financial statements of three private hospitals in the
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Republic of Serbia. The basic right that can be exercised by insured persons based on
health insurance is the right to comprehensive health care, [35]. As a consequence of the
COVID-19 pandemic, the costs of health care have increased significantly, which requires
more intensive supervision and control, first of all, of financial reports. The balance sheet
is a financial report that contains a comparative view of assets, i.e., assets at the disposal
of the hospital and liabilities, i.e., origin of funds. The income statement is a financial
report that shows the hospital’s income and expenses in order to determine the business
results (profit or loss) in a specific period of time [24]. In particular, we decided to include
in the analysis the balance sheets and profit and loss statements from 2018 - 2020 of three
private hospitals operating in Serbia: Hospital 1, Hospital 2 and Hospital 3 (including
the periods before the declaration of the COVID-19 pandemic and after the declaration
of the pandemic). Data are available on the website of the Serbian Business Registers
Agency (SBRA)†. The characteristic of the observed data is reflected in the fact that
financial reports are subject to data manipulations and frauds by the reporters in order
to achieve additional subsidies or financial incentives, especially in a period of crisis such
as Covid time, which is also considered in the paper. Therefore, motivated by the desire
to determine possible irregularities in the financial reports of the observed hospitals, we
proposed the application of Benford’s Law to the given data, as a model and method
known in the literature.

If the data follows a two-parameter Weibull distribution with sufficiently small shape
parameter, then we can apply Theorem 3.3.

We confirmed that all datasets fit the Weibull distribution well, with the corresponding
parameter estimates: 0.44956 for shape parameter and 36419.0 for scale parameter for
Hospital 1 and appropriate Kolmogorov Smirnov (K-S) statistic is 0.08346, while critical
value is 0.17; 0.44511 for shape parameter and 23688.0 for scale parameter for Hospital 2
and appropriate K-S statistic is 0.08883, while critical value is 0.19429; 0.51084 for shape
parameter and 33887.0 for scale parameter for Hospital 3 and appropriate K-S statistic is
0.12943, while critical value is 0.14839.

Within the context of Theorem 3.3, we theoretically demonstrated that the Weibull dis-
tribution, when subjected to a certain parameter constraint (for a sufficiently small shape
parameter a), closely approximates the Benford distribution. We investigate whether
the financial statement datasets, which follows a Weibull distribution with the estimated
aforementioned parameter a values, aligns with Benford’s Law.

From the financial report of Hospital 1, we obtain the following results. Testing with
Z-test, results for Hospital 1 report are presented in Table 7. The differences (between
observed and Benford’s Law frequencies) which are presented in the table are not statis-
tically significant at most digits (Z-statistic is less than 1.96), except for digits three and
seven. Within the 64 observations in the considered sample, 2 observations start with the
digit three, which is 3.12% of all positions and 9 observations start with the digit seven,
which is 14.06% of all positions. That result suggests that more attention must be given
to these two digits.

Testing with Chi-square test, results for Hospital 1 report are presented in Table 8.
According to this test, the observed test statistic is equal to 15.66, while the critical value
is equal to 15.51, with α = 0.05 and 8 degrees of freedom (p-value is 0.0474), the null
hypothesis can be rejected, etc. it can be concluded that first digit distribution of this
report does not follow Benford’s Law.

†www.apr.gov.rs
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Table 7. Result of Z-test for the first digit from the financial report of
Hospital 1.

Digit Count Freq. Benford’s Absolute Z-Statistic
Law difference

1 23 0.3594 0.301 0.0584 0.8818
2 11 0.1719 0.1761 0.0042 0.0887
3 2 0.0312 0.1249 0.0937 2.0771∗

4 3 0.0469 0.0969 0.0500 1.1416
5 7 0.1094 0.0792 0.0302 0.6625
6 4 0.0625 0.067 0.0045 0.1440
7 9 0.1406 0.058 0.0826 2.5605∗

8 2 0.0312 0.0512 0.0200 0.4405
9 3 0.0469 0.0458 0.0011 0.0411∑

64 1 1
Source: Authors’ calculations.

Table 8. Result of Chi-square test for the first digit from the financial report of
Hospital 1.

Digit Obs. freq. Benford’s Exp. freq. (Oi − Ei)2/Ei

Oi Law Ei

1 23 0.301 19.264 0.7245
2 11 0.1761 11.2704 0.0065
3 2 0.1249 7.9936 4.4940
4 3 0.0969 6.2016 1.6528
5 7 0.0792 5.0688 0.7358
6 4 0.067 4.288 0.0193
7 9 0.058 3.712 7.5331
8 2 0.0512 3.2768 0.4975
9 3 0.0458 2.9312 0.0016∑

64 1 15.6651
Source: Authors’ calculations.

From the financial report of Hospital 2, we obtain the following results.
Testing with Z-test, results for Hospital 2 report are presented in Table 9. The differ-

ences (between observed and Benford’s Law frequencies) which are presented in the table
are not statistically significant at most digits (Z-statistic is less than 1.96), except for the
digit seven. Within the 49 observations in the considered sample, 7 observations start with
the digit seven, which is 14.29% of all positions. That result suggests that more attention
must be given to this digit.
Testing with the Chi-square test, results for the Hospital 2 report are presented in Ta-
ble 10. According to this test, the observed test statistic is equal to 13.16, while the critical
value is equal to 15.51, with α = 0.05 and 8 degrees of freedom (p-value is 0.1064), the
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Table 9. Result of Z-test for the first digit from the financial report of
Hospital 2.

Digit Count Freq. Benford’s Absolute Z-Statistic
Law difference

1 17 0.3469 0.301 0.0459 0.5453
2 8 0.1633 0.1761 0.0128 0.0483
3 4 0.0816 0.1249 0.0433 0.7001
4 7 0.1429 0.0969 0.0460 0.8460
5 1 0.0204 0.0792 0.0588 1.2594
6 1 0.0204 0.067 0.0466 1.0188
7 7 0.1429 0.058 0.0849 2.2357∗

8 1 0.0204 0.0512 0.0308 0.6539
9 3 0.0612 0.0458 0.0154 0.1748∑

49 1 1
Source: Authors’ calculations.

null hypothesis can not be rejected, i.e., it can be concluded that first digit distribution
of this report follows Benford’s Law.

Table 10. Result of Chi-square test for the first digit from the financial report
of Hospital 2.

Digit Obs.freq. Benford’s Exp. freq. (Oi − Ei)2/Ei

Oi Law Ei

1 17 0.301 14.749 0.3435
2 8 0.1761 8.6289 0.0458
3 4 0.1249 6.1201 0.7344
4 7 0.0969 4.7481 1.0680
5 1 0.0792 3.8808 2.1385
6 1 0.067 3.283 1.5876
7 7 0.058 2.842 6.0834
8 1 0.0512 2.5088 0.9074
9 3 0.0458 2.2442 0.2545∑

49 1 13.1631
Source: Authors’ calculations.

From the financial report of Hospital 3, we obtain the following results. Testing with Z-
test, results for Hospital 3 report are presented in Table 11. Within the 84 observations in
the considered sample, the differences (between observed and Benford’s Law frequencies)
which are presented in the table are not statistically significant at all digits (Z-statistic is
less than 1.96).
Testing with the Chi-square test, results for Hospital 3 are presented in Table 12. Accord-
ing to this test, the observed test statistic is equal to 3.49, while the critical value is equal
to 15.51, with α = 0.05 and 8 degrees of freedom (p-value is 0.8998), the null hypothesis
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Table 11. Result of Z-test for the first digit from the financial report of
Hospital 3.

Digit Count Freq. Benford’s Absolute Z-Statistic
Law difference

1 27 0.3214 0.301 0.0204 0.2892
2 13 0.1548 0.1761 0.0213 0.3702
3 6 0.0714 0.1249 0.0535 1.3173
4 10 0.1190 0.0969 0.0221 0.5018
5 8 0.0952 0.0792 0.0160 0.3423
6 5 0.0595 0.067 0.0075 0.0559
7 5 0.0595 0.058 0.0015 0.0597
8 5 0.0595 0.0512 0.0083 0.0986
9 5 0.0595 0.0458 0.0137 0.3407∑

84 1 1
Source: Authors’ calculations.

can not be rejected, etc. it can be concluded that first digit distribution of this report
follows Benford’s Law.

Table 12. Result of Chi-square test for the first digit from the financial report
of Hospital 3.

Digit Obs. freq. Benford’s Exp. freq. (Oi − Ei)2/Ei

Oi Law Ei

1 27 0.301 25.284 0.1165
2 13 0.1761 14.7924 0.2172
3 6 0.1249 10.4916 1.9229
4 10 0.0969 8.1396 0.4252
5 8 0.0792 6.6528 0.2728
6 5 0.067 5.628 0.0701
7 5 0.058 4.872 0.0034
8 5 0.0512 4.3008 0.1137
9 5 0.0458 3.8472 0.3454∑

84 1 3.4872
Source: Authors’ calculations.

From previous analysis and results presented in the tables, we may conclude that for
two of the three considered hospitals Chi-square tests show confirmation with the Benford
distribution. We recommend the application of Benford’s Law in the field of health as a
first step in detecting fraud and irregularities in financial reporting.

5. Conclusions
Our objective was to identify additional distributions, beyond those already studied,

that adhere to the Benford distribution. We enhance the theoretical studies of Benford’s
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Law by presenting, for the first time, its conformity with two distributions. Furthermore,
we illustrate their behavior under parameter variations through simulations and statistical
testing. In this paper, we gave theoretical results that the Pareto distribution and appro-
priate constant times Weibull density function, under some parameter constraint when
shape parameter a is sufficiently small, obey Benford’s Law. The simulation method
was used to illustrate the alignment of the Pareto distribution with Benford’s Law. On
the other side, based on the data from the balance sheet and income statement of the
three analyzed private hospitals, which fit well with the Weibull distribution, we con-
firmed that the Weibull distribution also obeys the Benford distribution, what is already
known results from the literature. Certainly, even if we had obtained a different result,
it could only be interpreted as a call for caution and undertaking further investigations.
We provided simulation studies or empirical evidence supporting the primary findings in
the paper, demonstrating that Pareto and Weibull distributions adhere to Benford’s Law
under certain parameter constraints.

We also verify the importance of the application of Benford’s Law in practical problems,
through widely considered literature and therein results and we confirmed that Benford’s
analysis can be employed as a useful tool to detect possible fraud and suspect reports for
further analysis, with testing first (what we had done in this paper), second or k-th digit
and also k digits simultaneously (what is out of the scope of this paper, but we gave the
main formulas). Moreover, through the simulation or real data analysis of data following
the Pareto and Weibull distribution, we further corroborated the results by subjecting
them to statistical tests, i.e., Z-test and Chi-test to confirm that those distributions obey
Benford’s Law.

In future research, more distributions could be considered whether they obey the Ben-
ford distribution, by applying analog theorems as the main results of this paper and also
it is possible to apply theoretical results of fitting Benford distribution on the observed
dataset with the new test methods. Highlighting the conformity of Benford’s characteris-
tics to the Pareto and Weibull distributions, which are widely utilized in various modeling
fields, these findings can be applied in numerous practical studies.
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