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ABSTRACT

In this paper, we study Cotton solitons on three-dimensional almost α-paracosymplectic
manifolds. We especially focus on three-dimensional almost α-paracosymplectic manifolds with
harmonic vector field ξ and characterize them for all possible types of operator h. Finally, we
construct an example which satisfies our results.
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1. Introduction

The study of almost paracontact geometry was introduced by Kaneyuki and Williams in [18]. A systematic
study of almost paracontact metric manifolds was carried out in paper of Zamkovoy [28]. The curvature
identities for different classes of almost paracontact metric manifolds were obtained e.g. in [9, 26, 28].

Recently, a long awaited survey article, [5], concerning almost cosymplectic manifolds as Blair’s monograph
[2] about contact metric manifolds appeared.

Almost paracontact metric structure is given by a pair (η,Φ), where η is a 1-form and Φ is a 2-form and η ∧ Φn

is a volume element. There exists a unique vector field ξ, called the characteristic or Reeb vector field, such that
iξη = 1, iξΦ = 0. The Riemannian or pseudo-Riemannian geometry appears if we try to introduce a compatible
structure which is a metric or pseudo-metric g and ϕ (1, 1)-tensor field, such that

Φ(X,Y ) = g(ϕX, Y ), ϕ2 = ϵ(I − η ⊗ ξ). (1.1)

We have almost paracontact metric structure for ϵ = +1 and almost contact metric for ϵ = −1. Then, the triple
(ϕ, ξ, η) is called almost paracontact structure or almost contact structure, resp.

Combining the assumption concerning the forms η and Φ, we obtain many different types of almost
(para)contact manifolds, e.g. (para)contact if η is contact form and dη = Φ, almost (para)cosymplectic if dη = 0
and dΦ = 0, almost (para)Kenmotsu if dη = 0 and dΦ = 2η ∧ Φ.

Recently, geometers discovered many similarities between almost contact metric and almost paracontact
metric manifolds. However, the situation is more delicate: there are examples of almost paracontact metric
manifolds without Riemannian counterparts e.g. [10, 21, 24].

The study of geometric evolution equations is one of the principal research subjects motivated by either
physical or mathematical questions. Several years ago, the notion of the Yamabe flow was introduced by
Richard Hamilton at the same time as the Ricci flow (see [16, 17]), as a tool for constructing metrics of constant
scalar curvature in a given conformal class of Riemannian metrics on (Mn, g) (n ≥ 3). On a smooth semi-
Riemannian manifold, the Yamabe flow can be defined as the evolution of the semi-Riemannian metric g0 in
time t to g = g(t) by the equation

∂

∂t
g = −rg, g(0) = g0,
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where r denotes the scalar curvature which corresponds to g.
The significance of the Yamabe flow lies in the fact that it is a natural geometric deformation to metrics of

constant scalar curvature. One notes that Yamabe flow corresponds to the fast diffusion case of the porous
medium equation (the plasma equation) in mathematical physics. In dimension n = 2 the Yamabe flow is
equivalent to the Ricci flow (defined by ∂

∂tg = −2S(t), where S stands for Ricci tensor). However in dimension
n > 2 the Yamabe and Ricci flows do not agree, since the first one preserves the conformal class of the metric
but the Ricci flow does not in general. Just as a Ricci soliton is a special solution of the Ricci flow, a Yamabe
soliton is a special solution of the Yamabe flow that moves by one parameter family of diffeomorphisms ϕt

generated by a fixed (time-independent) vector field V on M , and homotheties, i.e. g(., t) = σ(t)ϕt
∗g0. Küpeli

Erken and De published a lot of paper about Yamabe and Ricci solitons in paracontact geomerty [22, 11, 12].
In 1918, Hermann Weyl [27] first appeared the Weyl tensor is of enormous consequence in theoretical physics

and the general theory of relativity. The Weyl tensor is similar to Riemannian curvature tensor and behaves like
a force that a body feels when moving on a geodesic. This force is called tidal force which changes the shape
of the body and like Riemann curvature tensor, it does not pass on the information that how the volume of the
body changes. Weyl tensor is a significant tool in the study of manifold geometry. However, geometers need to
find a distinct way in three-dimension. In general, Cotton tensor C, is a non-vanishing conformal invariant on
a three-dimensional paracontact metric manifold contrary to Weyl tensor. The (0, 2)- Cotton tensor C is defined
by

Cij =
1

2
√
g
Cnmiϵ

nmlglj , (1.2)

where ϵijk denotes the Levi-Civita permutation symbol (ϵ123 = 1) and g = |det(gij)|. It is trace-free and
divergence-free tensor. The Cotton tensor is involved in many physics subjects such as Chern-Simons theory or
topological massive gravity [1, 8, 13, 15, 23]. The relation between Cotton tensor and the energy momentum in
Einstein’s theory investigated in [14]. In particular, the field equation in topologically massive gravity implies
a proportionality between the Einstein and Cotton tensors. The fact that the Einstein tensor consists of second-
order derivatives on the metric whereas the Cotton tensor is of order 3 implies that an exact solution to this field
equation is in general difficult to find. Indeed, most of the solutions for the field equation in the topological
massive gravity are constructed on homogeneous spaces.

In [19], a new geometric flow based on the conformally invariant Cotton tensor was introduced. A Cotton
flow is a one-parameter family g(t) of three-dimensional metrics satisfying

∂

∂t
g(t) = −λCg(t), (1.3)

where Cg(t) is the (0, 2)-Cotton tensor corresponding to the metric g(t). A Cotton soliton is a metric defined on a
three-dimensional smooth manifold which satisfies

LV g + C − σg = 0, (1.4)

where V is a vector field, called potential vector field, σ is constant and L denotes the Lie derivative [19]. Cotton
soliton is trivial if C = 0 (i.e. conformally flat). Also, Cotton soliton is said to be shrinking, steady and expanding
according as σ is positive, zero and negative resp.

As in Ricci and Yamabe soliton, Cotton soliton is a fixed point of (1.3) up to diffeomorphism and rescaling.
Calvino-Louzao et.al. [3] studied compact Riemannian Cotton solitons and proved that compact Riemannian

Cotton solitons are locally conformally flat in Riemannian structure. Moreover, they investigated left-invariant
Cotton solitons on homogeneous manifolds in [4]. Cotton solitons on three-dimensional almost coKaehler
manifolds such that the characteristic vector field ξ is an eigenvector field of the Ricci operator Q (i.e. Qξ = ρξ,
where ρ is a smooth function on M ) were studied by Chen in [6]. Furthermore, the same author investigated
Cotton solitons on three-dimensional contact metric manifolds [7]. Recently, Ozkan et al. [25] have studied
Cotton solitons on three-dimensional paracontact metric manifolds.

In the light of previous works, the fact that there are only studies about Cotton solitons on contact geometry
motivate us to study Cotton solitons on 3-dimensional almost α-paracosymplectic manifolds. The paper is
organized in the following way. In section 2, we recall some notations needed for this paper. Section 3 deals
with the computations of the components of the (0, 2)−Cotton Tensor. In the last section, we consider three-
dimensional almost paracosymplectic and almost α-para-Kenmotsu manifolds with h1 and h3 types resp., such
that the characteristic vector field ξ is harmonic (i.e. Qξ = ρξ) and ρ is constant along the characteristic vector
field ξ. Then we proved that if these manifolds admits a Cotton soliton with potential vector field being
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collinear with characteristic vector field ξ, then M is either a locally warped product M1 ×f2 M2, where M2

is an almost para-Kaehler manifold, M1 is an open interval with coordinate t, and f2 = we2αt for some positive
constant or locally conformally flat. The results for three-dimensional almost paracosymplectic manifolds with
h2 type are different from three-dimensional almost paracosymplectic and almost α-para-Kenmotsu manifolds
with h1 and h3 types, resp. We consider a three-dimensional almost paracosymplectic manifold with h2 type
such that the characteristic vector field is harmonic. Then we proved that if M admits a Cotton soliton with
potential vector field being collinear with characteristic vector field ξ, then M is locally conformally flat and
Cotton soliton is steady. Finally, an example which satisfies our results is constructed.

2. Preliminaries

A (2n+ 1)− dimensional manifold M is called almost paracontact manifold if it admits triple (ϕ, ξ, η) satisfying
the followings:

• η(ξ) = 1, ϕ2 = I − η ⊗ ξ,
• ϕ induces on almost paracomplex structure on each fiber of D = ker(η),

where ϕ, ξ and η are (1, 1)−tensor field, vector field and 1−form, resp. One can easily checked that ϕξ =
0, η ◦ ϕ = 0 and rankϕ = 2n, by the definition. Here, ξ is a unique vector field (called Reeb or characteristic
vector field) dual to η and satisfying dη(ξ,X) = 0 for all X . When the tensor field Nϕ := [ϕ, ϕ]− 2dη ⊗ ξ vanishes
identically, the almost paracontact manifold is said to be normal. If the structure (M,ϕ, ξ, η) admits a pseudo-
Riemannian metric such that

g(ϕX, ϕY ) = −g(X,Y ) + η(X)η(Y ),

then we say that (M,ϕ, ξ, η, g) is an almost paracontact metric manifold. Note that any pseudo-Riemannian
metric with a given almost paracontact metric manifold structure is necessarily of signature (n+ 1, n). For
an almost paracontant metric manifold, one can always find an orthogonal basis {X1, . . . , Xn, Y1, . . . , Yn, ξ},
namely ϕ−basis, such that g(Xi, Xj) = −g(Yi, Yj) = δij and Yi = ϕXi, for any i, j ∈ {1, . . . , n}. Further, we can
define a skew-symmetric tensor field (2-form), usually called fundamental form, Φ by

Φ(X,Y ) = g(ϕX, Y ).

On an almost paracontact manifold, one can defines the (1, 2)-tensor N (1) by

N (1)(X,Y ) = [ϕ, ϕ](X,Y )− 2dη(X,Y )ξ

where
[ϕ, ϕ](X,Y ) = ϕ2[X,Y ] + [ϕX, ϕY ]− ϕ[ϕX, Y ]− ϕ[X,ϕY ]

is the Nijenhuis torsion of ϕ. If N (1) vanishes, then the almost paracontact manifold is said to be normal [28].
An almost paracontact metric manifold M2n+1 with a structure (ϕ, ξ, η, g) is said to be an almost α-

paracosymplectic manifold, if
dη = 0, dΦ = 2αη ∧ Φ,

where α may be a constant or function on M . We have the following subclasses for a special choices of the
function α:

• almost α-para-Kenmotsu manifolds, α = const. ̸= 0,
• almost paracosymplectic manifolds, α = 0.

Moreover, if normality condition is fulfilled, then manifolds are called α-para-Kenmotsu or paracosymplectic,
resp.

In an almost α-paracosymplectic manifold, one defines a symmetric operator h := 1
2Lξϕ. The operator h also

satisfies the followings: {
hξ = 0, g(hX, Y ) = g(X,hY ),

ϕ ◦ h+ h ◦ ϕ = 0, ∇ξ = αϕ2 + ϕ ◦ h,
(2.1)

where ∇ is the Levi-Civita connection of the pseudo-Riemannian manifold [20]. Küpeli Erken, Dacko and
Murathan proved the following Theorem.
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Theorem 2.1. [20] Let (M2n+1, ϕ, ξ, η, g) be an almost α-para-Kenmotsu manifold. Characteristic vector field ξ is
harmonic if and only if it is an eigenvector of the Ricci operator.

Theorem 2.2. [20] Let M2n+1 be an almost α-para-Kenmotsu manifold with h = 0. Then M2n+1 is a locally warped
product M1 ×f2 M2, where M2 is an almost para-Kaehler manifold, M1 is an open interval with coordinate t, and
f2 = we2αt for some positive constant.

Now, we give some information about the canonical forms of h.
The tensor h has the canonical form (I). Let (M,ϕ, ξ, η, g) be a three-dimensional almost α-paracosymplectic

manifold and let
U1 = {p ∈ M |h(p) ̸= 0} ⊂ M

U2 = {p ∈ M |h(p) = 0, in a neighborhood of p} ⊂ M.

That h is a smooth function on M implies U1 ∪ U2 is an open and dense subset of M, so any property satisfied
in U1 ∪ U2 is also satisfied in M. For any point p ∈ U1 ∪ U2, there exists a local orthonormal ϕ-basis {e, ϕe, ξ}
of smooth eigenvectors of h in a neighborhood of p, where −g(e, e) =g(ϕe, ϕe) = g(ξ, ξ) = 1. On U1, we put
he = λe, where λ is a non-vanishing smooth function. Since trh = 0, we have hϕe = −λϕe. In this case, we will
say the operator h is of h1 type.

Lemma 2.1. [20] Let (M,ϕ, ξ, η, g) be a three-dimensional almost α-para-Kenmotsu manifold with h of h1 type. Then
for the covariant derivative on U1, the following equations are valid

(i) ∇ee = aϕe+ αξ,

(ii) ∇eϕe = ae− λξ,

(iii) ∇eξ = αe+ λϕe,

(iv) ∇ϕee = cϕe− λξ,

(v) ∇ϕeϕe = ce− αξ,

(vi) ∇ϕeξ = −λe+ αϕe, (2.2)
(vii) ∇ξe = a1ϕe,

(viii) ∇ξϕe = a1e,

(ix) ∇ξξ = 0,

(x) ∇ξh = ξ(λ)s− 2a1hϕ,

(xi) h2 − α2ϕ2 =
1

2
S(ξ, ξ)ϕ2

where ω = S(ξ, .)kerη, a1 = g(∇ξe, ϕe), A = ω(e), B = ω(ϕe) and

a =
A− ϕe(λ)

2λ
, (2.3)

c = −(
B + e(λ)

2λ
). (2.4)

From (2.2), we have 
[e, ϕe] = ae− cϕe,

[e, ξ] = αe+ (λ− a1)ϕe,

[ϕe, ξ] = −(λ+ a1)e+ αϕe.

(2.5)

Lemma 2.2. [20] Let (M,ϕ, ξ, η, g) be a 3-dimensional almost α-para-Kenmotsu manifold with h of h1 type. Then the
Ricci operator Q is given by

Q =(
r

2
+ α2 − λ2)I + (−r

2
+ 3(λ2 − α2))η ⊗ ξ − 2αϕh− ϕ(∇ξh)

+ σ(ϕ2)⊗ ξ − σ(e)η ⊗ e+ σ(ϕe)η ⊗ ϕe.

Then the components of the Ricci operator Q for h1 type are given by

dergipark.org.tr/en/pub/iejg 454

https://dergipark.org.tr/en/pub/iejg
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Qe = ( 12r + α2 − λ2 − 2λa1)e− (2αλ+ Z)ϕe+Aξ,

Qϕe = (2λα+ Z)e+ ( 12r + α2 − λ2 + 2λa1)ϕe+Bξ,

Qξ = −Ae+Bϕe+ 2(λ2 − α2)ξ,

(2.6)

where Z = ξ(λ).
The tensor h has the canonical form (II). Let (M,ϕ, ξ, η, g) be a three-dimensional almost α-paracosymplectic

manifold and p is a point of M. Then there exists a local pseudo-orthonormal basis {e1, e2, ξ} in a neighborhood
of p, where g(e1, e1) = g(e2, e2) = g(e1, ξ) = g(e2, ξ) = 0 and g(e1, e2) = g(ξ, ξ) = 1. Let U be the open subset of
M, where h ̸= 0. For every p ∈ U , there exists an open neighborhood of p such that he1 = e2, he2 = 0, hξ = 0 and
ϕe1 = ±e1, ϕe2 = ∓e2. In this case, we say h is of h2 type.

Lemma 2.3. [20] Let (M,ϕ, ξ, η, g) be a three-dimensional almost α-para-Kenmotsu manifold with h of h2 type. Then
for the covariant derivative on U, the following equations are valid

(i) ∇e1e1 = −b1e1 + ξ,

(ii) ∇e1e2 = b1e2 − αξ,

(iii) ∇e1ξ = αe1 − e2,

(iv) ∇e2e1 = −b2e1 − αξ,

(v) ∇e2e2 = b2e2, (2.7)
(vi) ∇e2ξ = αe2,

(vii) ∇ξe1 = a2e1,

(viii) ∇ξe2 = −a2e2,

(ix) ∇ξh = −2a2hϕ,

(x) h2 = 0,

where A2 = ω(e1), a2 = g(∇ξe1, e2), b1 = g(∇e1e2, e1) and b2 = g(∇e2e2, e1) = − 1
2ω(e1).

From (2.7) we have 
[e1, e2] = b2e1 + b1e2,

[e1, ξ] = (α− a2)e1 − e2,

[e2, ξ] = (α+ a2)e2.

(2.8)

Lemma 2.4. [20] Let (M,ϕ, ξ, η, g) be a 3-dimensional almost α-para-Kenmotsu manifold with h of h2 type. Then the
Ricci operator Q is given by

Q =(
r

2
+ α2)I − (

r

2
+ 3α2)η ⊗ ξ − 2αϕh− ϕ(∇ξh)

+ σ(ϕ2)⊗ ξ + σ(e1)η ⊗ e2.

Then the components of the Ricci operator Q for h2 are given by
Qe1 = ( 12r + α2)e1 + 2(α− a2)e2 +A2ξ,

Qe2 = ( 12r + α2)e2,

Qξ = A2e2 − 2α2ξ.

(2.9)

The tensor h has the canonical form (III). Let (M,ϕ, ξ, η, g) be a three-dimensional almost α-
paracosymplectic manifold and let p is a point of M . Then there exists a local orthonormal ϕ-basis {e, ϕe, ξ}
in a neighborhood of p, where −g(e, e) = g(ϕe, ϕe) = g(ξ, ξ) = 1. Now, let U1 be the open subset of M where
h ̸= 0 and let U2 be the open subset of points p ∈ M such that h = 0 in a neighborhood of p. U1 ∪ U2 is an open
subset of M. For every p ∈ U1 there exists an open neighborhood of p such that he = λϕe, hϕe = −λe and hξ = 0
where λ is a non-vanishing smooth function. In this case, we say that h is of h3 type.
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Lemma 2.5. [20] Let (M,ϕ, ξ, η, g) be a three-dimensional almost α-para-Kenmotsu manifold with h of h3 type. Then
for the covariant derivative on U1, the following equations are valid

(i) ∇ee = b3ϕe+ (α+ λ)ξ,

(ii) ∇eϕe = b3e,

(iii) ∇eξ = (α+ λ)e,

(iv) ∇ϕee = b4ϕe,

(v) ∇ϕeϕe = b4e+ (λ− α)ξ,

(vi) ∇ϕeξ = −(λ− α)ϕe, (2.10)
(vii) ∇ξe = a3ϕe,

(viii) ∇ξϕe = a3e,

(ix) ∇ξh = ξ(λ)s− 2a3hϕ,

(x) h2 − α2ϕ2 =
1

2
S(ξ, ξ)ϕ2

where ω = S(ξ, .)kerη, a3 = g(∇ξe, ϕe),b3 = − 1
2λ [ω(ϕe) + ϕe(λ)] and b4 = 1

2λ [ω(e)− e(λ)].

From (2.10) we have 
[e, ϕe] = b3e− b4ϕe,

[e, ξ] = (λ+ α)e− a3ϕe,

[ϕe, ξ] = −a3e− (λ− α)ϕe.

(2.11)

Lemma 2.6. [20] Let (M,ϕ, ξ, η, g) be a 3-dimensional almost α-para-Kenmotsu manifold with h of h3 type. Then the
Ricci operator Q is given by

Q =αI + bη ⊗ ξ − 2αϕh− ϕ(∇ξh) + σ(ϕ2)⊗ ξ − σ(e)η ⊗ e+ σ(ϕe)η ⊗ ϕe,

where a and b are smooth functions defined by a = α2 + λ2 + r
2 and b = −3(λ2 + α2)− r

2 , respectively.

Then the components of the Ricci operator Q for h3 are given by
Qe = (α2 + λ2 + 1

2r − 2αλ− Z)e− 2a3λϕe+A3ξ,

Qϕe = 2a3λe+ (α2 + λ2 + 1
2r + 2αλ+ Z)ϕe+B3ξ,

Qξ = −A3e+B3ϕe− 2(λ2 + α2)ξ,

(2.12)

where A3 = ω(e), B3 = ω(ϕe) and Z = ξ(λ).

3. Cotton Solitons

In this section, we give the components of the Cotton tensor and calculate the scalar curvature for each
three-dimensional almost α-para-Kenmotsu manifold according to their h types.

Using the relations S(X,Y ) =
∑2n+1

i=1 εig(R(ei, X)Y, ei) and r =
∑2n+1

i=1 εiS(ei, ei). We derive a useful formula
for the scalar curvature.

Lemma 3.1. Let (M,ϕ, ξ, η, g) be a three-dimensional almost α-para-Kenmotsu manifold with h1 type. Then the scalar
curvature r is given as follows:

r = trace(Q) = 2[e(c)− ϕe(a)− 3α2 + λ2 + c2 − a2]. (3.1)

Proposition 3.1. Let (M,ϕ, ξ, η, g) be a three-dimensional almost α-para-Kenmotsu manifold with h1 type. If the
characteristic vector field ξ is a harmonic vector field in the open subset U1, then the following relations are valid for

dergipark.org.tr/en/pub/iejg 456

https://dergipark.org.tr/en/pub/iejg
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the components of Cotton tensor C.

C11 = C(e, e) = λ(
1

2
r − 3λ2 + α2 − 2a1λ)− 3αZ − ξ(Z)− 4a21λ, (3.2)

C12 = C(e, ϕe) = −α(
1

2
r − λ2 + 3α2 − 6a1λ) + 2ξ(a1)λ+ (4a1 + λ)Z

− 1

4
ξ(r), (3.3)

C13 = C(e, ξ) = −2αe(λ)− e(Z)− 4aa1λ+ ϕe(α2 − λ2 − 2a1λ)

+
1

4
ϕe(r)− 2c(2αλ+ Z), (3.4)

C22 = C(ϕe, ϕe) = λ(
1

2
r − 3λ2 + α2 + 2a1λ)− 3αZ − ξ(Z)− 4a21λ, (3.5)

C23 = C(ϕe, ξ) = e(α2 − λ2 + 2a1λ) + 2aZ + ϕe(Z) + 4a1cλ+
1

4
e(r)

+ 4aαλ+ 2αϕe(λ), (3.6)

C33 = C(ξ, ξ) = −4a1λ
2. (3.7)

Proof. Well-known Cotton tensor equation is defined as

C(X,Y )Z = (∇XS)(Y,Z)− (∇Y S)(X,Z)− 1

4
[X(r)g(Y, Z)− Y (r)g(X,Z)] (3.8)

for all vector fields X,Y, Z, where S is the Ricci curvature tensor and r is the scalar curvature. From (1.2) and
using the notation Cijk = C(ei, ej)ek for all i, j = 1, 2, 3, we get

C11 =
1

2
[Cnm1ϵ

nmlgl1] =
1

2
[−Cnm1ϵ

nm1] = −1

2
[C2m1ϵ

2m1 + C3m1ϵ
3m1]

= −C231.

Using similar calculations we have

C12 = C311, C13 = C121, C22 = C312, C23 = C122, C33 = C123.

From the assumption of ξ is a harmonic vector field, using Theorem 2.1 and (2.6), we have A = B = 0. By using
(1.2) and (2.6) after a long but straightforward calculations we compute the components Cij as follows:

C11 = −C231 = −[C(ϕe, ξ)e]

= −[(∇ϕeS)(ξ, e)− (∇ξS)(ϕe, e)]

= −2α2λ− αZ + λ(
1

2
r + α2 − λ2 − 2a1λ)− 2λ(λ2 − α2)

− 2ξ(αλ)− ξ(Z)− 4a21λ

= λ(
1

2
r − 3λ2 + α2 − 2a1λ)− 3αZ − ξ(Z)− 4a21λ,

C12 = C311 = [C(ξ, e)e]

= [(∇ξS)(e, e)− (∇eS)(ξ, e)] +
1

4
ξ(r)

= −ξ(
1

2
r + α2 − λ2 − 2a1λ) + 2a1(2αλ+ Z)

− α(
1

2
r + α2 − λ2 − 2a1λ)− λ(2αλ+ Z) + 2α(λ2 − α2) +

1

4
ξ(r)

= −α(
1

2
r − λ2 + 3α2 − 6a1λ) + 2ξ(a1)λ+ (4a1 + λ)Z − 1

4
ξ(r),
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C13 = C121 = [C(e, ϕe)e]

= [(∇eS)(ϕe, e)− (∇ϕeS)(e, e)]−
1

4
ϕe(r)

= −e(2αλ+ Z)− 4aa1λ+ ϕe(
1

2
r + α2 − λ2 − 2a1λ)− 2c(2αλ+ Z)

− 1

4
ϕe(r)

= −2αe(λ)− e(Z)− 4aa1λ+ ϕe(α2 − λ2 − 2a1λ)

+
1

4
ϕe(r)− 2c(2αλ+ Z),

C22 = C312 = [C(ξ, e)ϕe]

= [(∇ξS)(e, ϕe)− (∇eS)(ξ, ϕe)]

= −ξ(2αλ+ Z)− 4a21λ− α(2αλ+ Z)− 2λ(λ2 − α2)

+ λ(
1

2
r + α2 − λ2 + 2a1λ)

= λ(
1

2
r − 3λ2 + α2 + 2a1λ)− 3αZ − ξ(Z)− 4a21λ,

C23 = C122 = [C(e, ϕe)ϕe]

= [(∇eS)(ϕe, ϕe)− (∇ϕeS)(e, ϕe)]−
1

4
e(r)

= e(
1

2
r + α2 − λ2 + 2a1λ) + 2a(2αλ+ Z) + ϕe(2αλ+ Z)

+ 4a1cλ− 1

4
e(r)

= e(α2 − λ2 + 2a1λ) + 2aZ + ϕe(Z) + 4a1cλ

+
1

4
e(r) + 4aαλ+ 2αϕe(λ),

C33 = C123 = [C(e, ϕe)ξ]

= [(∇eS)(ϕe, ξ)− (∇ϕeS)(e, ξ)]

= −λ(
1

2
r + α2 − λ2 + 2a1λ) + λ(

1

2
r + α2 − λ2 − 2a1λ)

= −4a1λ
2.

To calculate r for h2 type we construct a new pseudo-orthonormal frame {ẽ1, ẽ2, ẽ3} such as ẽ1 = e1+e2√
2

, ẽ2 =
e1−e2√

2
and ẽ3 = ξ. So, we get g(ẽ1, ẽ1) = 1 = −g(ẽ2, ẽ2), g(ẽ1, ẽ2) = 0 and hẽ1 = hẽ2 = e2. Then we give the

following lemma.

Lemma 3.2. Let (M,ϕ, ξ, η, g) be a three-dimensional almost α-para-Kenmotsu manifold with h2 type. Then the scalar
curvature r is given as follows:

r = trace(Q) = 2[−e1(b2) + e2(b1) + 2b1b2 − 3α2]. (3.9)

Since the proof of the following proposition is quite similar to Proposition 3.1, so we don’t give the proof of
it.
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Proposition 3.2. Let (M,ϕ, ξ, η, g) be a three-dimensional almost α-para-Kenmotsu manifold with h2 type. If the
characteristic vector field ξ is a harmonic vector field in the open subset U , then the following relations are valid for
the components of Cotton tensor C.

C11 = C311 = C(e1, e1) = −2ξ(a2) + 2a2(2a2 − 3α)− α2 − 1

2
r, (3.10)

C12 = C231 = C(e1, e2) = −3α3 − α
1

2
r − 1

4
ξ(r), (3.11)

C13 = C121 = C(e1, ξ) = 2e2(a2)− 4b2(α− a2) +
1

4
e1(r), (3.12)

C22 = −C322 = C(e2, e2) = 0, (3.13)

C23 = C122 = C(e2, ξ) = −1

4
e2(r), (3.14)

C33 = C123 = C(ξ, ξ) = 0. (3.15)

Lemma 3.3. Let (M,ϕ, ξ, η, g) be a three-dimensional almost α-para-Kenmotsu manifold with h3 type. Then the scalar
curvature r is given as follows:

r = trace(Q) = 2[e(b4)− ϕe(b3)− 3α2 − λ2 − b23 + b24]. (3.16)

Since the proof of the following proposition is quite similar to Proposition 3.1, so we don’t give the proof of
it.

Proposition 3.3. Let (M,ϕ, ξ, η, g) be a three-dimensional almost α-para-Kenmotsu manifold with h3 type. If the
characteristic vector field ξ is a harmonic vector field in the open subset U1, then the following relations are valid for
the components of Cotton tensor C.

C11 = −C231 = C(e, e) = 2λ(a3λ− ξ(a3))− 2a3(3αλ+ 2Z), (3.17)

C12 = C311 = C(e, ϕe) = −(α+ λ)(3α2 + 3λ2 +
1

2
r − 2αλ− Z)− 1

4
ξ(r)

+ ξ(Z) + 4a23λ+ 2αZ − 2λZ, (3.18)

C13 = C121 = C(e, ξ) = −2e(a3λ) + ϕe(λ2 − 2αλ− Z) +
1

4
ϕe(r)

− 4a3b4λ− 2b3(2αλ+ Z), (3.19)

C22 = C312 = C(ϕe, ϕe) = −2λξ(a3)− 2a3(2Z + 3αλ+ λ2), (3.20)

C23 = C122 = C(ϕe, ξ) = e(λ2 + 2αλ+ Z) + 2ϕe(a3λ) + 4a3b3λ

+
1

4
e(r) + 2b4(2αλ+ Z), (3.21)

C33 = C123 = C(ξ, ξ) = 4a3λ
2. (3.22)

4. 3-dimensional almost α-para-Kenmotsu manifolds with harmonic vector field ξ

Theorem 4.1. Let (M,ϕ, ξ, η, g) be a three-dimensional almost paracosymplectic manifold with h1 type such that the
characteristic vector field is harmonic (i.e. Qξ = ρξ) and ρ is constant along the characteristic vector field ξ. If M admits
a Cotton soliton with potential vector field being collinear with characteristic vector field ξ, then M is either

(i) a locally warped product M1 ×f2 M2, where M2 is an almost para-Kaehler manifold, M1 is an open interval with
coordinate t, and f2 = we2αt for some positive constant

or

(ii) locally conformally flat.

Proof. Firstly, we denote U1 and U2 as follows:

U1 = {p ∈ M : λ = 0 in a neighborhood of p}
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and
U2 = {p ∈ M : λ ̸= 0 in a neighborhood of p}.

If we only study on U1, then the result (i) comes from Theorem 2.2. Now, assume that U2 is a non-empty set
and let {e, ϕe, ξ} is a ϕ-basis in U2.

From the characteristic vector field is harmonic and (2.6), we have ρ = 2(λ2 − α2), ξ(ρ) = ξ(λ) = Z = 0 and
A = B = 0.

If V = 0 (1.4) returns to C = σg. It could be shown obviously that the tensor C is trace-free. So, σ is equal to
zero. Hence, M is locally conformally flat.

Now, we assume that V = fξ, where f is a non-vanishing constant function. Substituting V by fξ and using
(2.1), equation (1.4) becomes:

σg(X,Y ) = 2fg(ϕhX, Y ) + C(X,Y ) (4.1)

Putting X = Y = e in (4.1) and using (3.2) we obtain

σ = −λ(
1

2
r − 3λ2 − 2a1λ) + 4a21λ. (4.2)

Similarly, letting X = Y = ϕe in (4.1) and using (3.5) we get

σ = λ(
1

2
r − 3λ2 + 2a1λ)− 4a21λ. (4.3)

On the other hand, if we put X = e and Y = ϕe in (4.1) and use (3.3) we have

2fλ = −2ξ(a1)λ+
1

4
ξ(r). (4.4)

If we add (4.2) and (4.3) we have
σ = 2a1λ

2. (4.5)

Comparing (4.2) with (4.5) after some calculations, we get

1

2
r − 3λ2 = 4a21. (4.6)

Differentiating (4.5) along the vector field ξ, and from the fact that σ is constant and ξ(λ) = 0 we find ξ(a1) = 0.
Similarly, we have ξ(r) = 0 from differentiating (4.6) along the vector field ξ. Hence, from (4.4) we get 2fλ = 0.

This completes the proof of the theorem.

Theorem 4.2. Let (M,ϕ, ξ, η, g) be a three-dimensional almost paracosymplectic manifold with h2 type such that the
characteristic vector field is harmonic (i.e. Qξ = ρξ). If M admits a Cotton soliton with potential vector field being
collinear with characteristic vector field ξ, then M is locally conformally flat or Cotton soliton is steady.

Proof. Now, assume that U is an open set of M where h ̸= 0 and let {e1, e2, ξ} is a pseudo-orthonormal basis in
U . From the characteristic vector field is harmonic and (2.9), we have A2 = 0.

If V = 0 (1.4) returns to C = σg. It could be shown obviously that the tensor C is trace-free. So, σ is equal
to zero. Hence, M is locally conformally flat. Now, assume that V = fξ, where f is a non-vanishing constant
function. The equation (4.1) is also valid for h2 type. Letting X = Y = e1 in (4.1) and using (3.10) we get

0 = −2f − 2ξ(a2) + 4a22 −
1

2
r (4.7)

Putting X = Y = ξ in (4.1) and using (3.15) we have

σ = 2ξ(f) = 0. (4.8)

This completes the proof of the theorem.

Theorem 4.3. Let (M,ϕ, ξ, η, g) be a three-dimensional almost α-para-Kenmotsu manifold with h3 type such that the
characteristic vector field is harmonic (i.e. Qξ = ρξ) and ρ is constant along the characteristic vector field ξ. If M admits
a Cotton soliton with potential vector field being collinear with characteristic vector field ξ, then M is either
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(i) a locally warped product M1 ×f2 M2, where M2 is an almost para-Kaehler manifold, M1 is an open interval with
coordinate t, and f2 = we2αt for some positive constant

or

(ii) locally conformally flat.

Proof. The proof of (i) is similar to the proof of the Theorem 4.1. If V = 0, then M is locally conformally flat.
Now, assume that V = fξ, where f is a non-vanishing constant function. Substituting V by fξ and using (2.1),
equation (1.4) becomes:

σg(X,Y ) = 2fαg(X,Y )− 2αfη(X)η(Y ) + 2fg(ϕhX, Y ) + C(X,Y ). (4.9)

Letting X = Y = e in (4.9) and using (3.17) we get

σ = 2fα+ 2fλ− 2λ(λa3 − ξ(a3)) + 6a3αλ. (4.10)

Again, putting X = Y = ϕe in (4.9) and by the help of (3.20), we obtain

σ = 2fα− 2fλ− 2λξ(a3)− 6a3αλ− 2a3λ
2. (4.11)

On the other hand, if we put X = e and Y = ϕe in (4.9) and use (3.18), we have

0 = −1

4
ξ(r) + 4a23λ− (α+ λ)(3α2 + 3λ2 +

1

2
r − 2αλ). (4.12)

By adding (4.10) with (4.11) we get
σ = 2fα− 2a3λ

2. (4.13)

Comparing (4.10) with (4.13), we conclude that

f = −ξ(a3)− 3a3α. (4.14)

By differentiating the equation (4.13) along the vector field ξ, we obtain ξ(a3) = 0. Letting X = Y = ξ in (4.9)
and using (3.22) we have

σ = 4a3λ
2. (4.15)

From (4.13) and (4.15) we obtain
fα = 3a3λ

2. (4.16)

From (4.14) and (4.16), we get f(λ2 + α2) = 0. There are two possibilities. The first one is f = 0, it is impossible
because f is non-vanishing. The second one is α2 + λ2 = 0, again it is impossible.

Hence, we complete the proof of the theorem.

Now, we will give an example which satisfies Theorem 4.2.

Example 4.1. We consider the three dimensional manifold M and the vector fields

e1 =
∂

∂x
, e2 =

∂

∂y
, e3 = −x

∂

∂x
+ (y − x)

∂

∂y
+ 2

∂

∂z

g(e1, e1) = g(e1, e3) = g(e2, e2) = g(e2, e3) = 0, g(e1, e2) = g(e3, e3) = 1,

h =

0 0 0
1 0 0
0 0 0

 .

The 1-form η = 1
2dz and the fundamental 2-form Φ = dx ∧ dy + x−y

2 dx ∧ dz − x
2dy ∧ dz defines an almost

paracosymplectic manifold.
Let g be the pseudo-Riemannian metric and the (1, 1)-tensor field ϕ given by

g =

 0 1
2

x−y
4

1
2 0 x

4
x−y
4

x
4

1+2x(x−y)
4

 ,

461 dergipark.org.tr/en/pub/iejg

https://dergipark.org.tr/en/pub/iejg


Cotton Solitons on Three Dimensional Almost α-paracosymplectic Manifolds

ϕ =

1 0 x
2

0 −1 y−x
2

0 0 0

 .

We get
ϕe1 = e1, ϕe2 = −e2, ϕe3 = 0

and

[e1, e3] = −e1 − e2

[e2, e3] = e2

[e1, e2] = 0.

Using the equation (1.4), (4.7) and Proposition 3.2, we can see that the manifold admits Cotton soliton for
V = 2ξ, b1 = b2 = 0 and a2 = 1. From Lemma 3.2, we can see that the scalar curvature r = 0 and the Cotton
soliton is steady.
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