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Abstract  

 

An approach to the calculation of complex chemical equilibrium using the open-source optimization package Ipopt 

and the open-source package JuMP is proposed. The code of two procedures written in the open-source Julia 

programming language for calculating the equilibrium composition and properties of multicomponent heterogeneous 

thermodynamic systems is presented. The results of the test calculations showed a good performance of the code and 

a relatively high speed of calculations. Due to the compactness and simplicity of the code, it can be easily integrated 

into other applications, or used in combination with more complex models. 
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1. Introduction 

One of the problems that many engineers and scientists 

facing in chemistry, chemical technology, plasma chemistry, 

combustion chemistry, gas dynamics, etc. is the need to 

calculate the equilibrium composition and properties of 

complex chemically reacting systems.  In this article a 

complex system means a multicomponent heterogeneous 

thermodynamic system in which chemical and phase 

reactions are possible. 

The calculation of equilibrium composition is a long-

standing problem. Perhaps the first attempts to solve it in a 

general form were associated with the need to compute the 

characteristics of rocket fuels [1]. A detailed overview of the 

methods and algorithms used for this purpose is presented in 

the monograph [2]. Although the problem of calculating the 

equilibrium of complex thermodynamic systems is quite old 

[3-7], new developments appear in this area from time to 

time, see for example [8-11]. 

Two approaches can be distinguished that are applied to 

the calculation of the equilibrium composition - the analysis 

of the equilibrium of possible chemical reactions and the 

search for the coordinates of the constrained minimum of the 

thermodynamic potential. The second approach is more 

general, because it allows the use of well-developed 

algorithms for the optimization of functions with constraints.  

Difficulties in solving the problem of calculating the 

equilibrium composition of a complex thermodynamic 

system are due to some of its features. The reliability of the 

calculation results essentially depends on the completeness 

of the thermodynamic database; in particular, the database 

must contain information on the largest possible number of 

substances in the condensed state. When creating a model of 

a thermodynamic system, information from the database is 

usually loaded automatically based on the list of reagents. 

However, not all phases that are automatically included in 

the composition of a model thermodynamic system can be 

present in it in an equilibrium state, and it is not always 

known in advance which phases these are. Therefore, in the 

process of calculations, it is necessary to determine not only 

the chemical but also the phase composition, while the phase 

rule should not be violated. This means that the mathematical 

formulation of the problem may contain constraints in the 

form of inequalities. A model thermodynamic system can 

contain a large number of substances (about 1000), which 

means a large problem dimension, while the matrix of 

indices of chemical elements can be quite large and very 

sparse. In addition, the calculated values of the equilibrium 

concentrations of substances vary in a very wide range: from 

approximately 100 to values of the order of 10-100 moles, 

which is much less than the machine zero.  

Perhaps that is why, despite its long history, the problem 

of calculating the equilibrium composition still attracts the 

attention of many researchers. To date, there are several large 

universal software systems equipped with databases on the 

thermodynamic properties of substances, see, for example, 

[12, 13]. It is possible to calculate the equilibrium using 

Microsoft Excel and Matlab [14, 15]. There is also a freely 

distributed library designed to calculate the equilibrium 

composition [16, 17]. 

However, until now, the ready-made packages for 

solving the constrained optimization problems were very 

rarely used to calculate the equilibrium composition. A 

possible reason for this was the inconvenience of using such 

packages. This paper presents a convenient method for 

determining the phase and chemical compositions of a 

complex thermodynamic system using the free Ipopt 

optimization package [18]. 

 

2. Calculation of the Equilibrium Composition by 

Minimization of the Thermodynamic Potential 

From a computational point of view calculation of the 

equilibrium composition means determining the coordinates 
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of the conditional extremum of a function of several 

variables. The number of variables can vary from two to 

several hundred. 

According to Duhem 's theorem [19], in the absence of 

external fields, the equilibrium state of a thermodynamic 

system whose initial masses are known is uniquely 

characterized by the values of two thermodynamic 

parameters. The most common pairs of parameters are: 

temperature-pressure (T, p), temperature-volume (T, V), 

enthalpy-pressure (H, p) for the combustion in a flow type 

reactor, entropy- pressure (S, p) for the isentropic expansion 

to a given pressure, internal energy-volume (U, V) for the 

combustion at a constant volume, and entropy-volume (S, V) 

for the isentropic expansion to a given volume. 

The formulation of the problem in temperature - pressure 

coordinates is equivalent to determining the coordinates of 

the conditional minimum of the Gibbs energy G  

 

min 𝐺(𝑇, 𝑝, x)
𝑥∈𝑅𝑛

          

𝑇 = 𝑐𝑜𝑛𝑠𝑡, 𝑝 = 𝑐𝑜𝑛𝑠𝑡, 

∑ 𝜈𝑗𝑖

𝑁

𝑖=1

𝑥𝑖 = 𝑏𝑗 , 𝑗 = 1, . . . , 𝑚, 

𝑥𝑖 ≥ 0, 𝑖 = 1, . . . N                                                              (1) 

 

where x is the unknown vector of composition, whose 

components are the numbers of moles of substances, the 

matrix νji defines the number of atoms of a chemical element 

j in the substance i (so-called formula matrix), N is the 

number of substances in the system, m is the number of 

chemical elements, and bj is the amount of a chemical 

element j in the system. 

One can express the Gibbs energy of a multicomponent 

heterogeneous system consisting of Nc single- component 

condensed phases and Nm mixtures as 

 

𝐺(𝑇, 𝑝, 𝑥) = ∑ 𝐺𝑖
𝑁𝑐
𝑖=1 𝑥𝑖 + ∑ [∑ 𝑥𝑖𝑖∈𝐼𝑗

(𝐺𝑖 + R𝑇ln𝑎𝑖)]
𝑁𝑚
𝑗=1   (2)  

 

where ai is the activity of the substance i. In a dimensionless 

form, this relation can be represented as  

 

𝑔(𝑇, 𝑝, 𝑥) = ∑ 𝑔𝑖
𝑁𝑐
𝑖=1 𝑥𝑖 + ∑ [∑ 𝑥𝑖𝑖∈I𝑗

(𝑔𝑖 + ln𝑎𝑖)]
𝑁𝑚
𝑗=1        (3) 

 

where 𝑔 = 𝐺 R𝑇⁄ , 𝑔𝑖 = 𝐺𝑖 R𝑇⁄ . 

The following relation is valid for the model «ideal gas, 

ideal solution, zero volume of condensed phases»  

 

𝑔(𝑇, 𝑝, 𝑥) = ∑ 𝑔𝑖
𝑁𝑐
𝑖=1 𝑥𝑖 + ∑ [∑ 𝑥𝑖𝑖∈I𝑗

(𝑔𝑖 + ln𝑥𝑖) −
𝑁𝑚
𝑗=1

𝑦𝑗ln𝑦𝑗]                                          (4)  

 

where 𝑦𝑗 = ∑ 𝑥𝑖𝑖∈I𝑗
. 

The reduced Gibbs energy for the condensed component 

i is given by 

 

𝑔𝑖 = [𝐻𝑖
∘(𝑇) − 𝑇𝑆𝑖

∘(𝑇)] R𝑇⁄                                (5) 

 

and for gaseous substances by 

 

𝑔𝑖 = [𝐻𝑖
∘(𝑇) − 𝑇𝑆𝑖

∘(𝑇)] R𝑇⁄ + ln(𝑝 𝑝∘⁄ )              (6) 

where 𝑝∘ is the standard pressure, 𝐻𝑖
∘(𝑇), 𝑆𝑖

∘(𝑇) are the 

values of enthalpy and entropy of the substance i in the 

standard state at temperature T. 

The formulation of the equilibrium conditions in the 

temperature-volume coordinates is much less common. In 

this case, to calculate the equilibrium, it is necessary to 

determine the coordinates of the conditional minimum of the 

Helmholtz energy F 

 

min 𝐹(𝑇, 𝑉, x)
𝑥∈𝑅𝑛

           

𝑇 = 𝑐𝑜𝑛𝑠𝑡, 𝑉 = 𝑐𝑜𝑛𝑠𝑡, 

∑ 𝜈𝑗𝑖

𝑁

𝑖=1

𝑥𝑖 = 𝑏𝑗 , 𝑗 = 1, . . . , 𝑚, 

𝑥𝑖 ≥ 0, 𝑖 = 1, . . . 𝑁                                                             (7) 

 

One can express the Helmholtz energy of a 

multicomponent heterogeneous system consisting of Nc 

single-component condensed phases and Nm mixtures as 

 

𝐹(𝑇, 𝑉, 𝑥) = ∑ 𝐺𝑖
𝑁𝑐
𝑖=1 𝑥𝑖 + ∑ ∑ 𝑥𝑖𝑖∈I𝑗

𝑁𝑚
𝑗=1

(𝐺𝑖 + R𝑇ln𝑎𝑖) − 𝑝𝑉

                                                  (8) 

 

Let us assume the mixture with 𝑗 = 1 is in the gas phase. 

The set of indices of substances for this mixture can be 

denoted as Ig.  

 

𝐹(𝑇, 𝑉, 𝑥) = ∑ 𝐹𝑖
∘𝑁𝑐

𝑖=1 𝑥𝑖 + ∑ 𝑥𝑖𝑖∈I𝑔
(𝐹𝑖 + R𝑇ln𝑥𝑖) +

∑ [∑ 𝑥𝑖𝑖∈I𝑗
(𝐹𝑖

∘ + R𝑇ln𝑥𝑖) − R𝑇𝑦𝑗ln𝑦𝑗]
𝑁𝑚
𝑗=2               (9) 

 

or in a dimensionless form 

 

𝑓(𝑇, 𝑉, 𝑥) = ∑ 𝑓𝑖
∘𝑁𝑐

𝑖=1 𝑥𝑖 + ∑ 𝑥𝑖𝑖∈I𝑔
(𝑓𝑖 + ln𝑥𝑖) +

∑ [∑ 𝑥𝑖𝑖∈I𝑗
(𝑓𝑖

∘ + ln𝑥𝑖) − 𝑦𝑗ln𝑦𝑗]
𝑁𝑚
𝑗=2                     (10) 

 

The Helmholtz energy for the condensed component 𝑖 is 

 

𝑓𝑖
∘ = [𝐻𝑖

∘(𝑇) − 𝑇𝑆𝑖
∘(𝑇)] R𝑇⁄                              (11) 

 

for the component 𝑖 in a gas phase 

 

𝑓𝑖 = [𝐻𝑖
∘(𝑇) − 𝑇𝑆𝑖

∘(𝑇)] R𝑇⁄ + ln [R𝑇/(𝑝°𝑉)] − 1   (12) 

 
3. On the Packages JuMP and Ipopt 

An open-source Julia programming language [20] was 

chosen to implement the above given calculation procedures. 

This language was designed for scientific and technical 

calculations. To find the equilibrium composition the 

packages JuMP and Ipopt were used.  

To solve the problem of calculating the equilibrium 

composition an open-source optimization package Ipopt [21] 

was chosen. This package is designed to determine the 

coordinates of the conditional extremum of a non-linear 

function of many variables using the interior point method. 

The algorithm implemented in Ipopt is described in [18]. 

To provide access to a specialized optimization library, 

an algebraic modeling language is often used. Algebraic 

modeling languages (AMLs) are designed to describe 

optimization problems in a form convenient for the 

researcher. Modeling languages themselves do not solve 
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optimization problems; their purpose is to transfer the 

problem formulation to the optimization procedure and 

return the results of optimization in the most appropriate 

way. They are widely used in industry and science. Many of 

these languages are very effective for solving a wide range 

of problems, but they also have some disadvantages. In 

particular, using them the formulation of a problem can be 

very laborious, since in addition to the objective function and 

constraints, it is necessary to provide the gradient of the 

objective function, the Jacobian of the constraints, and the 

Hessian of the Lagrange function. Meanwhile, the most 

tedious part of this work (namely, calculating the gradient of 

the objective function, the Jacobian of the constraints, the 

Hessian of the Lagrange function) can be done by some of 

AMLs, and JuMP is one of them. 

JuMP is an open-source modeling language [22, 23], 

which allows users to formulate a wide range of optimization 

problems using high-level algebraic syntax.  

As it is mentioned in [23] JuMP is similar to such open-

source modeling languages as YALMIP [24], CVX [25] and 

Pyomo [26]. These AMLs are built into general-purpose 

programming languages and are convenient to use. However, 

the low performance of languages such as MATLAB and 

Python does not allow taking full advantage of these AMLs. 

To solve this problem, JuMP was created, being integrated 

with the high-level programming language Julia. 

When solving nonlinear optimization problems, AMLs 

generate procedures for the precise calculation of derivatives 

according to a given algebraic equation, which optimization 

packages can call directly. If necessary, automatic 

differentiation tools can be used to calculate derivatives 

instead of AML. 

The technical tasks that AML must perform can be 

roughly divided into the following parts: load into memory 

the problem entered by the user, generate the input data, 

required by the optimization procedure according to the type 

of problem, transfer the problem into optimization library 

and get back the calculation results. All the tasks are solved 

by the JuMP package, which uses the automatic 

differentiation to evaluate the derivatives of the expressions 

entered by the user.  

In addition to function gradients, optimization 

procedures often use matrices of second derivatives. 

Matrices of this kind can also be computed by the JuMP 

package using the automatic differentiation technique.  

 

4. Implementation of the Equilibrium Calculation 

Algorithm in Julia for (T, p) and (T, V) Problems 

The above equations (1)-(5) were used to create functions 

in the Julia language, designed to calculate the equilibrium 

composition. Gibbs and Helmholtz energies divided by RT 

are used as objective functions. The solution of the 

conditional minimization problem is implemented using the 

packages JuMP and Ipopt.  

The input for the functions includes: the number of 

chemical elements (m), the number of substances (k), the 

number of solutions (ns), the number of pure condensed 

phases (nc), the array of dimensionless values of Gibbs (g) 

or Helmholtz (f) energies of substances, the array of indices 

of substances in phases-solutions (jx), the matrix (A), the 

amounts of chemical elements in the system (b). The 

substances in the list are ordered as follows. First, there are 

condensed substances that form pure phases, then gaseous 

substances, and then components of condensed solutions. 

Each function returns the equilibrium concentrations of 

substances xi (equi_conc), the numbers of moles of phases 

yj (phase_mols) and the chemical potentials of elements 

𝜆𝑗 (lam). In some cases, it is possible to determine the phase 

composition and equilibrium concentrations of substances 

present in the system in small amounts approximately only. 

The code of the functions is given in Figure 1. 

 

 
Figure 1. The code of the functions calc_Gibbs and 

calc_Helmholtz. 
 

 

The function calc_Gibbs can be called as it is shown in 

Figure 2. 

 

 
Figure 2. Example of the calling the calc_Gibbs function. 

 

function calc_Gibbs(m,k,ns,nc,g,jx,A,b) 

model = Model(Ipopt.Optimizer) 

@variable(model, x[1:k] >= 0, start = 1.e-3) 

@variable(model, y[1:ns] >= 0, start = 1.e-3) 

@NLobjective(model, Min, sum(x[i]*g[i] for i in 

1:nc)+sum(sum(x[i]*(log(x[i]) + g[i]) for i in 

jx[1,j]:jx[2,j]) - y[j]*log(y[j]) for j in 

1:ns)) 

for j in 1:ns 

@constraint(model, sum(x[i] for i in 

jx[1,j]:jx[2,j]) == y[j]) 

end 

@constraint(model, con, A'*x .== b) 

JuMP.optimize!(model) 

equi_conc=zeros(k) 

for i in 1:k equi_conc[i]=value(x[i]) end 

phase_mols=zeros(ns) 

for i in 1:ns phase_moles[i]=value(y[i]) end 

lam=zeros(m) 

for i in 1:m lam[i]=shadow_price(con[i]) end 

return equi_conc, phase_mols, lam 

end 

 

function calc_Helmholtz(m,k,ns,nc,f,jx,A,b)  

model = Model(Ipopt.Optimizer) 

@variable(model, x[1:k] >= 0, start = 1.e-3) 

@variable(model, y[1:ns] >= 0, start = 1.e-3) 

@NLobjective(model, Min, sum(x[i]*f[i] for i in 

1:nc)+sum(x[i]*(log(x[i]) + f[i]) for i in 

jx[1,1]:jx[2,1])+sum(sum(x[i]*(log(x[i]) + 

f[i]) for i in jx[1,j]:jx[2,j]) - 

y[j]*log(y[j]) for j in 2:ns)) 

for j in 2:ns 

@constraint(model, sum(x[i] for i in 

jx[1,j]:jx[2,j]) == y[j]) 

end 

@constraint(model, con, A'*x .== b) 

JuMP.optimize!(model) 

@show objective_value(model) 

equi_conc=zeros(k) 

for i in 1:k equi_conc[i]=value(x[i]) end 

phase_moles=zeros(ns) 

for i in 1:ns phase_mols[i]=value(y[i]) end 

lam=zeros(m) 

for i in 1:m lam[i]=shadow_price(con[i]) end 

return equi_conc, phase_mols, lam 

end 

 

equi_conc, phase_mols, lam = 

calc_Gibbs(m,k,ns,nc,g,jx,A,b) 
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5. Implementation of the Algorithm When the 

Temperature is not Set  

It is impossible to calculate the values of Gibbs and 

Helmholtz energies if the temperature is not assigned. In this 

case, it is necessary to find the temperature T as a root of a 

nonlinear equation  

 

𝑍 − ∑ 𝑥𝑖
𝑁
𝑖=1 (𝑇)𝑧𝑖(𝑇) = 0                             (13) 

 

where Z is the value of assigned parameter (e.g., enthalpy, 

entropy, internal energy), xi(T) is the equilibrium 

concentrations related to current value of the temperature, 

and zi(T) is the partial molar value of the parameter 

(enthalpy, entropy, internal energy respectively).  

There are two approaches to solve the problem. The first 

of them involves the use of a special function to determine 

the root of the equation from the Roots.jl package [27]. As 

an example, we provide a function call to calculate the 

composition at given values of pressure and enthalpy, see 

Figure 3, where tmin, tmax are the upper and lower 

bounds of the interval for finding the root, eps is the 

maximum calculation error, find_S is a function that 

calculates the entropy of a thermodynamic system from the 

current values of temperature and chemical composition 

using information about the thermodynamic properties of 

substances. 

 

 
Figure 3. Example of the calling the findrootS function. 

 

The function findrootS is given in figure 4. 

 

 
Figure 4. The code of the functions findrootS. 

 

The second approach is based on the direct use of the 

Newton's method, where the root of the equation is 

determined iteratively (i is the number of iteration) 

 

𝑥𝑖+1 ≈ 𝑥𝑖 − f (𝑥𝑖) f⁄ ′(𝑥𝑖)                      (14) 

 

The temperature is determined by one of the following 

formulae (Cp and Cv are heat capacities): 

 

𝑇𝑖+1 ≈ 𝑇𝑖 + [𝐻 − 𝐻(𝑇𝑖)]/𝐶𝑝(𝑇𝑖)                     (15) 

 

if the pressure is known and the value of enthalpy H is given; 

 

𝑇𝑖+1 ≈ 𝑇𝑖[1 + (𝑆 − 𝑆(𝑇𝑖))/𝐶𝑝(𝑇𝑖)]                    (16) 

 

if the pressure is known and the entropy value S is given; 

 

𝑇𝑖+1 ≈ 𝑇𝑖 + [𝑈 − 𝑈(𝑇𝑖)]/𝐶𝑣(𝑇𝑖)                     (17) 

 

if the volume is known and the value of the internal energy 

U is given; 

 

𝑇𝑖+1 ≈ 𝑇𝑖[1 + (𝑆 − 𝑆(𝑇𝑖))/𝐶𝑣(𝑇𝑖)]                    (18) 

if the volume is known and the entropy value S is given. 

In the case when the temperature is known and the value 

of entropy S is given, the pressure is determined by the 

formula 

 

𝑝𝑖+1 ≈ 𝑝𝑖 + [𝑆 − 𝑆(𝑝𝑖)]/[𝜕𝑆 (𝑝𝑖) 𝜕⁄ 𝑝]𝑇 =      

𝑝𝑖 − [𝑆 − 𝑆(𝑝𝑖)]/[𝜕𝑣 (𝑝𝑖) 𝜕⁄ 𝑇]𝑝                                            (19) 

 

If the pressure is known, the composition is calculated 

using the function calc_Gibbs, if the volume is specified 

the procedure calc_Helmholtz is used. 

 

6. On the Calculation of Thermodynamic Properties of 

Substances in the Standard State 

To calculate the values of the Gibbs and Helmholtz 

energies of substances under standard conditions, it is 

necessary to know the corresponding values of enthalpy and 

entropy. The reference book [28] and the corresponding 

database IVTANTHERMO [29] contain information on the 

thermodynamic properties of pure substances in the form of 

tables and coefficients of the approximating polynomial ai,  

which can be used to determine the values of entropy and 

enthalpy increment at a given temperature by the following 

formulas 

 

S°(T) = a1 + a2(lnX + 1)-a3/X 2 + 2a5X + 3a6X 2 + 4a7X 3    (20) 

 
H°(T) - H°(0) = T(a2 - 2a3/X 2 – a4/X + a5X + 2a6X 2 + 3a7X 3) (21) 

 

here X = T/10000. The standard pressure 
оp in the reference 

book [28] equals 1 atm (101325 Pa). 

The enthalpy value can be calculated as follows  

 
о о о о о о( ) (298.15) ( ) (0) [ (298.15) (0)]fH T H H T H H H=  + − − −   

    (22) 

 

where о (298.15)f H  is the enthalpy of formation of the 

substance at 298.15 K. 

In the NIST Chemistry Webbook [30] the coefficients of 

similar relations are given for approximating the temperature 

dependence of thermodynamic functions in the form  

 

S°(T) = A ln(t) + Bt + Ct2/2 + Dt3/3 − E/(2t2) + G           (23) 

 
H°(T) = H°(298.15) + At + Bt2/2 + Ct3/3 + Dt4/4 − E/t + F – H  

(24) 

 

t = T/1000; A, B, C, D, E, F, G, H are the polynomial 

coefficients, J-mol-K.  The standard pressure
оp  equals 1 

bar. 

When using NASA polynomials [31], the values of 

thermodynamic functions at a given temperature are 

calculated as follows (ai, bi are the coefficients) 

 

S°(T)/R = –a1T –2/2 – a2T –1 + a3 lnT + a4T + a5T 2/2 + 

+ a6T 3/3 + a7T 4/4 + b2                              (25) 

 

H°(T)/RT = –a1T –2 + a2 (lnT )/T + a3 + a4T/2 + a5T 2/3 +  

+ a6T 3/4 + a7T 4/5 + b1/T                              (26) 

 

T = findrootS(find_S, tmin, tmax, 

eps) 

function findrootS(f,a,b,tol) 

T=find_zero(f,[a,b], atol=tol, 

Order1())  

return T 

end 
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7. Results and Discussion 

The algorithm described above was implemented as a set 

of Julia routines available at the GitHub repository [36] 

under the open-source MIT license. The routines are 

presented along with their usage examples, which can be run 

from the command line. As Julia is a multi-platform 

programming language, the examples can be run on different 

operating systems. The present version of the code has no 

GUI interface, although it can easily be created using any of 

Julia GUI packages. Below in this section, we describe some 

of the test cases in more detail. In all cases, the information 

on thermodynamic properties of pure substances from the 

IVTANTHERMO database [29] has been used. 

Calculations were performed for several hundred 

relatively simple and more complex thermodynamic 

systems, namely, for homogeneous gas-phase systems with 

and without ionization, for heterogeneous systems with a gas 

phase and single-component condensed phases, as well as for 

complex heterogeneous thermodynamic systems with a gas 

phase, condensed solutions, and single-component 

condensed phases. All the problems were solved correctly, 

although in some cases it was necessary to resort to scaling. 

For this, the content of chemical elements was recalculated 

to 1 kg. The most difficult problem included a list of 

substances formed by 22 chemical elements, while about 130 

condensed substances and 135 gaseous substances were 

selected from the database and included in the system, from 

which two solutions and several dozen single-component 

phases were formed. The analysis of the calculation results 

includes the following checks: the mass balance equation, 

the Kuhn-Tucker condition, and the Gibbs phase rule. The 

results of all calculations that were performed with 

thermodynamic systems of varying complexity were 

compared with the results of our previous code for 

calculating the equilibrium composition [32], they were 

almost identical. 

Besides, the calculations were performed at conditions, 

where the rank of the material balance constraint matrix is 

less than the number of chemical elements. Usually, it is a 

difficult task for the numerical algorithms. An example 

would be systems with a single reactant, such as H2O or CO2 

at relatively low temperatures, when there is practically only 

one chemical compound in equilibrium, and the presence of 

other reaction products is negligible. The program coped 

with these tasks successfully. 

Figure 5 shows the calculation results for the emergency 

state of a nuclear reactor. Equilibrium concentrations (in 

mol) are presented for dominant substances only. The initial 

composition for this calculation is given in [33]: 

1014.5UO2 + 0.096Np + 2.754Pu + 0.824Ce + 0.215Y + 

0.138%Te + 0.332La + 1.442Zr +0.389Ba + 0.899Ru + 

1.15%Mo + 0.265Pr + 0.421Sr + 0.0385I2 + 0.859Nd + 

0.043%Nb + 0.0064Am + 0.745Cs + 0.166Rh + 0.006Sb + 

0.025Eu + 3725H2O + 3725H2. 

The calculation was carried out at a pressure of 1 bar and 

a temperature of 2000 K. A direct comparison of these results 

with the results of [33] is impossible as the thermodynamic 

database used in [33] is unavailable. Therefore, we present 

these simulation results as an illustration of studying a rather 

complex thermodynamic.  

Table 1 shows the computed values of the performance 

characteristics of rocket fuel liquid oxygen-kerosene 

(O2(L)+RP-1), combustion temperature Tchamber, specific 

impulse in vacuum Ivac, characteristic velocity C*, obtained 

using the CEA code [34] and the RENGINE code, written in 

Julia. The conditions are as follows: the pressure in the 

combustion chamber is 200 bar, nozzle exit pressure is 0.4 

bar, oxidizer/fuel ratio is 3. Some discrepancy in the results 

can be explained by the fact that different thermodynamic 

databases were used in the calculations. To compute the 

characteristics of the propellant, it is necessary to calculate 

the equilibrium composition in the combustion chamber, in 

the throat, and at the exit of the nozzle. The calculation of the 

composition in the combustion chamber is carried out at 

given values of pressure and enthalpy, the other two 

calculations are carried out at given values of pressure and 

entropy [35]. 

The time for preparing the program for calculation is 

about several seconds. It includes the time required to load 

the packages and the database, as well as the time to compile 

the code. The actual calculation time depends on many 

factors, namely the number of phases and substances, the 

type of problem, the type of computer (memory, processor), 

etc. In our calculations the computation time ranged from 

several hundredths to tenths of a second if the temperature 

was given. If the temperature was not set, the calculation 

time could increase to several seconds. Further optimization 

of the code is possible. 

 

 
Figure 5. Equilibrium composition and properties. 

 

In our opinion, the use of an external optimization library 

may be appropriate in cases where high performance does 

not play a crucial role: for research purposes, for testing a 

thermodynamic model, and for educational purposes. The 

small size of the functions code makes them versatile, 

Thermodynamic properties: 

p =  0.1          MPa  

t =  2000         K  

v =  1240.58      cub.m 

s =  1972.06      kJ/K 

h =  -1.38049e+06 kJ 

u =  -1.50455e+06 kJ 

Cp =  428.554     kJ/K 

Cv =  366.525     kJ/K 

Pure condensed phases 

Phase 1:                Ru(c) 0.898991      

Phase 2:                Rh(c) 0.164611      

Phase 3:                Mo(c) 0.310964                 

Phase 4:             Nb2O5(c)

 0.0166375                

Phase 5:              Y2O3(c) 0.107237                 

Phase 6:             Ce2O3(c) 0.411914                 

Phase 7:             Pr2O3(c) 0.13243                

Phase 8:             Nd2O3(c) 0.429459                  

Phase 9:             Eu2O3(c)

 0.0123781     

Phase 10:               UO2(c) 1006.11               

Phase 11:                Np(c)

 0.0831693     

Phase 12:              PuO2(c) 2.75149                  

Phase 13:            BaZrO3(c) 0.333271                

Mixture 1, (gas phase): 

               H2(g) 3741.23       

              H2O(g) 3698.8        

                H(g) 8.59741       

            UO2OH(g) 8.00739       

               OH(g) 0.843116      

             CsOH(g) 0.593765      

          Sr(OH)2(g) 0.405405      

             LaO2(g) 0.331998      

             MoO3(g) 0.301278      

        MoO2(OH)2(g) 0.281665      

            MoOOH(g) 0.145607      

               Cs(g) 0.134998      

               Te(g) 0.1149        

             U2O6(g) 0.11274 
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readable, and ready to use after a short study. The presented 

functions can be easily integrated into a more complex 

algorithm that requires the calculation of the equilibrium 

composition. 

 

Table 1. Computed performance characteristics of rocket 

fuel. 

Program Тchamber, К Ivac, м/с C*, м/с 

CEA 3867.2 3574.8 1781.1 

RENGINE 3871.7 3575.3 1781.5 

 

8. Conclusion 

Two algorithms and their implementations in the Julia 

programming language are presented for calculating the 

equilibrium composition and properties of multicomponent 

heterogeneous thermodynamic systems.  

An algorithm for calculating the equilibrium composition 

for situations with unknown temperature is proposed and 

implemented. 

The test calculations showed a good performance of the 

functions and a relatively high speed of calculations. 

The main advantages of the proposed code are its 

openness, compactness, versatility, and simplicity, which 

allows it to be easily integrated into other applications or 

used in combination with more complex models. 

A few small examples illustrating the possibility of using 

the functions can be found at [36]. 
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Nomenclature: 

AML - algebraic modeling language; 

Cp – heat capacity at constant pressure, J/(mol K); 

Cv – heat capacity at constant volume, J/(mol K); 

F – Helmholtz energy, J/mol; 

G – Gibbs energy, J/mol; 

H – enthalpy, J/mol; 

Ig – indices of substances in the gas phase;  

Ij – indices of substances in the mixture j; 

N – number of substances; 

R – gas constant, J/(mol K);  

S – entropy, J/(mol K); 

T – temperature, K; 

V – volume, m3; 

ai – activity of the substance i; 

bj – amount of a chemical element j in the system, mol; 

f – dimensionless value of Helmholtz energy;  

g – dimensionless value of Gibbs energy; 

m – number of chemical elements in the system; 

p – pressure, MPa; 

xi – amount of substance i, mol; 

yi – number of moles of phase i, mol; 

𝜆𝑗 – chemical potential of the element j, J/mol; 

νji –  number of atoms of a chemical element j in the 

substance i. 
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