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Abstract

In the present paper, we introduce a new weighted Lipschitz class
W(LP(TN)7£1(51)7 s 7£N(SN)) and Zygmund class Z(LP(TN)7§1(31)> s 7§N(3N))
for N € N, which generalizes the classes given in [12,16]. We prove two theorems about
the degree (error) of approximation of functions, conjugate to the N-variable functions
(2m-periodic in each variable) belonging to these classes using the N-multiple matrix
means of their N-multiple conjugate Fourier series. We improve the results of Méricz and
Rhoades [11] and Moéricz and Shi [12], which are given in the form of corollaries.
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1. Introduction

Many investigators [1,3—11,16] have investigated the approximation of 27-periodic func-
tions of two variables belonging to various Lipschitz and Zygmund classes using different
summability techniques. In 1987, Méricz and Rhoades [10] obtained some results on er-
ror of approximation for 27m-periodic functions of two variables belonging to Lip(«), for
a € (0,1], using Norlund means. They also used the same summability method in [11]
to approximate continuous functions g(x,y) belonging to function classes Lip(c, 5) and
Z(a, ). Recently, Rathore and Singh [16] generalized the classes Lip(a, 5) and Z (v, §) by
introducing the classes Lip(a, 8;p) and Z(«, B;p), respectively. They approximated func-
tions of two variables belonging to these classes using almost Euler means of their double
Fourier series. It seems that less research work has been conducted in the direction of ap-
proximating the conjugate functions of two variables using the conjugate double Fourier
series, as evidenced by the limited body of work published in [12-15]. In 1987, Méricz
and Shi [12] approximated conjugate functions of two variables belonging to Lip(«, 5) and
Z(a, B) classes using Cesaro means of conjugate double Fourier series. In 2012, Nigam
and Sharma [14] approximated the conjugate of functions of two variables using double
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matrix means of its double conjugate Fourier series. In 2022, Nigam and Saha [13] ap-
proximated the conjugate of functions of two variables belonging to generalized Holder
space by double Hausdorff means of its double conjugate Fourier series. Recently, Patel
and Vyas [15] approximated the functions, conjugate to the functions of two variables in
mixed Lebegue space using double Karmata means of their double conjugate Fourier series.

2. Results for functions of two variables

Let g(x,y) be a complex valued function, 27-periodic in each variable, integrable over
the two-dimensional torus 72 = (—m,7) X (=7, 7).
The double Fourier series of a function g(z,y) is given by [12]

Z Z Chl ei(karly)’ (21)

k=—o00l=—00
where
Ckl = Cgl g 2 / / S t ks—Ht)dS dt ]{3 leZ.
)

The conjugate series of (2.1) is given by [12]:

o0 o0 .

Z Z (—isign k)(—isignl)cy e’ P (2.2)

k=—o00l=—00

(conjugate with respect to x and y).
The conjugate function of g(z,y), denoted by g(z,y), is defined as [12]

//0 tan 3 tan t{g(i“rs y+1i)—glz—sy+t)

—g(w+s,y—t)—i—g(w—s,y—t)}dsdt. (2.3)

Let {3),;} be the sequence of (k + 1,1 + 1) partial sums corresponding to the conjugate
Fourier series (2.2), which is defined as

ko1
Skl = Z Z (—isignm)(—isignn) cmp ilmatny)
m=0n=0

Define

k1
0? =3" aabyy 5y, k1€ NU{O},
i=0 j=0
where A = (ay;) and B = (b;;) are two lower triangular matrices with non-decreasing
and non-negative entries with respect to ¢ and j such that ap 1 = b1 = 0,4, =
> im0 ki Bir = ZJT‘:() bij,and Ay = By, = 1. If t~;i’lB — s1 as k — oo and [ — oo, then
the conjugate series (2.2) is said to be summable to s; by the double matrix means.
The regularity conditions of the double matrix means are same as given in [14].
Some particular cases of double matrix means are as follows:

(1) If we take aj; = (]Z?C-!ij}’!)! (kiyjfl) and by j = (llﬁsl)! (l+§:{—1)7 where v, > —1, then
double matrix means reduces to double Cesaro means of order v and 4, denoted
by (C,~,d)-means.

(2) If we take v = § = 1 in the above matrix, then (C,~, §)-means reduces to (C, 1, 1)-
means. X

1 .
(3) If we take ak},i = W and bld = W’ then double matrix

means reduces to double Harmonic means, denoted by (H, 1, 1)-means.
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(4) If we take ay; = (1+%11)k( )q]f i and by = m(;)ql{j, where ¢1,q2 > 0, then

double matrix means reduces to double Euler summability of order ¢; and g2,
denoted by (FE, g1, ¢2)-means.

(5) If we take ¢ = g2 = 1 in the above matrix, then (F,qi, g2)-means reduces to
(E,1,1)-means.

(6) If we take ay; = ”;g tand by ; = %, where P, = Zfzopi #0and Q; = Zé‘:o qj #
0, then double matrix means reduces to double Noérlund summability, denoted by
(N7 Pk, ql)_mea‘ns'

The degree (error) of approximation, Ej, of a function g(x,y) € LP(T?) by trigonometric
polynomial Ty ;(x,y) of degree (k + 1) is given by

Ey1(9) = min ||§(z, y) — Tii(2,9)|p-
Ty

The fk’l(:c, y) is called approximant of g(x,y) and this method of approximation is called
the trigonometric Fourier approximation.
The space of Lebesgue functions on 72 is denoted by LP(T?),p > 1 and the norm on it is

defined by
1
lolo ={ 32 || loten)Pdzdy}” (1<p <o) and

l9llc = sup  [g(z,y)|.

—n<ay<n
Let L} (g, s,t) be a weighted integral modulus of continuity of function g, which is defined
as

(g s, t) = sup {|{glz+my+0) — glz,p)}w(s 0, }
In|<s,|0|<t

where w(s,t) is a weight function, defined by
s% sin?(3) + 2 sin? (%)
w(s,?) = \/ 52+ 2
The new weighted Lipschitz class W (LP(T?),£&1(s), & (t)) is introduced as follows:

Definition 2.1 (W (LP(T?),£&1(s), &(t))-class). For positive increasing functions & (s) and
&5(t), the weighted Lipschitz class, denoted by W (LP(T?), &1 (s), £2(t)), is defined as

W(LP(T?),61(s), &2(t)) = {g.€ LP(T?) : Lt ,(9,5) = O(€a(s)) and
V(9:) = 0(&(®)},

where L‘f’x(g, s) and LY (g,t) are partial weighted integral moduli of continuity of function
g, which are defined as

LY .(g,5) = LY (g,5,0) = lstllp{ll{g(ffﬂ% y) —g(z,y)}sin”(3)llp},
n|<

for v > 0,52 +1* #0. (2.4)

and

1y(9,t) = L (g,0,t) = ;lllg{\l{g(m’ y+0)—g(z,y)}sin”(§)|,}-

Definition 2.2 (Lip(«, 5; p)-class [16]). For a, § € (0,1], the Lip(c, B;p)-class is defined
as

Lip(a,Bip) = {g € I/(T%): I, (9.) = O(s") and I, (9.8) = O(t")}
where L} ,(g,s) and L] (g,t) are given by

Lgl),x(g’ 5) = ‘Sl|1<p{||g(l‘ + nay) - g(x’ y)”p}»
n|<s
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and

Ly, (g,t) = ‘atllg{!\g(w, y+0)—g(z,y)lp}

Definition 2.3 (Lip(«, B)-class [12]). For «, 8 € (0, 1], the Lip(«, 5)-class is defined as
Lip(a, B) = {g :T? 5 R: Ly4(g,5) = O(s%)and Ly (g, 1) = O(tﬁ)} ,
where L1 ;(g,s) and Ly 4(g,t) are given by

L1.(g,s) = sup sup{|g(z +n,y) — g(z,y)|},
Y |n|<s

and

L1y(g,t) = sup sup{|g(z,y +0) — g(x, y)[}.
T,y |g|<t

Remark 2.4. If we take u = 0,v = 0,&(s) = 5%, and &(t) = t5, for a, 8 € (0,1] in
Definition 2.1, then W (LP(T?),&1(s),&2(t)) reduces to Lip(a, B;p). If we take p — oo in
Definition 2.2, then Lip(«, 5;p) reduces to Lip(c, ). Then, we can write

Lip(a, B) C Lip(a, 5p) € W(LP(T?), &1(s), &2 (1))
Here, we define the total weighted integral modulus of symmetric smoothness of a function
g by
z¥(g.s.t) = swp {[[o.O)w(s 1), ),

Inl<s,|0]<t
where w(s, t) is weight function, defined as (2.4), and
v(,0) =g@+ny+0)+9@—ny+0)+gx+ny—0)+g(@—ny—0)—4g(z,y).
Now, the new weighted Zygmund class Z(LP(T?),&1(s), £2(t)) is introduced as follows:

Definition 2.5 (Z(LP(T?),&1(s), &(t))-class). For positive increasing functions &;(s) and
&(t), the weighted Zygmund class, denoted by Z(LP(T?),£1(s),£2(t)), is defined as

2(IM(1%),&1(s), (1) = {g€ LP(T?) 1 Z4,(g.5) = O(&a(s)) and
Z5,(9,1) = O(&(1)) }

where Zg, +(9,5) and Z3  (g,t) are partial weighted integral moduli of smoothness of func-
tion g, which are defined as

Z5"(g,s,0 usm
Zi,to.9) = B0 = s (ot ) + oo =) = 20000} s D))
nss
and
v 75" (9,0t -
75, 1) = 2 0 = sup e,y +0) ot - 0) 2000 0) i ()
<t

Definition 2.6 (Z(«, 5;p)-class [16]). For a, 5 € (0,2], the Z(«, §; p)-class is defined as
Z(e, Bip) = {9 € IP(T?) : 28 ,(9,5) = O(s*) and Z5,(g,1) = O(t") },
where Zgyx(g, s) and Zgy(g,t) are given by

7y ,(9,8) = |81|1<p {llg(z 4+ n,y) + 9@ —n,9) — 2g9(z, y)||p},
7]_8

and

73 ,(g,t) = |%1|1<p{||g(m, y+0)+g(z,y—0) —29(z,y)llp}-
<t
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Definition 2.7 (Z(«, 5)-class [12]). For «, 8 € (0,2], the Z(«, B)-class is defined as
Z(e,B) = {g: T > R: Zou(g,5) = O(s*) and Zp (g, 1) = O(") },
where Z3 ;(g,s) and Z3 ,(g,t) are given by

Z,4(9,s) = sup sup{|g(xz +n,y) + g(z — n,y) — 2g9(x,y)|},
Y |n|<s

and

Zay(g,t) = Sup |891|12{\g(x, y+0)+g(z,y—0)—29(x,y)|}.

Remark 2.8. If we take u = 0,v = 0,&(s) = s, and &(t) = P, for a, € (0,2] in
Definition 2.5, then Z(LP(T?),&(s),&2(t)) reduces to Z(a, B;p). If we take p — oo in
Definition 2.6, then Z(«, §;p) reduces to Z(«, ). Then, we can write

Z(a, B) € Z(a, B3p) € Z(LX(T?), &1(5), &2(1)).

It is clear that Zy"(g,s,t), Z4 ,(g,s), and Z¥,(g,t) are increasing functions of s and t,
and they satisfies the following inequalities

2max{Zy (9, 5), Z3,(9: 1)} < Z4"(g,5,t) < 2{Z4 ,(g,5) + Z3,(9, 1)},
and
Zéix(g, s) < 2L’1‘7x(g, 8), Zy,(g9,:t) <2L7 ,(g,1). (2.5)

From (2.5), it is clear that
W(LP(T?), &(s), &(t) € Z(LP(T?), &1 (s), &2(2))-

We also write

k . s l . t
~ A j—i cos(2k —2i+1)5 = bii—j cos(2l — 25 +1)5
Ri(s) = Z 27 sin 5  Silt) = Z 27 sin & ’
i=0 2 =0 2
o :=[1], and 7 := [}] are the integral part of 1 and 1, respectively and

o(s,t) =glx+s,y+t)—gla+sy—t)—glx—sy+t)+g(x—sy—t).

Note 2.9. We can prove the following inequalities:

(5, )] < 2(Zo(g,5) + Zoy9,1), (26)
and y
78 (g.5) 7Y (g.t
|ww¢mpsz(*j?)+2@9)>,mm¢¢o. (27)

Here we need some lemmas to prove our theorems:

Lemma 2.10. [Ry(s)| = O (1), for 0 < s < 77 and [Si(5)| = O (1), for 0 <t < 7.

The proof is given in [17, Lemma 1].

Lemma 2.11. [Ry(s)] = O (242 for i@y < s < and [S)(t)] = O (P14=)

Jorgg <t <m.

The proof is given in [17, Lemma 2].

Theorem 2.12. Let g(x,y) be the conjugate function of 2m-periodic function g(x,y) be-

longing to Z(LP(T?),&1(s),&2(t)). Then the degree (error) of approximation of function
g(x,y) through the double matriz means of its double conjugate Fourier series is given by:

e =gl =0 (k+ e () ) +o 0+ e ().
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provided the positive increasing functions &1(s) and &(t) satisfy following conditions:

</: <i(f1)>pd8>; -0 ((k+ 1)H+1—%§1 (/{j—l)) 7 (2.8)

and -
(/lﬂl (iiEfE)th) " =0 ((l 1) g ( 1>> : (2.9)

Proof. We have

_ _ T cos(k + 3)s cos(l + 3)t
Ski— 0= 1= o(s,t) x ( )t g 2)!
o Jo sin 5 sin §

cos(k + 3)s cos 5 cos § cos(l + )t }d dt
p— S ’

i b oin S - t s
smi sm§ Sln2 Sln2

Then

ko1
~“AB ~ -
tkl - ZZ klbl,J{Sw g}

i=0 j=0

ko , . ¢
cos(2i +1)5 cos(2j +1)5
—// s ZZ k,z'bl,j{ T

0= sin 5 sin 5

t

cos 2@—1—1§cosi cos(27 + 1) cos
_cos(2itl)p cosy  cos(2) )55 | e n
sin § sin 5 51n2 sin 5

_/ / P D) o Ruls) Sit) — cot 3 Sy(t) — cot & Ru(s)}ds d.

Using inequality (2.7), we have

G =3l = [ [ el llp{2r Ruls) Sit) — cot § Sue) - cot § Rus)}dsa

S ARY S ARy Y Y M [T

{27 Ry, (s )S( ) — cothl( ) —cotka( )}dsdt

L T e L) (5

7y ,(9,1)
tl/

(T LT L L)

{(<NR<MSMMMHﬁ“waM&wmwQ
+

’
(51(
( B(s)| \cotg\dsdt)}

= Il—l-IQ—i-Ig—l-Ll) X {J1+J2+J3}, (say). (210)

IN

) {27 Ry (s) Sy(t) — cot 5 Si(t) — cot L Ry(s)}ds dt

ot 3 18,(¢)] ds dt + ()]ctQHSl()\dsdt)
5()

s)| | cot &
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Using Lemma 2.10, second mean value theorem for integrals, and Hélder’s inequality, we
have

LJ = (/ / { ‘R’“ }dsdt> (/ /’“ 15(1) dsdt)l

)

+</0’““/0”"1{|ék<s>| pdsdt>’l’ (/0/0 {W}%a)é
- O<51 (iF7) 6+ (kil);_w @+ (5 ﬁ)
ot (7)™ e () 0o (757) )
ol () ovelii)
0s(3

Using Lemma 2.10, sin(5) > =, ) <1, second mean value theorem for integrals, and
Holder’s inequality, we have

~ ~ B [T (E(s))? 1 [TH1
s = (/0 * /0+ {;&Z} dsdt) (/ i /* 15,(2) dsdt)
kﬂl T D _T T o q

- o((mwgl( )>+0((z+1)V§2 (lil ) (2.12)
Similarly, we can prove

hl=o(tkrvra () w0t e (). e

Using (2.8), second mean value theorem for integrals, Lemma 2.10, 2.11, and Holder’s
inequality, we have

mi = ([T dsdt) (// o 00
</ /l“ ddt) (/ /”1{52 l+1)}ddt>
- ofa(27) (F) w20 (5))

+O<<lil); (kzj—l) (17 (kil) 52( +1> (ZH)UH)V_é)

- 0 <(k: F1rE (k/:l)) +0 ((l F1)Y & (H”J , (2.14)

QI

Ak:k: o

Q=

)
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as Apjp—0 =0 (ﬁ) (with the help of regularity condition of ay ;).
Using (2.8), sin(5) > £, cos(3) < 1, second mean value theorem for integrals, Lemma

2.10, 2.11, and Holder’s inequality, we have

i - </ £

Similarly, we can prove

il =0 ((k+1ra () +o(t+ e (7)) (2.16)

We can easily calculate fgjl, fgjg, and I~3j3 using the similar steps of fgjl, fgjg, and fgjg,
respectively.

Using (2.8), (2.9), Lemma 2.11, second mean value theorem for integrals, and Hoélder’s
inequality, we have

1 1

~ ~ B - p T q

\LJi| = (/ / { S/H‘lltl } dsdt) </ N {Ap.s— g}qudt>
k+1 k+1 Y I¥1

k+1
1

+</77: L{Bzz iyt dsdt>; (/ /7 {wy}qudt>q

(+1) i " % ds i
o(atien) ([, (89)«) (s ()
(k + 1)2_é m \# [ [ ds .
o ((l+1)(k+1)) (k‘—l—l) (/ﬁ p) < L tu+1 dt)

- 0 <(k:+ )& (1@11» +0 ((z+ ( )) (2.17)

as Apr—o = O (m) and By;_, = ) (with the help of regularity conditions of

3

(SIE

ap,; and by ;).

Using (2.8), (2.9), Lemma 2.11, sin(5) > 2, cos(5) < 1, second mean value theorem for

s
T
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integrals, and Holder’s inequality, we have

i = ([ fo ey wa) (I 1, 3 o)
(/ o)) ([7 ] (Y wa)
o) (f A8y ) (2 (), 2)
o a5 (L) ([ sy a)

- ofurra () ro(era () ew

Similarly, we can prove

Ty = O ((k 1) (kL)) 10 ((z 1) 6 (L)) . (2.19)
Combining (2.10 — 2.19), we have

IIfﬁ,}B—E\p=0<( )“€1< )>+O(U+1) &2 (z+1>)

This completes the proof of Theorem 2.12. O
Corollary 2.13. For g € Z(«a, B;p), using double Norlund summability method, we get
O (i +a), a,B € (0,1),
PRI plog = +q)), Be(0,1),a=1,
’ @) pﬁ—i—qllog%), aec(0,1),8=1,

O (prlog = +aqlogZ), a=pB=1,
in view of (k+ 1)pr > 1 and (I1+1)g > 1.

Corollary 2.14. For g € Z(a, ), using double Norlund summability method, we get

Op%+qf)7 a,B € (0,1),
||%VA’B _§|| _ O pklogplk—i_%ﬁ)v 5 S (0, 1),C¥: 1,
BT o+ alee ), ae(0,1),8=1,

O (prlog = +qlogZ), a=pB=1.

Corollary 2.15. For g € Z(«a, 3), using double Cesdaro summability method, we get

)
O W_'_ﬁ)? a,B € (0,1),

O (st 4 Be(0,1),a=1,
0]

0]

() T (5?1)6
1
we + ), e 01).6=1,

log(k+1) | log(I+1) R
G T D )’ a=p=1

+A,B
1ty = 9lleo =

Theorem 2.16. Let g(x,y)
);

he conjugate function of 2m-periodic function g(z,y) be-
longing to W (LP(T?),&(s )

be t
&2(t)). Then the degree (error) of approximation of function
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g(z,y) through the double matriz means of its double conjugate Fourier series is given by:

e gl =0 (e () +o(t+a ().

provided the positive increasing functions £1(s) and &a2(t) satisfy the conditions (2.8) and

(2.9).

Proof. Following the proof of Theorem 2.12 and using inequality (2.5), we have

It = all, = /0/0Hgo(s,t)\|p{27rz?zk<s)§l(t)—coth*l(t)—cotgfzk(s)}dsdt

</ e AH/ [ s /L/>wsuu

{27 Ry, (s) S)(t) — cothl( ) —cotka( )}dsdt

< (UL LT e ) e

ZM(M) {27 Ry.(s) Si(t) — cot § Si(t) — cot & Ry(s)}ds dt

< ([T LT T L) (P

Ly, (g,1)
tl/

- (47 / S L)
{5

(5
( (s)||cot§|dsdt)}

= (I1 + 1, +I3+I4) X {Jl + o +J3}7 (say).

) {27 Ri(s) Si(t) — cot § Sy(t) — cot & Ry(s)}ds dt

Ra(o)| 3100 ds e+ 280 R (9)1 1310 ds e
€1(s

| cot 3| |Sy(t)| ds dt + %(f) | cot 3| |§l(t)\dsdt)
& () =

_l’_

(s)|| cot 5| dsdt

Similarly, following the proof of Theorem 2.12, we get

”51?,}3 —9gllp=0 <(k+1)u§1 (kj—l)) +0 ((l+1) &2 (H—l))

This completes the proof of Theorem 2.16. (|

Corollary 2.17. For g € Lip(«, 8;p), using double Cesdro summability method, we get

O (ge + mr) > @B E0,),

log(k+1) 1 _
”’t";?,lB o gH _ (gk—l-l) + (l+1) ) B € (07 1),0{ - 17
) p— log(l
o (k—l—ll)"‘ + &glg-Jlr)l) ) a € (07 1)75 =1,
log(k+1 log (141
0 Eglc(+1))+ (gl(ﬂ)))v a=pf=1
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Corollary 2.18. For g € Lip(«, ), using double Cesaro summability method, we get

O (e + 7). @B€(0,1),
0 1055?13” + (l+11)/3 ., Be(0,1),a=1,
0)

~AB  ~
Hth — Gllc =

og(l
(k«#ll)a + : (gl(Jr—{)l) ) o€ (07 1)718 =1,

log(k+1) | log(I+1

Remark 2.19. In the results of Méricz and Rhoades [11, Theorem 4 (4.12), Corollary
4 (4.17)], and Moricz and Shi [12, Theorem 3], the error of approximation for functions
g belonging to Z(«, 3) is worse by a factor of “log” in both k and [ if 0 < o, < 1,
and there is an additional “log?” factor in both k and [ if &« = 8 = 1. Moricz and Shi
[12, Theorem 5] improved the error for functions g belonging to Lip(c, 3) and found that
the error contains only “log” factors in both k£ and [ for all 0 < «,8 < 1. In contrast,
our results (Corollary 2.14, 2.15, and 2.18) show that the factor “log” in both k and [
disappears when 0 < «, 8 < 1. Moreover, in the case of @ = = 1, the extra “log?” factor
in both k£ and [ reduces to “log”. Therefore, the results given in this paper are improved
versions of the results given by Moéricz and Rhoades [11], and Méricz and Shi [12].

3. Results for functions of several variables

In this section, we extend the above results for functions of several variables by introduc-
ing the weighted Lipschitz class W (LP(T™N), &1 (s1),...,&n(sn)) and weighted Zygmund
class Z(LP(TN), &1(s1), ..., En(sN)).

Throughout this section, we use the following notations:

o TV = (—7m,7) x (—m,7) x ... x (=7, 7)(N-times), where N € N.

e M =1{1,2,3,...,N —1, N}, where N € N.

® hi,hy--- ,hy € {—1,1}.
Let g(x1,x9,...,2N) be a complex valued function, 27-periodic in each variable, integrable
over the N-dimensional torus T .

The N-multiple Fourier series of a function g(x1,zs,...,2x5) € LP(TY) is given by

g(xl, L2, .. ,.Q?N) ~ Z Z s Z C(wl,zz,...,acN)ei(l1$1+l2x2+m+leN)7 (31)
LEZLIEZ INEZ

where
N-times
—_—
1 T T i(lywy ...+ )
_ —t(l1x1+...FINTN
Claraaan) = (gr)N /_7r'-‘/_7r g(w1,...,zN)e dry... dry.

The conjugate series of (3.1) is given by

N

Z Z Z a1, ) H (—isignly,) e'(tm®m) (3.2)
LeZlyeZ  IN€EL m=1
(conjugate with respect to x1,x2,...,ZN).
The conjugate function of g(x1,x2,...,xy), denoted by g(x1,x2,...,zN), is defined as
N-times
———
(21, 7 - ):1/7r /“ Ag(wl,...,:vN;sl,...,sN)dS
g\xr1,22,..., TN N 0 0 tan Sm ms

m=1 2
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where

Ag(xl)"'ul‘N;Sla )
Z"'Z(hl X - x hn)g(xr + hist, ..., N + hysn).
h h

Here the integrals is taken in the “Principal value" sense at the point 1 = 29 = ... =
zy = 0.

Let {8k, ky} be the sequence of (k1 +1,...,ky + 1) partial sums corresponding to the
conjugate Fourier series (3.2), which is defined as

k1 ko N
Sk, k Z Z Z Clay way H(—zmgnlm)el( om).
11=012=0 N m:]_
Define
FAL- AN TR for k k Nu {0
kh :kN Z Z akl,zl o X a/k:N,’LN)Sh,...,ZN) or 1y-:-y N E { }7
11=0 in=0
where A1 = (aky4,)s--» AN = (agyiy) are N lower triangular matrices with non-
decreasing and non-negative entries with respect to i41,42,...,iy such that ag, 1 =
m A, LA
0, Ak om = 247—0 Qkppsiy, a0 Ag, g = 1, for each m € M. If tkll,...,k:NN — 81 as
ki,...,kn — oo, then the conjugate series (3.2) is said to be summable to s; by the

N-multiple matrix means.

The regularity conditions of the N-multiple matrix means are same as given in [2]. We
can obtain particular cases of N-multiple matrix means by changing (ax,, ;,.), for each
m € M, as given in section 2.

The space of Lebesgue functions on 7% is denoted by LP(T™V),p > 1 and the norm on it
is defined by

RSA

N-times

1 ™ ™
lglly = W/_ [ lgenan)Pday o doy y (1< p < o0),

and HgHOOZ sup |g(l’1,l’2,...,$N)|-
—m<T1,22,...,EN ST
Let L{* "N (g,s1,...,5n) be a weighted integral modulus of continuity of function g,
which is defined as
LYY HN (g, 81,...,8N) =

est {H{g(xl +61,...,an +0N) —g(z1,...,2N) }w (s, .. ,sN)Hp} )

m|<sm
where w(si,...,sy) is a weight function, defined by

_1 82, sin®Hm (Zm)
w(sl,...,sN):\J ) 2 (3.3)

for pu1, pa, ..., pn > 0 and 83 + ...+ s% # 0.
Here, we introduce a new weighted Lipschitz class for N-variables as follows:

Definition 3.1 (W (LP(TV),&1(s1),...,&n(sn))-class). For positive increasing functions
€1(51),&2(52), . .., En(sN), the weighted Lipschitz class, denoted by W (LP(TN), & (s1), ..., En(sN)),
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is defined as
W(LP(TN),&1(s1), - €N (sw)) = {9 € LX(TN) : L1, (9, 51) = O(&1(s1)),
L42, (9. 52) = O(€a(s2)), . I (9, 53) = O(En(sn)) }

where L‘f;m (g, Sm), for each m € M, is partial weighted integral moduli of continuity of
function g, which is defined as

L7, (9, 5m) = onl<. {I{g(@1, .z + Oy an) — gy, .. ) fsinf™ (35|}
m|<sm

Definition 3.2 (Lip(a, ..., an;p)-class). For aq, oo, ...,an € (0,1], the Lip(aq, . .., an; p)-class
is defined as

Lip(ar, .. anip) = {g € L(T™) : LE ,, (g,51) = O(s5),
LF (g, 52) = O(s5), ..., LY (g, 55) = O(s3M) }

where L’ixm (g, $m,), for each m € M, is partial integral moduli of continuity of function g,
which is defined by

Lllj’mm(g, Sm) = |98.}1<p {I{g(z1, .., 2m +Om, ..., 2oN) — g(@1, ..., 2N) Hpt-
m|>Sm

Remark 3.3. Definition 3.2 is an extension of Lip(«, [3; p)-class [16] for function of N-
variables.

Definition 3.4 (Lip(a;,...,an)-class). For aj, as,...,ayn € (0,1], the Lip(aq, . .., ay)-class
is defined as

Lip(ay,...,an) = {g TN SR L1 4, (g,51) = O(s1),
Ll,m(g? 52) = 0(832)7 cee 7L1,1'N(g7 SN) = O(S%N)}v

where Lj ,.(g, $m), for each m € M, is partial moduli of continuity of function g, which
is defined by

L. (9,5m) = sup sup {lg(z1,...,Zm + Om,...,2N) —g(x1,...,2N)|}

218N |0 | <sm

Remark 3.5. Definition 3.4 is an extension of Lip(c, )-class [12] for function of N-
variables.

Remark 3.6. If we take p,, = 0 and &,,(sm) = s&m, am € (0,1], for each m € M in

m

Definition 3.1, then W(LP(T™),&1(s1),...,én(sn)) reduces to Lip(a,...,an;p). If we
take p — oo in Definition 3.2, then Lip(a;,...,an;p) reduces to Lip(ay,...,ayn). Then,
we can write

Lip(ay,...,an) C Lip(ay,...,an;p) C W(Lp(TN),fl(sl), o EN(sN)).

Here, we define the total weighted integral modulus of symmetric smoothness of a function
g by

Zéll,n-:,le(g’ S1y-+4s SN) = Ssup {"77/}(917027 cee ,(9]\[)’(1](81, teey SN)Hp} )

|9m‘§5m
where w(sy,...,sy) is weight function, defined as (3.3), and
¢(91,927-~,9N) = Zzg(xl +91h177$N+9NhN) _2Ng(x17"’7wN)‘
h1 hn

Now, we introduce a new weighted Zygmund class for N-variables as follows:
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Definition 3.7 (Z(LP(TN),&1(s1),...,En(sn))-class). For positive increasing functions
€1(51),€(52), - En(5), the weighted Zygmund class, denoted by Z(LP(TN), £1(s1), ..., En (sx),
is defined as

Z(IP(TV), (1) v (sw)) = {g € LX) 28, (9,51) = O(&i(s1)),
74%,(9. 52) = O(€a(s2).... Z5% (9, 55) = O(én(sm)) |

where Zéf w (9,5m), for each m € M, is partial weighted integral moduli of smoothness of
function g, which is defined by

Zy (9, 5m) = oop {H{D(Om)} sin (552 ) I},

where
dOm) =91, s T+ Omy .oy N)+9(X1, oy Ty — Oy oy 2N) —2g(21, .., zN). (3.4)
Definition 3.8 (Z(aq, ..., an;p)-class). For aq, ag,...,an € (0,2], the Z(a1, ..., an;p)-class
is defined as
Z(on,...anip) = {g € L(TV) : 28 ., (g,51) = O(s5"),

28 1 (9,2) = O(52),..., Z8 . (g, 55) = O(s3) },

where Zgwm (g, $m), for each m € M, is partial integral moduli of smoothness of function

g, which is defined by

Z3 0, (9, 5m) = sup {[|¢(0m)]lp},

‘Hm <sm

where ¢(0,,) is the same as (3.4).

Remark 3.9. Definition 3.8 is an extension of Z(«, 3;p)-class [16] for function of N-
variables.

Definition 3.10 (Z(ay, ..., an)-class). For ai,as,...,ay € (0,2], the Z(aq, ..., ay)-class
is defined as

Z(al, .. .,OZN) = {g TN SR ZZ,m1(ga 81) = 0(8(111)7

227932(97 32) = O<332>7 R ZQ@N (g’ SN) = O(S%N)} )
where Z3 4, (g, sm), for each m € M, is partial moduli of smoothness of function g, which
is defined by
Z2,2,(9,5m) = sup  sup {[¢(0)]},

Tl TN |0 |<Spm

where ¢(6,,,) is the same as (3.4).

Remark 3.11. Definition 3.10 is an extension of Z(«, f)-class [12] for function of N-
variables.

Remark 3.12. If we take p, = 0 and &,(sm) = s, an, € (0,2], for each m € M in

m

Definition 3.7, then Z(LP(TN),&1(s1), ..., En(sn)) reduces to Z(arg, ..., an;p). If we take
p — o0 in in Definition 3.8, then Z(avq,...,an;p) reduces to Z(aq,...,an). Then, we
can write

Z(ah s ,OéN) - Z(ab s ,OéN;p) - Z(LP(TN)a€1(81)7 s 7§N(SN))
Following section 2, we can write

ZE™ (g, 8m) < NLI™ (g, sm), for each m € M. (3.5)

2,Tm 1,xm
From (3.5), we obtain the relationship between the weighted Lipschitz class and Zygmund
class as

W(LP(TN),fl(Sl), NN ,fN(SN)) - Z(LP(TN),gl(Sl), ‘o ,5]\[(8]\[)).
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We also write

@(01,02,...,08) =Y [(h x -+ x hy) g(z1 + 61h1, ..., xN + OnhN)],
h1 hn

km
Rk‘m (Sm) = Z
im=0

of si, for each m € M.

Aoy ke i COS(2Km — 20y, + 1) 52
27 sin 7

, and oy, = [i} , is the integral part

Note 3.13. We can prove the following inequalities:

N
’@(91, 92, Ce ,9]\[)’ S N (Z Zgﬂ;m (g, Sm)> s (36)

m=1

and
a 57; (9,5m)
|(01,02,...,0N8)|p <N Z ’”T , Sm # 0, for each m € M. (3.7)
m=1 Sm

We extend Lemma 2.10 and 2.11 for N-variable as follows:

Lemma 3.14. |Ry, (s;)| = O (i) , for 0 < s, < for each m € M.

I S—
km-+1’

Lemma 3.15. |Ry, (s;)| = O (M) , for g < sm <, for each m € M.

Sm

Theorem 3.16. Let g(x1,x2,...,xN) be the conjugate function of 2mw-periodic function
g(x1,22,...,xN) belonging to Z(LP(TN),&1(s1),...,En(sN)). Then the degree (error) of
approzimation of function g(xi,xa,...,xN) through the N-multiple matriz means of its
N-multiple conjugate Fourier series is given by:

N
A: 7A - — m T
[ grrp—()(Z(kaw sm(ka)),

m=1

provided the positive increasing function &, (sm) satisfies the following condition for each
me M:

[

([ (G we) —o(marrban(h)) 0n

km—+1 Sm

Proof. We have

N times

~ _ 1
Ski,..kn — 9 (277 N / / (01,02,...,0N) X

N s N
cos 22 — cos(kp, + 3
dsi...dsy.
{H SIHSm 1_:[ m} S1 SN

m=1 2

w‘g
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Then

A 5" 7A > Y >
tkll, ,kNN —9= Z Z (ak1,i1 X oo X o in M Sityeine — 9}
31=0 in=0

N-times

—_———
o 4 g 30(915027
= ) A ( Z Z ak1,z1 - X a’kNviN) X

11=0 in=0

! N N - 1
1y H cos(ij, + 5)531 (N Z cot% H cos (i, +.§)sz N

sin 2 : sin 222
j1=1 2 Jj1=1 J2=1 2
J17#72
N . 1 N
cos(ij, | + 5)Sj,_ .
L= Z In 1Sj 21 Jnt H CotSJT" dsy...dsy
7 n— A
jn,1=1 s 2 A]nzlA
]n—l#]n
N times
N
o(6h 92 9N) ;
.. N N—1 s
/ / o (—2m) H Rk (sj,) + (—2m) Z (cot —5-
J1=1 Ji=1
N N N
D ) D . 5j

H Ry, (s,) |+ — Z Ry, (Sju1) H cot == | pdsy...dsy

jo=1 dn-1=1 gn=1

J1#j2 Jn—1#jn

Using (3.7), (3.8), Lemma 3.14, 3.15, and following the proof of Theorem 2.12, we obtain

N
AL AN m T
[ gup—0(2<km+1w sm(kmﬂ)).

m=1
This completes the proof of Theorem 3.16. ([l
Theorem 3.17. Let g(x1,x2,...,xN) be the conjugate function of 2mw-periodic function

g(x1,29,...,2N) belonging to W (LP(TN), &1 (s1),...,En(sN)). Then the degree (error) of
approximation of function g through the N-multiple matriz means of its N-multiple con-
jugate Fourier series is given by:

N
FAlenAn _ G 4
|t kll, N‘QHp—O(Z(km‘i‘l)u Em <km+1>>’

m=1

provided the positive increasing function &y, (sm) satisfies the condition (3.8) for each m €
M.

Proof. Using (3.5), and following the proof of Theorem 2.12 and 3.16, we obtain

A A S -

m=1

This completes the proof of Theorem 3.17. (|

4. Conclusion

In this paper, we introduced a new weighted Lipschitz class and Zygmund class for
N-variables. For N = 2, the weighted Lipschitz class W (LP(T?),&1(s),&(t)) and the
weighted Zygmund class Z(LP(T?),£&1(s), &2(t)) are generalizations of the Lipschitz classes
Lip(a, f) and Lip(c, 5;p) and the Zygmund classes Z(«, 8) and Z(«, 5;p), respectively.
Also, we derive results on the degree (error) of approximation of functions, conjugate to
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the functions of several variables belonging to these weighted Lipschitz class and Zygmund
class, using multiple matrix means (for N > 2). The followings are the particular cases of
the results of this paper :

e Second part of Theorem 4 and corollary 4 of Méricz and Rhoades [11] are particular
cases of our corollary 2.14 and 2.15, respectively.

e Theorem 3 and Theorem 5 of Mdricz and Shi [12] are particular case of our corollary
2.15 and 2.18, respectively.
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