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Abstract: This study focuses on designing PI controllers for time-delay systems using various model order 
reduction techniques to reduce complexity. The stability boundary locus method was used to determine PI 
parameters that stabilizing reduced order models. After the PI parameters have been determined using the 
weighted geometric center method, the calculated controller parameters have been implemented in the 
original system. In this way, the efficiency of the controller design is effectively demonstrated through the 
reduction techniques. In addition, the study investigated the effectiveness of reduction methods with 
increasing time delay and adding an integrator to the system. The importance of these results is that they 
demonstrate the use of model order reduction techniques in the design of controllers for time-delay systems 
and reveal the advantages of these methods. 
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Farklı Model Derecesi İndirgeme Yöntemleri Kullanılarak Zaman Gecikmeli Sistemler için PI 

Kontrolör Tasarımı 
 
Öz: Bu çalışma, karmaşıklığı azaltmak için çeşitli model derecesi azaltma tekniklerini kullanarak zaman 

gecikmeli sistemlerde PI denetleyicileri tasarlamaya odaklanmıştır. Dereceleri azaltılmış modelleri 
stabilize eden PI parametrelerini belirlemek için kararlılık sınır eğrisi metodu kullanılmıştır. PI 
parametreleri ağırlıklı geometrik merkez yöntemi ile elde edildikten sonra, bu kontrolör parametreleri 
orijinal zaman gecikmeli modellerde uygulanmıştır. Böylece, model derecesi azaltma tekniklerinin 
uygulanması yoluyla kontrolör tasarımının verimliliği etkili bir şekilde gösterilmiştir. Ayrıca çalışma, artan 

zaman gecikmesi ve sisteme bir integratör eklenmesi ile model derecesi azaltma yöntemlerinin etkinliğini 

araştırmıştır. Bu bulguların önemi, zaman gecikmeli sistemlerde kontrolör tasarımında model derecesi 

azaltma tekniklerinin kullanımının gösterilerek bu yöntemlerin avantajlarının ortaya konmasıdır. 
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1. INTRODUCTION 

In practice, many systems have a time delay in their structure. The presence of delay can stem 
from its intrinsic properties or from the reuse of system outputs as inputs, as well as the inability 
to synchronize input-output signals. This delay can have a disruptive effect on both the stability 
and transient characteristics of the system (Zhong, 2006). Time-delay systems can also appear as 
models with integrators such as pure integrator plus dead time (PIPDT), double integrator plus 
dead time (DIPDT), etc. Systems with integrators are also frequently encountered in practice. The 
transfer functions of such systems may have one or more poles at the origin of the s-plane. 
Therefore, this type of system can produce unbounded output versus bounded input. It is difficult 
to get a good closed-loop response as this will make the system unstable (Kaya and Peker, 2020). 
For time-delay systems it is very important to account for the exact delay in the control design, 
which if ignored will often result in poor performance or even instability. However, due to the 
complexity of the analysis of such systems, it is difficult to get the exact time-delay in the design 
process. Therefore, approaches such as Padé, Crude, Limit approach, and Maclaurin series 
expansion have been developed in the literature to convert the sDe  exponential function to an 
integer order transfer function during the design stage of the control system. As the degree of 
these approaches increases, the real-time delay is approached. However, since the order of the 
system will increase depending on the degree of approximation, it becomes difficult to solve the 
characteristic equations. The principal purpose of reduced-order modeling of high-order systems 
is the simplicity of reduced-order controller design. In addition, many analytical analysis methods 
can be used for analysis and control of the low-order reduced model of the original system (Garg, 
2017; Krishnamurthy and Seshadri, 1978; Sikander and Prasad, 2017). Therefore, Model Order 
Reduction (MOR) techniques have been developed in the literature to convert high-order systems 
to low-order systems (Chen, Chang, and Han, 1979; Garg, 2017; Gutman, Mannerfelt, and 
Molander, 1982; Komarasamy, Albhonso, and Gurusamy, 2012; Krishnamurthy and Seshadri, 
1978; Parmar, Mukherjee, and Prasad, 2007; Prajapati and Prasad, 2020; Sinha and Pal, 1990).  

In the literature, the problem of controlling time-delay systems has been an important issue. 
Currently, PI and PID controllers are widely utilized in industrial applications owing to their 
simple design and robust performance. Generally, in practical applications, PI controllers are 
preferred more because of the measurement noise caused by the effect of the derivative part 
(Monje, Chen, Vinagre, Xue, and Feliu-Batlle, 2010).  Although the PID controller has only three 
parameters (proportional gain (kp)-integral gain (ki) and derivative gain (kd)), it is not easy to find 
appropriate values of kp, ki and kd without a systematic rule. Many studies have been done, and 
some methods have been developed to determine the appropriate parameters in these popular 
controllers. The most basic known parameter adjustment methods can be listed as Ziegler and 
Nichols (1942), Astrom and Hägglund (1995), Cohen and Coon (1953), and Tyreus and Luyben 
(1992) (Åström and Hägglund, 1995; Cohen and Coon, 1953; Tyreus and Luyben, 1992; Ziegler 

and Nichols, 1942). The tuning methods for these controllers can yield diverse responses in 
various control systems. Important studies are also carried out on obtaining PID tuning formulas 
for time-delay systems (Bagis and Senberger, 2017; Kaya, 2021; Malwatkar, Sonawane, and 
Waghmare, 2009; Onat, 2013; Onat, Hamamci, and Obuz, 2012; Ozyetkin, Onat, and Tan, 2018; 
Özbek, 2018; Özyetkin, Onat, and Tan, 2012; Özyetkin and Toprak, 2016; Pai, Chang, and 

Huang, 2010; Tan, 2005; Tyreus and Luyben, 1992). Closed-loop stability is the most critical 
characteristic that a controller must provide among various design criteria. The stability region, 
which refers to the set of controller parameters that yield a stable closed loop, is a crucial concept 
in analyzing the PI controller (Dogruer and Tan, 2018; Rahimian and Tavazoei, 2012). Therefore, 
it is crucial to calculate the controller parameters that ensure closed-loop stability, and several 
methods have been developed for this purpose. One of these methods is the Stability Boundary 
Locus (SBL) technique, which is a graphical approach to determining the controller parameters 
that stabilize a closed-loop system (Tan, 2005; Tan, Kaya, Yeroglu, and Atherton, 2006). A recent 
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design method for PI control of time-delay systems involves using the stability region’s Weighted 
Geometric Center (WGC), which is obtained from the SBL method (Onat, 2013).  

In this study, PI controllers are designed for time-delay systems using different MOR 
methods. The method presented is summarized as follows: First, the Padé approach is used to 
convert time-delay systems to integer order systems. The orders of integer order systems are 
reduced by Routh stability, Stability equation, Differential equation, and Pole clustering methods. 
The SBL method was used to obtain the PI parameters that stabilize the reduced models. 
Appropriate PI parameters within the stable region were determined by the WGC method. Closed-
loop unit step responses and performance parameters are obtained by applying the designed PI 
controllers to the original time-delay model. The preliminary version of this paper was published 
by Irgan and Tan (2022) in ELECO2022 Symposium (Irgan and Tan, 2022). 

The paper is organized as follows: Section 1 provides information on time-delay systems, 
MOR methods, and controller tuning methods. In Section 2, several MOR methods found in the 
literature are explained. Section 3 mentions the SBL method to determine the PI controller’s stable 
operating region. Section 4 presents the WGC method to obtain the PI parameters. In Section 5, 
different high-order time-delay transfer functions are taken as an example, and simulation results 
are presented. In Section 6, the methods are compared and discussed. 

 
2. MODEL ORDER REDUCTION METHODS 

First and second order systems, which are important in control systems, are used to express 
many real systems and are easy to mathematically analyze. For this reason, MOR methods are 
used to convert high-order systems to low-order systems. Various MOR methods available in the 
literature are pole clustering methods (Garg, 2017; Komarasamy et al., 2012; Prajapati and Prasad, 
2020; Sinha and Pal, 1990), routh stability method (Krishnamurthy and Seshadri, 1978), 
differential equation method (Gutman et al., 1982), stability equation method (Chen et al., 1979) 
and coefficient matching method, etc. In this section, the MOR methods available in the literature 
and used in this study are presented. 

 
2.1. Routh Stability Method 

This method, developed by Krishnamurthy et al. (1978), is based on the Routh stability 
criterion (Krishnamurthy and Seshadri, 1978). By creating the Routh table of the model to be 
reduced, the first two rows of the table are written from the original transfer function, and the 
coefficients of the remaining rows are calculated according to Equation (1): 

 
   2,1 1, 1 1,1 2, 1

1,1

,    a 3 & b 1a a b a a b
ab

a

c c c c
c

c
     
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  
    (1) 

 
Dk(s), which the kth-order reduced polynomial of the original nth-order polynomial, is written 

according to Equation (2) using the first two rows of the table containing the order to be reduced: 
: :
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 

    (2) 

                                    
2.2. Differential Equation Method 

This method relies on the derivative of both the numerator and denominator polynomials 
(Gutman et al., 1982). After the original polynomial of nth-order is changed according to Equation 
(3), it is successively differentiated as in Equation (4) until a model of kth-order is obtained. 
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Dn(s) is the original polynomial of nth-order, dn(s) is the differentiated polynomial, and dk(s) 

is the reduced order differentiated polynomial. The coefficients of the dk(s) polynomial are 
exchanged according to Equation (5) to obtain the normalized reduced order polynomial Dk(s). 

 
1( ) k

k kD s s d
s

 
  

 
 (5) 

2.3. Stability Equation Method 

In this approach developed by Chen T. C. et al. (1979), the reduced model is obtained by 
decreasing the order of stability equations of the high-order transfer function (Chen et al., 1979). 

 
( ) ( ) ( )n e oD s D s D s   (6) 

                                                                
Where, De(s) and Do(s), are the even and odd functions of the original polynomial Dn(s) of 

nth-order, respectively, and are obtained according to Equation (7). These equations are called 
stability equations. The roots of De(s) and Do(s) denote zeros (zi) and poles (pi), respectively. 
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n’=n/2 (if n is even), n’=(n-1)/2 (if n is odd). To reduce the stability equations order’s, non-

dominant zeros/poles are discarded, and the reduced stability equations coefficients are multiplied 
by the value of the discarded zeros/poles (zD/pD) as in Equation (8). In this way, the steady-state 
response of reduced order model remains equivalent to that of the original system. 
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Where, D'e(s) and D'o(s) denote the even and odd functions of the reduced order polynomial, 

respectively. The reduced stability equations are thus represented by Equation (9): 
 

'
1

'
1

( ) ( ) ( ),   

( ) ( ) ( ),   
n e o

n e o

D s D s D s n is even

D s D s D s n is odd



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 (9) 

  
In each zero/pole discarding operation, the order of the model is reduced by 1 order. Accordingly, 
the zero/pole removal process is continued starting from the highest zero/pole value until the 
desired lower-order model is obtained. 
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2.4. Pole Clustering Method 

Prajapati and Prasad (2020) introduced an enhanced Pole clustering algorithm, which is a 
variant of the Pole clustering method proposed by Sinha and Pal (1990) (Prajapati and Prasad, 
2020). In this method, clusters are created with the original model poles. The number of clusters 
should be equal to the order of the model to be reduced. An algorithm is used when placing the 
poles of the original model into the clusters. According to this algorithm, it requires separate 
clustering for real and complex poles while the system is reduced. Also, the poles on the jω-axis 
and the origin of the s-plane are kept in the reduced order model. After the poles of the original 
system in the left half of the s-plane are arranged as −p1,−p2, ..., −pi, ..., −pn ∀ |pi|<|pi+1|, the 
cluster centers are determined by placing them in clusters as shown in Equation (10). 
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Where, c1, c2,.., ck and a, b,.., c denotes the cluster centers and number of poles in these 

clusters, respectively. The value of X can be any natural number selected depending on the 
accuracy required in the reduced order model. If the value of X is greater than 1, it means that the 
cluster center is closer to the dominant pole of that cluster. After calculating the cluster centers, 
the polynomial of the kth-order reduced order model is obtained as in Equation (11): 

    1 2( ) ...k kD s s c s c s c     (11) 
                                              
3. SBL ANALYSIS TO DETERMINE PI CONTROLLERS  

The calculation of the controller parameters that stabilize the closed-loop system in control 
systems is an important issue, and many methods have been developed in the literature for this. 
SBL analysis, one of these methods, depends on the controller parameters (kp, ki) and frequency 
(ω). Since ω can vary from 0 to ∞, it can be calculated with the help of the following equations 
(Özyetkin and Toprak, 2016; Tan, 2005; Tan et al., 2006). The system transfer function to be 
controlled in the control system in Figure 1 is given in Equation (12), and the PI controller transfer 
function is given in Equation (13). The closed-loop characteristic equation of the system Δ(s) is 
obtained as in Equation (14): 
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Figure 1:  

Feedback control system block diagram. 
 
Equation (15) is formed by separating the numerator and denominator equations of G(s) into 

even and odd functions and writing s=jω: 
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Then, the characteristic equation is written as in Equation (16) and Equation (17): 
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Equation (18) is obtained by equating the real and imaginary parts of Δ(jω) to zero. 
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Equations (19)-(20) are obtained by subtracting the unknowns kp and ki from Equation (18). 
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Equations (19) and (20) are solved simultaneously to plot the SBL, l(kp,ki,ω), on the (kp-ki)  

parameter plane in Figure 2. The SBL and ki(0)=0 real root boundary line divides the (kp-ki) plane 
to stable and unstable regions (Tan et al., 2006). Since the real root of Δ(s) in Equation (14) can 
pass through the imaginary axis at s=0, so for ω=0, IΔ=0 and RΔ=0, ki=0 can be found (Onat et 
al., 2012; Tan et al., 2006). The SBL graph is drawn on the (kp, ki) plane by solving the kp(ω)- 
ki(ω) equations for each ω value for ω∈[0, ωmax]. This ωmax value is the ω value that satisfies the 
equation ki(ω)= ki(0)=0. Accordingly, it can be seen from Figure 2 that the (kp, ki) coordinate 
points are in different positions for each ω value. While the points are close to each other at small 
ω values, they are far away at large ω values, and when the ω value increases too much, the points 
are very far away from each other. These points end at the real root boundary (ki=0). Here, the 
number of coordinate points obtained increases and decreases with the step interval of ω (Δω). 
As Δω decreases, the number of samples will increase and therefore the controller parameters will 
be calculated more accurately. 
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Figure 2:  

SBL graph and representation of WGC. 
 
4. CALCULATION OF PI CONTROLLER PARAMETERS WITH WGC METHOD 

The WGC method provides the suitable coordinate point(s) within the stability region 
according to the controller parameters. Since the method is simple to implement, it is a good 
approach to obtain the suitable operating point. The WGC is calculated using the points from the 
SBL. This curve covering the stability region is as shown in Figure 2. It consists of n points with 
coordinates (kp1, ki1), (kp2, ki2),.,(kpn, kin) and (kp1, 0), (kp2, 0),..,(kpn, 0). Accordingly, the kp and ki 
coordinate values of the WGC are calculated using Equation (21) and (22), respectively (Onat, 
2013). 
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5. SIMULATION STUDIES 

In this section, 4th-order with low time-delay, high time-delay, and integrating plus time-delay 
models are examined, respectively. The time-delay terms of the higher order models were first 
transformed into integer-order models with the Padé approach, and then their orders were reduced 

with the MOR methods mentioned in the article. Using the block diagram in Figure 1, SBL 
analysis was performed for the reduced order models, respectively, and appropriate controller 
parameters within the stable region under these SBL graphs were determined by the WGC 
method. Accordingly, PI controllers were designed, and the performance of these PI controllers 
in controlling the original time-delay models was examined. 

 

5.1. Example 1 

The 4th-order transfer function with 0.1s time-delay given in Equation (23) has been selected 
from the literature (Malwatkar et al., 2009). 
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The 6th-order integer order transfer function obtained when the 0.1s time-delay in this system 
is converted to its integer order equivalent with the 2nd-order Padé is given in Equation (24). 
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Using the methods introduced in Section 2, the 4th-order reduced order transfer functions of 

the 6th-order G1pade(s) transfer function are obtained as in Equation (25)- Equation (28). 
 
Differential equation method (Gutman et al., 1982): 
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Routh stability method (Krishnamurthy and Seshadri, 1978): 
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Stability equation method (Chen et al., 1979): 
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Pole clustering method (Prajapati and Prasad, 2020) (for X=10): 
 

 2

14 4 3 2

0.9568 60
1000 5072 9435 8880 4593

1200
( )

s s
s s s

G s
s

 

 


 
 (28) 

 
The unit step responses of the original G1(s) model and reduced order G11(s), G12(s), G13(s), 

and G14(s) models are shown in Figure 3. When the unit step responses in Figure 3 are examined, 
it is concluded that the reduced order models obtained by all methods converge quite well to the 
original model (G1(s)). Although it is seen that the model obtained by the Differential equation 
method (G11(s)) converges less to the original model than the other models, the G12(s), G13(s), and 
G14(s) models obtained by the Routh stability, Stability equation and Pole clustering methods 
converge almost exactly to the original model, respectively. 

SBL analysis was performed for the reduced order G11(s), G12(s), G13(s), and G14(s) models 
and the kp and ki equations related to ω were obtained as in Equation (29)- Equation (36). 

 
For G11(s) model; 
 

10 8 6 4 2

8 6 4 2

8.149 07 6.542 11 8.836 14 2.648 17 6.81 18 6.718 18
810000 3.89 09 7.002 12 5.601 15 1.68 18pk e e e e e e

e e e e
    

   

    
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
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6 4 2
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For G12(s) model; 
10 8 6 4 2

8 6 4 2

1408 1.06 07 1.322 10 3.057 12 2.011 13 8.294 12
4860 8.784 06 6.998 09 2.074 12pk e e e e e

e e e
    

   

    

  



 (31) 

 
6 4 2

4 2

90564 7.978 06 1.183 07
1200 1.44 06i e

k e e  

 

 





 (32) 

 
For G13(s) model; 

10 8 6 4 2

8 6 4 2

1502 1.13 07 1.41 10 3.252 12 2.038 13 8.294 12
4860 8.784 06 6.998 09 2.074 12pk e e e e e

e e e
    

   
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
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k e e  

 

 





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For G14(s) model; 
 

10 8 6 4 2

8 6 4 2

8.759 10 6.151 05 0.0747 2.592 15.29 6.952
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ek e
e e

    

   
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

 
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6 4 2

4 2

0.06226 6.374 10.46
9.155 07 0.001099 1.318ik

e
  

 

 




 
 (36) 

 
For the G11(s), G12(s), G13(s), and G14(s) models, the appropriate kp and ki values were obtained 

with the help of the WGC equations given in (21) and (22). Accordingly, SBL graphs and WGC 
points were obtained for the G11(s), G12(s), G13(s), and G14(s) models, respectively, as in Figure 4. 
The ω values satisfying the ki=0 equation in the SBL graphs of the G11(s), G12(s), G13(s), and 
G14(s) models in Figure 4 were found to be 2.1198, 1.2282, 1.2084 and 1.2916, respectively. After 
obtaining the appropriate kp and ki values in the stability region with the WGC method as in Figure 
4, Gc1(s), Gc2(s), Gc3(s), and Gc4(s) PI controllers were designed, respectively, and these PI 
controllers were applied to the original G1(s) model. 

 

 
Figure 3:  

Unit step responses of original G1(s) model and reduced G11(s), G12(s), G13(s), G14(s) models. 
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Figure 4:  

SBL graphs for reduced order models G11(s), G12(s), G13(s), and G14(s).  
 

 
Figure 5:  

Closed-loop step responses for G1(s) model. 
 

The closed-loop unit step responses obtained are shown in Figure 5 and the performance 
values are shown in Table 1. When the closed-loop unit step responses in Figure 5 and the 
performance values in Table 1 are examined, it is seen that the Gc1(s) controller designed 
according to the G11(s) model obtained by the Differential equation method controls the original 
G1(s) system worse than the other controllers. However, it is seen that Gc2(s), Gc3(s), and Gc4(s) 
controllers designed using G12(s), G13(s), and G14(s) models obtained by Routh stability, Stability 
equation, and Pole clustering methods control the original G1(s) system with good performance. 

According to these values, it is concluded that Routh stability, Stability equation and Pole 
clustering MOR methods can be used effectively while designing the controller in short time-
delay systems. 
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5.2. Example 2 

The 4th-order transfer function with 3s time-delay given in Equation (37) has been selected 
from the literature (Huang, Jeng, and Luo, 2005). 

 
3

2 2 2

1( )
( 10 1)( 1)

sG s e
s s s


  

 (37) 

                                                    
The 6th-order integer order transfer function obtained when the 3s time-delay in this system 

is converted to its integer order equivalent with the 2nd-order Padé is given in Equation (38). 
 

2

2 6 5 4 3 2

2 1.333( )
14 47.33 72 54.33 18 1.333pade

s sG s
s s s s s s

 


     
 (38) 

 
Using the methods introduced in Section 2, the 4th-order reduced order transfer functions of 

the 6th-order G2pade(s) transfer function are obtained as in Equation (39)- Equation (42): 
 
Differential equation method (Gutman et al., 1982): 
 

 
221

2

4 3

30 2 1.333
94.66 432 652 360 39.9

(
9

)
s s

s
G

s s
s

s
 

 


 
 (39) 

 
Routh stability method (Krishnamurthy and Seshadri, 1978): 
 

422

2

3 2

2 1.333
42.19 54.4 53.04 17.56 1.333

( ) s s
s s s s

G s 






  
 (40) 

 
Stability equation method (Chen et al., 1979): 

423

2

3 2

2 1.333
46.15 68.31 54.31 18 1.333

( )G
s s s s

s s s 

 


 
 (41) 

 
Pole clustering method (Prajapati and Prasad, 2020) (for X=10): 
 

 2

24 4 3 2

0.1052 2 1.33
3.142 3.723 1.733 0.1402

3
( )

s
s

s
s s s

G
s








  
 (42) 

 
The unit step responses of the original G2(s) model and reduced order G21(s), G22(s), G23(s), 

and G24(s) models are shown in Figure 6. When the unit step responses in Figure 6 are examined, 
it is concluded that the reduced order models obtained by all methods converge to the original 
model (G2(s)). Although it is seen that the model obtained by the Differential equation method 
(G21(s)) converges less than the other models, the G22(s) and G23(s) models obtained by the Routh 
stability and Stability equation methods, respectively, converge to the original model more. In 
addition, the convergence of the reduced G24 model obtained by the Pole clustering method to the 
original model is less than in Example 1. This is because high value poles move the cluster center 
away from the dominant poles. This reduces the convergence to the original model. Moreover, 
the integer equivalent model obtained with the 2nd-order Padé approach has an inverse response. 
Thus, the reduced order models converge less to the original model.  
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Figure 6:  

Unit step responses of original G2(s) model and reduced G21(s), G22(s), G23(s), G24(s) models. 
 
SBL analysis was performed for the reduced order G21(s), G22(s), G23(s), and G24(s) models 

and the kp and ki equations related to ω were obtained as in Equation (43)- Equation (50). 
 
For G21(s) model; 
 

10 8 6 4 2

8 6 4 2

2.556 06 6.155 07 2.522 08 2.973 08 8.785 07 2.557 06
810000 4.373 06 8.78 06 7.77 06 2.557 06p
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
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6 4 2
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6 04

9
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 
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For G22(s) model; 
 

10 8 6 4 2

8 6 4 2
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
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For G23(s) model; 
 

10 8 6 4 2
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For G24(s) model; 
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Figure 7:  

SBL graphs for reduced order models G21(s), G22(s), G23(s), and G24(s). 
 
 

10 8 6 4 2

8 6 4 2

56.33 332.6 437.7 125.1 3.157
7.332 15.99 13.03 3.157pk     
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
 (50) 

 
After obtaining the kp and ki equations for the G21(s), G22(s), G23(s), and G24(s) models, the 

appropriate kp and ki values were obtained with the help of the WGC equations in Equation (21) 
and (22). Accordingly, SBL graphs and WGC points were obtained for the G21(s), G22(s), G23(s), 
and G24(s) models, respectively, as in Figure 7. In the SBL graphs of the G21(s), G22(s), G23(s), 
and G24(s) models in Figure 7, the ω values satisfying the ki=0 equations were found to be 0.5198, 
0.3854, 0.3690, and 0.4592, respectively.  

The appropriate kp and ki values in the stability region were obtained using the WGC method 
for the G21(s), G22(s), G23(s), and G24(s) models as shown in Figure 7. Then, PI controllers Gc1(s), 
Gc2(s), Gc3(s), and Gc4(s) were designed, respectively, and these PI controllers were applied to the 
original G2(s) model. The closed-loop unit step responses obtained are shown in Figure 8 and the 
performance values are shown in Table 1. 

 

 
Figure 8:  

Closed-loop step responses for G2(s) model. 
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When the closed-loop unit step responses in Figure 8 and the performance values in Table 1 
are examined, it is concluded that the Gc4(s) controller designed according to the G24(s) model 
obtained by the Pole clustering method controls the original G2(s) system worse than the other 
controllers. It is seen that the Gc2(s) and Gc3(s) controllers designed using the G22(s) and G23(s) 

models obtained by Routh stability and Stability equation methods control the original G2(s) 
system with good performance. According to these values, it is concluded that the Routh stability 
and Stability equation MOR methods can be used more effectively than other methods when 
designing the controller in long time-delay systems. 

 
5.3. Example 3 

 
The 4th-order integrating transfer function with 2s time-delay given in Equation (51) has been 

selected from the literature (Peker and Kaya, 2022). 
 

 
2

3
1( )

( 1)(0.5 1) 0.25 1
sG s e

s s s s


  
 (51) 

 
The 6th-order integer order transfer function obtained when the 2s time-delay in this system 

is converted to its integer order equivalent with the 2nd-order Padé is given in Equation (52). 
 

2

3 6 5 4 3 2

3 3( )
0.125 1.25 4.75 8.875 8.25 3pade

s sG s
s s s s s s

 

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 (52) 

 
Using the methods introduced in Section 2, the 4th-order reduced order transfer functions of 

the 6th-order G3pade(s) transfer function are obtained as in Equation (53)- Equation (56). 
 

Differential equation method (Gutman et al., 1982): 
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4 3 231
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s s
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Routh stability method (Krishnamurthy and Seshadri, 1978): 
 

2

4 3 232
3 3
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.95 3
) s s
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Stability equation method (Chen et al., 1979): 
 

2
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3 3
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)
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Pole clustering method (Prajapati and Prasad, 2020) (for X=10): 
 

 2

34 4 3 2

1.116 3
4

3
.116 6.348 3.3

)
48

(
s s

s s s s
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The unit step responses of the original G3(s) model and reduced order G31(s), G32(s), G33(s), 

and G34(s) models are shown in Figure 9. 
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When the unit step responses in Figure 9 are examined, it is concluded that the reduced order 
models obtained by all methods converge to the original model (G3(s)) quite a lot. It is seen that 
the models (G31(s) and G34(s)) obtained by Differential equation and Pole clustering methods 
converge less to the original model than other models. The G32(s) and G33(s) models, obtained by 
the Routh stability and Stability equation, respectively, converge almost exactly to the original 
model. In addition, unstable zeros occur in the integer order equivalent model obtained with Padé. 

This causes an inverse response in the reduced models. SBL analysis was performed for the 
reduced order models G31(s), G32(s), G33(s), and G34(s) and the kp and ki equations related to ω 
were obtained as in Equation (57)- Equation (64). 

 
For G31(s) model; 
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For G32(s) model; 
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For G33(s) model; 
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For G34(s) model; 
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For the G31(s), G32(s), G33(s), and G34(s) models, after obtaining the kp and ki equations related 

to ω, the appropriate kp and ki values were obtained with the help of the WGC equations given in 
(21) and (22). Accordingly, SBL graphs and WGC points were obtained for the G31(s), G32(s), 
G33(s), and G34(s) models, respectively, as in Figure 10. In the SBL graphs of the G31(s), G32(s), 
G33(s), and G34(s) models in Figure 10, the ω values satisfying the ki=0 equations were found to 
be 0.6083, 0.4634, 0.4285, and 0.5555, respectively. 
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Figure 9: 

Unit step responses of original G3(s) model and reduced G31(s), G32(s), G33(s), G34(s) models. 
 

 
Figure 10:  

SBL graphs for reduced order models G31(s), G32(s), G33(s), and G34(s).  
 

After obtaining the appropriate kp and ki values in the stability region with the WGC method 
for the G31(s), G32(s), G33(s), and G34(s) models as in Figure 10, Gc1(s), Gc2(s), Gc3(s), and Gc4(s) 
PI controllers were designed, and these PI controllers were applied to the original G3(s) model. 
The closed-loop unit step responses obtained are shown in Figure 11 and performance values are 
shown in Table 1. When the closed-loop unit step responses in Figure 11 and the performance 
values in Table 1 are examined, it is concluded that the Gc1(s) and Gc4(s) controllers designed 
according to the G31(s) and G34(s) models obtained by the Differential equation and Pole clustering 
methods control the original G3(s) system worse than the other controllers. However, it is seen 
that the Gc2(s) and Gc3(s) controllers designed using the G32(s) and G33(s) models obtained by the 
Routh stability and Stability equation methods control the original G3(s) system with good 
performance. According to these values, it is concluded that the Routh stability and Stability 
equation MOR methods can be used more effectively when designing the controller for long time-
delay with integrating systems. 
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Figure 11:  

Closed-loop step responses for G3(s) model. 
 

Table 1. Parameters and performance values of PI controllers designed according to 
reduced order models for G1(s), G2(s) and G3(s) original models. 

Original 
model 

Parameters 
and 

performance 
values 

Gc1(s) Gc2(s) Gc3(s) Gc4(s) 

G1(s) 

kp 1.4680 0.2131 0.1229 0.1743 
ki 1.6808 0.8184 0.8104 0.8747 

tr (s) 2.2081 5.0091 5.0260 4.4806 
ts (s) 21.9669 12.5325 10.5357 8.1904 

Mp (%) 26.5927 0 0 0 

G2(s) 

kp 1.2938 1.4478 1.2799 0.9764 
ki 0.1671 0.1315 0.1240 0.1749 

tr (s) 6.4369 6.5425 7.3689 7.2578 
ts (s) 44.1019 38.0751 38.0035 69.4744 

Mp (%) 0.2717 0.2164 0.1898 0.2493 

 
G3(s) 

kp 0.0227 0.0133 0.0115 0.0191 
ki 3.0638 3.7608 4.2083 3.2974 

tr (s) 87.6134 44.1682 47.3458 68.7917 
ts (s) 95.5217 65.1760 57.1695 84.2576 

Mp (%) 29.8429 17.1756 13.4963 36.6953 
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6. CONCLUSIONS 
 
In this study, the time-delay models were examined using the Differential equation, Routh 

stability, Stability equation, and Pole clustering MOR methods available in the literature, and 
these models were applied using the Padé approach. The unit step responses of the reduced-order 
models were examined. Accordingly, it is seen that the reduced order models obtained with the 
Routh stability, Stability equation, and Pole clustering methods converge more to the original 
model than the reduced order models obtained with the Differential equation method. However, 
as the time delay value increases, the convergence of the reduced order model obtained with the 
Pole clustering method to the original model decreases. This is because high value poles move 
the cluster center away from the dominant poles. This reduces the convergence of the reduced 
order model to the original time delay model. In addition, the integer order equivalent models 
obtained by the 2nd-order Padé approach have an inverse response due to unstable zeros. Thus, 
the reduced order models converge less to the original model. An integrating with time delay 
system is also studied as an example, and unit step responses are examined. In this case, it was 
seen that the reduced order models obtained by all methods converged quite well to the original 
model. It is observed that the models obtained by the differential equation and pole clustering 
methods converge less with the original model than the other models. On the other hand, the 
models obtained with Routh stability and the Stability equation appear to converge almost exactly 
to the original model. 

Then, SBL analyzes were performed for these reduced-order models, and SBL graphs of the 
PI controller parameters were obtained. After obtaining the kp and ki equations depending on ω 
by the SBL method, the appropriate kp and ki values were obtained by the WGC method, and 
Gc1(s)-Gc4(s) controllers were designed. Closed-loop responses and performance values are 
obtained by applying these controllers to the original time-delay models. According to these 
analyzes, it is seen that the controllers designed using the models obtained by the Routh stability, 
Stability equation, and Pole clustering methods in the short time-delay system control the original 
time-delay system with good performance. However, it is seen that the controller designed 
according to the model obtained by the Differential equation method controls the original time-
delay system worse than the other controllers. In the case of long dead-time and integrating with 
long dead-time models, it is seen that the controllers designed using the models obtained with the 
Routh stability and Stability equation control the original time-delay system with good 
performance, while the controllers obtained by the Differential equation method and Pole 
clustering methods control worse. 

 
CONFLICT OF INTEREST 
 

The authors state that they do not have any known conflicts of interest or shared interests 
with any institutions/organizations or individuals. 

 
AUTHOR CONTRIBUTION 
 

Hilal İRGAN and Nusret TAN are both authors of the study. Irgan contributed to the 
literature review, data collection, data processing and analysis, and writing of the article, while 
Tan contributed to the determination and management of the study’s conceptual and design 
processes, data analysis and interpretation, and critical review and control of the article. All 
authors have given their final approval and take full responsibility for the work. 

 
 
 
 



Uludağ University Journal of The Faculty of Engineering, Vol. 29, No.1, 2024 
 

243 

REFERENCES 
 
1. Åström, K. J. and Hägglund, T. (1995) PID Controllers: Theory, Design, and Tuning (2nd 

ed.), Research Triangle Park, North Carolina: ISA - The Instrumentation, Systems and 
Automation Society.  

2. Bagis, A. and Senberger, H. (2017) ABC algorithm based PID controller design for higher 
order oscillatory systems, Elektronika ir Elektrotechnika, 23(6). 
doi:10.5755/j01.eie.23.6.19688 

3. Chen, T., Chang, C. and Han, K. (1979) Reduction of transfer functions by the stability-
equation method, Journal of the Franklin Institute, 308(4), 389-404. doi:10.1016/0016-
0032(79)90066-8 

4. Cohen, G. and Coon, G. (1953) Theoretical consideration of retarded control, Transactions 
of the American Society of Mechanical Engineers, 75(5), 827-834. doi:10.1115/1.4015451 

5. Dogruer, T. and Tan, N. (2018) Design of PI controller using optimization method in 
fractional order control systems, IFAC-PapersOnLine, 51(4), 841-846. 
doi:10.1016/j.ifacol.2018.06.124 

6. Garg, M. (2017) Model order reduction and approximation analysis for control system 
design,  4th International Conference on Signal Processing, Computing and Control (ISPCC), 
Solan, India, doi:10.1109/ISPCC.2017.8269725 

7. Gutman, P., Mannerfelt, C. and Molander, P. (1982) Contributions to the model reduction 
problem, IEEE Transactions on Automatic Control, 27(2), 454-455. 
doi:10.1109/TAC.1982.1102930 

8. Huang, H.-P., Jeng, J.-C. and Luo, K.-Y. (2005) Auto-tune system using single-run relay 
feedback test and model-based controller design, Journal of process control, 15(6), 713-727. 
doi:10.1016/j.jprocont.2004.11.004 

9. Irgan, H. and Tan, N. (2022), Model Derecesi İndirgeme Yöntemleri Kullanılarak Zaman 

Gecikmeli Sistemlerde Ağırlıklı Geometrik Merkez Yöntemi ile PI Kontrolör Tasarımı 

International Conference on Electrical and Electronics Engineering (ELECO), Bursa, Turkey.  
10. Kaya, I. (2021) Optimal PI–PD controller design for pure integrating processes with time 

delay, Journal of Control, Automation and Electrical Systems, 32(3), 563-572. 
doi:10.1007/s40313-021-00692-2 

11. Kaya, I. and Peker, F. (2020) Optimal I‐PD controller design for setpoint tracking of 

integrating processes with time delay, IET Control Theory & Applications, 14(18), 2814-
2824. doi:10.1049/iet-cta.2019.1378 

12. Komarasamy, R., Albhonso, N. and Gurusamy, G. (2012) Order reduction of linear systems 
with an improved pole clustering, Journal of vibration and control, 18(12), 1876-1885. 
doi:10.1177/1077546311426592 

13. Krishnamurthy, V. and Seshadri, V. (1978) Model reduction using the Routh stability 
criterion, IEEE Transactions on Automatic control, 23(4), 729-731. 
doi:10.1109/TAC.1978.1101805 

14. Malwatkar, G., Sonawane, S. and Waghmare, L. (2009) Tuning PID controllers for higher-
order oscillatory systems with improved performance, ISA transactions, 48(3), 347-353. 
doi:10.1016/j.isatra.2009.04.005 

15. Monje, C. A., Chen, Y., Vinagre, B. M., Xue, D. and Feliu-Batlle, V. (2010) Fractional-order 
systems and controls: fundamentals and applications: Springer Science & Business Media. 
doi:10.1007/978-1-84996-335-0 

16. Onat, C. (2013) A new concept on PI design for time delay systems: weighted geometrical 
center, International Journal of Innovative Computing, information and control, 9(4), 1539-
1556.  



İrgan H., Tan N.: PI Control. Design Time Delay Systems Using Diff. Model Order Reduct. Methds 
 

244 

17. Onat, C., Hamamci, S. E. and Obuz, S. (2012) A practical PI tuning approach for time delay 
systems, IFAC Proceedings Volumes, 45(14), 102-107. doi:10.3182/20120622-3-US-
4021.00027 

18. Ozyetkin, M., Onat, C. and Tan, N. (2018) PID tuning method for integrating processes 
having time delay and inverse response, IFAC-PapersOnLine, 51(4), 274-279. 
doi:10.1016/j.ifacol.2018.06.077 

19. Özbek, N. (2018). Control of time-delayed systems with experimental applications.  
Doctorate thesis, Çukurova University Graduate School of Natural and Applied Sciences, 

Adana.    
20. Özyetkin, M. M., Onat, C. and Tan, N. (2012) Zaman Gecikmeli Sistemler için Denetçi 

Tasarımı,  Otomatik Kontrol Ulusal Toplantısı TOK-2012, Niğde,  
21. Özyetkin, M. M. and Toprak, A. (2016) Ağırlıklı geometrik merkez metodu ile pratik PI-PD 

kontrolör tasarımı, Dicle Üniversitesi Mühendislik Fakültesi Mühendislik Dergisi, 7(3), 595-
605.  

22. Pai, N.-S., Chang, S.-C. and Huang, C.-T. (2010) Tuning PI/PID controllers for integrating 
processes with deadtime and inverse response by simple calculations, Journal of process 
control, 20(6), 726-733. doi:10.1016/j.jprocont.2010.04.003 

23. Parmar, G., Mukherjee, S. and Prasad, R. (2007) Reduced order modelling of linear dynamic 
systems using particle swarm optimized eigen spectrum analysis, International Journal of 
Electrical and Computer Engineering, 1(1), 73-80. doi:10.5281/zenodo.1083457 

24. Peker, F. and Kaya, I. (2022) Maximum sensitivity (Ms)-based I-PD controller design for the 
control of integrating processes with time delay, International Journal of Systems Science, 1-
20. doi:10.1080/00207721.2022.2122759 

25. Prajapati, A. K. and Prasad, R. (2020) A new model reduction method for the linear dynamic 
systems and its application for the design of compensator, Circuits, Systems, and Signal 
Processing, 39(5), 2328-2348. doi:10.1007/s00034-019-01264-1 

26. Rahimian, M. A. and Tavazoei, M. S. (2012) Application of stability region centroids in 
robust PI stabilization of a class of second-order systems, Transactions of the Institute of 
Measurement and Control, 34(4), 487-498. doi:10.1177/0142331211400117 

27. Sikander, A. and Prasad, R. (2017) A new technique for reduced-order modelling of linear 
time-invariant system, IETE Journal of Research, 63(3), 316-324. 
doi:10.1080/03772063.2016.1272436 

28. Sinha, A. and Pal, J. (1990) Simulation based reduced order modelling using a clustering 
technique, Computers & Electrical Engineering, 16(3), 159-169. doi:10.1016/0045-
7906(90)90020-G 

29. Tan, N. (2005) Computation of stabilizing PI and PID controllers for processes with time 
delay, ISA transactions, 44(2), 213-223. doi:10.1016/s0019-0578(07)90000-2 

30. Tan, N., Kaya, I., Yeroglu, C. and Atherton, D. P. (2006) Computation of stabilizing PI and 
PID controllers using the stability boundary locus, Energy Conversion and management, 
47(18-19), 3045-3058. doi:10.1016/j.enconman.2006.03.022 

31. Tyreus, B. D. and Luyben, W. L. (1992) Tuning PI controllers for integrator/dead time 
processes, Industrial & Engineering Chemistry Research, 31(11), 2625-2628. 
doi:10.1021/ie00011a029 

32. Zhong, Q.-C. (2006) Robust control of time-delay systems, London: Springer. doi:10.1007/1-
84628-265-9 

33. Ziegler, J. G. and Nichols, N. B. (1942) Optimum settings for automatic controllers, trans. 
ASME, 64(11). doi:10.1115/1.4019264 


