

37

 DOI: 10.53608/estudambilisim.1318760

(Geliş Tarihi / Received Date: 22.06.2023, Kabul Tarihi/ Accepted Date: 13.10.2023)

(Derleme Makalesi)

Parola Saklama Tekniklerinin Evrimi ve Güncel En İyi Uygulamaları

Tuğberk KOCATEKİN*1

1İstanbul Arel Üniversitesi, Mühendislik-Mimarlık Fakültesi, Yazılım Mühendisliği Bölümü, Büyükçekmece, İstanbul,

ORCID No : http://orcid.org/0000-0001-6171-0135

Anahtar Kelimeler:

Özetleme,

Tuzlama,

Anahtar Türetme Fonksiyonları,

Şifreler

Özet: Parolalar tarihsel olarak erişim kontrolü ve kimlik doğrulama için kilit bir öneme

sahip olmuşlarsa da, güvenlikleri bugünün dijital dünyasında tekrar eden bir endişe olarak

kalmaktadır. Yüksek profilli veri ihlalleri ve güvenlik açıklarıyla kanıtlandığı gibi,

güvenli parola saklama her zaman en üst düzeyde önemli olmasına rağmen, genellikle

başarılı olunamamıştır. Kullanıcılar güçlü ve akılda kalıcı parolalar oluşturma konusunda

uğraşırken, parolaların güvenli bir şekilde saklama sorumluluğu da hizmet sağlayıcılara

düşmektedir. Alternatif kimlik doğrulama mekanizmaları ortaya çıkmış olmasına

rağmen, parola tabanlı kimlik doğrulama yaygın olarak kullanılmaya devam etmektedir.

Araştırmalar, yazılım geliştiricilerin parola saklama güvenliği konusunda yanılgılara ya

da ihmalkarlığa düştüğünü göstermektedir. Bu makale, Crypt ile başlayıp Parola

Özetleme Yarışması’nın kazananı Argon2d’de son bulan parola saklama yöntemlerinin

ilerleyişini izlemektedir. Dört adet modern parola saklama sistemleri hakkında bilgi

vererek bu bilgi boşluğunu kapatmayı, daha iyi uygulamalar için savunma yapmayı ve

güvenliği işlevsellikle birlikte önceliklendirme önemini aydınlatmaya çalışmaktadır.

(Review Article)

Evolution and State of the Art in Password Storage

Keywords:

Hashing,

Salting,

Key Derivation Functions,

Passwords

Abstract: Passwords have historically been pivotal for access control and authentication,

yet their security remains a recurring concern in today’s digital world. As evidenced by

high-profile data breaches, secure password storage has always been paramount, but often

not achieved. While users grapple with the creation of strong, memorable passwords, the

burden also falls on service providers to store these passwords securely. Even though

alternative authentication mechanisms have emerged, password-based authentication

remains pervasive. Surprisingly, studies highlight that developers frequently exhibit

misconceptions or negligence towards password storage security. This paper traces the

progression of password storage methods by explaining four password hashing methods.

By informing of four modern password storage systems, this work seeks to bridge the

knowledge gap, advocating for better practices and illuminating the significance of

prioritizing security alongside functionality.

1. INTRODUCTION

Passwords are widely used for authenticating ourselves to

reach sensitive information. It is known that poor

password practices end up with being exploited and

expose private information about users. Although

password security is just a component of a system’s

security, it is essential [1]. In the recent years, both Sony

and LinkedIn were hacked and user information was

published [2], [3]. In addition, there are local breaches that

are known such as Yemeksepeti [4]. It should be noted

that it is also possible there are some attacks which are not

even known to public. These data breaches have both

monetary and non-monetary effects on companies. For

example, it was calculated that data breach on Sony had a

direct cost exceeding 150M US dollars and combined

with the brand damage, it exceeded 1B US dollars [5], [6].

Choosing a right password is very important for users. If

the user lacks a strong password, attackers can easily

guess the user password regardless of the security of

services. They may have to use and memorize multiple

J ESTUDAM Information, 2023; 4(3): 37-44.

ESTUDAM Bilişim Derg, 2023; 4(3): 37-44.

*Sorumlu Yazar/Corresponding Author: tugberk@gmail.com

http://orcid.org/

Kocatekin, T., Evolution and State of the Art in Password Storag

38

passwords. Password managers are such software which

aims to solve this problem. However, it doesn’t end there.

Service providers and applications also needs to keep their

security in check. It is also known that several

vulnerabilities are found in the service providers [7].

There are difference schemes to use for authentication

other than using passwords, but it is still one of the most

common ways for authentication. There are several

studies showing that developers are still asking a lot of

questions about passwords and password storage online

and password storage is one of the most popular areas in

security [8]. Apart from these, there are a lot of studies

showing that developers are having a hard time to store

passwords in a secure way [9]. Although many developers

are working in a group setting and it would be expected

that it would be more secure, number of developers

working alone cannot be dismissed [10]. It is also safe to

say that developers are not prioritize security [10] and put

functionality above security [11].

Hallett et al. [9] conducted an experiment with 138

developers and asked them to write code to store password

in whatever language they want. Half of them were asked

to write a specification before writing the code and the

other half were asked to write code immediately. It turned

out that although they were confident in themselves, they

failed to store passwords in a secure manner. Only 38%

used hashing algorithms and only 14% used salting while

storing passwords. Naiakshina et al. have several studies

on how developers approach security [11], [12]. First, he

did a study on 20 computer science students and gave the

task of password storage. The outcome of the study was

that students consider functionality before security.

Unless the students are primed to consider security, they

didn’t. Even those who were primed, they could not meet

the standards of the time [11]. Examples above show that

there is a lack of knowledge on password storage. This

study aims to inform users by giving knowledge about

modern password storage systems and their comparisons.

2. MATERIALS AND METHODS

2.1. Types of attacks

Password guessing attacks can be classified into three

categories: brute-force attacks, dictionary attacks and

rainbow tables [13]. Although all of them are explained,

throughout the paper; password cracking refers

specifically to brute force and dictionary attacks.

2.1.1. Brute-force attacks

Brute-force attacks are generally applied to the hashed

values of the passwords to get the original plaintext. These

attacks are CPU-intensive and therefore time-consuming

[14]. In brute-force attacks, the attacker is trying every

possible combination of the available characters. For

example, if a password of eight digits is being attacked,

the attack will start by typing “aaaaaaaa”, “aaaaaaab” and

increment to “zzzzzzzz” [15]. There are also several

configurations to adjust the character set based on the data

set. Attacker can choose the character set as numeric-only,

alphanumeric and alike.

2.1.2. Dictionary attacks

Studies show that users tend to select easy to remember

and predictable passwords [16]. Password leaks show us

that they use common names and surnames, pet names,

band names, sports team names, etc. [17]. These phrases

are combined together alongside with the password

obtained from recent-leaks to create a list of passwords,

also called a dictionary. Instead of trying all possible

combinations of characters, words from these dictionaries

are used to crack passwords. There are four types of

dictionary attacks [13]: i) pure, ii) Probabilistic Context

Free Grammar (PCFG) based [18], iii) Markov model

based [19] and iv) mangling rules [20]. In pure type,

attacker is just using a simple dictionary. In second,

dictionary is constructed by using PCFG theories and it

contains modified passwords with assigned probabilities.

In the third type, Markov based models are applied based

on the probability distribution over sequences of

characters to create new passwords [19]. Finally in the last

type, rules are applied to words in the dictionary and

generate new highly likely passwords such as

combination of multiple words, mixed letter cases and leet

speak [21].

2.1.3. Rainbow tables

Cryptographic hash functions are not reversable.

Therefore, attackers cannot reverse the hash to get the

original password. However, attackers may use

precalculated tables for hash lookup. These tables are

called rainbow tables. When the attacker has access to the

database where the passwords are hashed instead of

plaintext, attacker can use rainbow tables to search for

hash values to find the original password. However, it

should be noted that rainbow tables are not usable for

salted passwords, multiple hashes, or combination of

several hash functions [22].

2.2. Cryptographic hash functions

Generally, a hash function is used to compress (index)

arbitrary-length strings into shorter strings, in order to

achieve O(1) insertion and lookup times for a set of

elements. However, as the amount of data increases,

possibility of having a collision also increases. That is

why regular hash functions are not good candidates to use

in cryptography.

A good hash function has to supply a unique output for

every possible input to minimize the possibility of

collision. Those kind of hash functions are called

collision-resistant hash functions. Designing those are not

as easy as creating a regular hash function, where the only

purpose is to index files as a data structure. However, in

order to use hash functions in cryptography, collision-

Kocatekin, T., Evolution and State of the Art in Password Storag

39

resistance is one of the key goals and therefore they have

a more advanced design [23]. It should be noted that

although every cryptographic hash function is a hash

function, not every hash function can be called as

cryptographic hash function.

According to Katz and Lindell [23], there are three levels

of security when considering a cryptographic hash

function: collision resistance, second pre-image resistance

and preimage resistance. • Collision resistance: It should

be computationally infeasible to find a pair of different

input values (m, m′) to have the same digest. • Second pre-

image resistance: It should be computationally infeasible

to find a message m′, to hash to the same output as

message m. • Pre-image resistance: It should be

computationally infeasible to find a message m′, which

hashes to a specific output, y = H(m). Here, if a hash

function is collision resistant, it is also preimage resistant;

because if there is a second preimage, then that means

there is a colliding pair. A pre-image resistant function is

called a one-way function, since it is difficult to inverse it.

One-way function means that there is no inverse on that

function, meaning that one cannot find message m by

looking at the digest y, where H(m) = y. That is why

cryptographic hash functions are used in several

information security areas such as digital signatures,

message authentication codes, fingerprinting, checksums,

and many more [24], [25], [26].

2.2.1. Salting

It is possible that multiple users can have the same

password. If this is the case, the hashed values are going

to be the same. This can easily be a security problem. It is

also possible that these passwords can be used in other

services. In order to solve this problem, a random value

(salt) is concatenated with the password in the registration

process and the instead of just giving the password to the

hash function, the system now gives salt+password to it

[27]. Therefore, even if multiple users are using the same

password, the hash value would be different because the

password has a unique salt concatenated to it (see Figure

1). In addition to this, since one or more systems are going

to be using different salts, salting makes it impossible for

an attacker to find out whether a person is using the same

password on two or more systems [1]. Salting also

provides security against the usage of rainbow tables [28]

and dictionary attacks [29], [30].

Figure 1. How salt effects the resulting hash

2.2.2. Key derivation functions

Key derivation functions (KDF) aim to produce one or

more secret keys from a secret value such as passwords.

They derive cryptographic keys of desired length from

passwords. They are usually implemented by secure

cryptographic hash functions or HMACs [27]. PBKDF2

[31], scrypt [32] and argon2 [33] are examples to KDFs.

Password-based key derivation functions are mainly used

for these two purposes: hashing passwords and creating

cryptographic keys [34]. Key derivation functions use

secure hashes to provide password hashing and therefore

is strong against key derivation attacks. However, it is

possible for attackers to apply a brute-force attack to get

the output.

2.2.3. Key stretching

Ordinarily, passwords are chosen to be 8 characters (8

bytes). Since it is low-entropy, it is susceptible to

exhaustive search attacks where the attacker is trying

every possible combination until they find the password

[27]. Key stretching is the typical method for protection

of such attacks. The term key stretching was first used by

Kelsey et al. in 1997 [29]. The aim is to increase the

entropy of a low-entropy key by adding bits to it and thus

increase the time required for a brute-force attack. With

key stretching, low-entropy s-bit keys are converted into

a longer s + t bit keys and the difficulty of a brute-force

attack is increased to 2 s+t operations instead of 2 s . It

also makes exhaustive searching more expensive for the

attacker [28]. However, this process also slows down the

user login process, therefore key stretching should be

limited to the user’s tolerance [27].

2.3. Password hashing schemes

The easiest way to store passwords in a database is by

storing them as plaintext. Wilkes [35] observed that

storing passwords as plaintext is insecure. If the database

is compromised, the attacker can see the passwords easily.

In addition, even there is no attacker, people who has

access to database can also see passwords. However, one

was able to find systems storing passwords as plaintext

until the recent years.

2.3.1. Password hashing

The passwords were stored as plaintext in the filesystem

in the early versions of Unix operating systems. This

made it very hard for system administrators to adjust read

and write permissions in order to provide security for

password files. After an incident where the password file

became visible to everyone due to a software design error,

Morris and Thompson decided to solve the password

storage problem. They are credited as the first ones with

the idea of storing passwords by using a one-way function

and storing the output instead of the original password [1].

This algorithm was called Crypt and it was based on Data

Encryption Standard (DES) algorithm.

Crypt was a very important breakthrough for password

storage. Before that, the standard was storing the

passwords as plaintext and it was known to be insecure

[35]. With Crypt, a minimum-security standard for

Kocatekin, T., Evolution and State of the Art in Password Storag

40

password storage emerged. After that, storing hash values

instead of plaintext became a standard [28]. Other

important contributions of Crypt are adopting key

stretching and usage of salts. It is based on DES and works

on encrypting the password instead of hashing it.

However, it is used as a hash function [28].

Password hashing is applying a moderately-hard function

to a password or a password concatenated with salt.

Resulting output is the password hash and is stored in the

database instead of storing the password as plaintext. This

way, even if the database or file containing the password

is compromised, a brute-force attack will be costly for the

attacker [36]. Additional approach can be applying the

hash function multiple times. This does not present any

problem for the user, but it creates a time-consuming task

for the attacker. However, evolution of Moore’s law led

to production of faster gates and units. Nowadays, GPUs

can compute billions of instructions in a second, it has

become easier for attackers to run cryptographic hash

functions such as SHA1, MD5, etc. Mishra and

Janarthanan [37] showed that GPUs accelerate the

cracking process compared to CPU implementation by

launching comprehensive search attacks on password

hashing schemes. Therefore, using cryptographic hash

functions by themselves are not considered as secure

anymore [11].

Figure 2. A very basic example of password storage

2.4. Standards

Since GPU’s are improved a lot and can run billions of

instructions per second [38], one-way hash functions can

be calculated very quickly. For these reasons, new and

more computationally intensive password hashing

schemes are proposed such as PBKDF2 [39], bcrypt [40]

and scrypt [32].

In 2013, because of limited set of solutions, cryptographic

community announced Password Hashing Competition

(PHC) with the purpose of providing a better solution to

password hashing problem [27]. Out of the initial 22

candidates, Argon2 ended up being the winner. NIST

(National Institute of Standards and Technology)

published Digital Identity Guidelines in 2017, with a

recent update in 2020 [41]. In addition to many

recommendations about password creation and

authentication, it also provides guidelines on secure

password hashing. They recommended storing passwords

in such form that they are resilient to offline attacks. For

this reason, they stated that passwords must be salted and

hashed by using a suitable one-way key derivation

function such as PBKDF2 and Balloon [42] using an

approved one-way function such as HMAC [25], and

approved hash function such as SHA3 [43].

2.4.1 bcrypt

Bcrypt was designed by Provos and Mazieres in 1999 as

an improvement to the present password schemes [40]. In

their study, they presented two algorithms, eksblowfish

and bcrypt. Eksblowfish is a block cipher with a

purposefully expensive key schedule, and bcrypt is the

password hash function related to it.

Bcrypt algorithm gets three parameters as input: cost, salt

and key. Cost parameter is used to change the cost of

computation. Salt is a random 128-bit value. It is chosen

randomly in order to create a different output even if the

key is the same. Key is the user-chosen password which

is used to encrypt a specific 192-bit plaintext

(OrpheanBeholderScryDoubt) and it can be up to 72

bytes. It produces a 192-bit hash as output.

Eksblowfish is a variable cost and salted block cipher

based on Blowfish algorithm [40]. Blowfish is a 64-bit

block cipher [44]. It is free and resides in public domain,

where everyone can use freely. Authors replaced the key

setup to be able to control the speed of the function.

Therefore, by adjusting the cost, it can render one of the

most common offline attacks (dictionary attack)

unfeasible. The user can increase the cost as much as they

want as long as it is tolerable by the users.

In short, Bcrypt is a password-hashing function based on

Blowfish cipher. It is not a key derivation function

because the output is fixed. It is the output of encrypting

OrpheanBeholderScryDoubt 64 times using Blowfish

cipher and presents the end result as the hash. It is also

used as the default password hashing scheme for the BSD

operating system.

2.4.2. PBKDF2: Password based key derivation

function 2

First and foremost, PBKDF2 is a key derivation function.

The aim is to provide cryptographic keys for encryption

algorithms by using the user-chosen passwords. PBKDF2

was chosen as a good key derivation function and was

mentioned in NIST documents [45]. It was also used in

Blackberry and IOS systems [46]. It is also used in

TrueCrypt, WPA2, WinRAR [47] and many more.

PBKDF2 introduces CPU-intensive operations which are

intentionally designed to take more time to compute by

applying key stretching [31]. This helps by providing

better resistance for brute-force attacks by increasing the

computation time by iterating the hash of the salted

passwords multiple times [48], [29]. Random salts are

used to provide different keys from the same password

and the iteration count is used to call the pseudorandom

Kocatekin, T., Evolution and State of the Art in Password Storag

41

function. PBKDF2 requires four inputs: a user password

pwd, a salt S, desired output length klen and an iteration

counter c.

NIST recommends the iteration count should be as high

as possible unless there are performance problems, and

stated that 10.000 iterations are the minimum number of

iterations [41]. However, Blocki et al. [49] stated that

PBKDF2-SHA256 with 100.000 iterations is not enough

to provide secure user password storage. They also stated

that memory hard functions like scrypt [32] and argon2

[33] would provide better protection compared to

PBKDF2. In addition, since PBKDF2 does not take

memory into account, it is vulnerable to parallel attacks

[27]. This vulnerability is important to note as processors

are getting faster and cheaper, the number of parallel

attacks is expected to rise.

2.5. Memory hard functions

With constant improvement in technology, we expect that

processors are going to be faster and smaller. Although

using iteration count in key derivation functions helps us

to cope with the increasing speed of processors, attackers

would be able to store more processing power in a given

space. This would allow attackers to have more

parallelism with the same cost. It means that in time, the

iteration count must be increased to keep the information

secure from the attackers because their computation

power will increase. However, not only that, attackers are

going to be able to store more processors in a given space

with the same cost and will have highly parallel circuits.

That means that in time, CPU intensive security will be

disadvantageous to brute-force attacks [34].

Although Kelsey et al. [29] stated that using moderately

large amounts of RAM would make hardware attacks

more expensive, before Percival’s work [34] introducing

a sequential memory-hard algorithm scrypt, such

functions used only constant memory.

2.5.1. scrypt

Scrypt is a password-based key derivation function

created by Colin Percival in 2009 for the Tarsnap online

backup service [32]. He introduced the concept of

memory-hard algorithm and a sequential memory-hard

function.

It was specifically designed to require large amounts of

memory so that it would be costly to perform custom

hardware attacks to it. It is widely used in proof-of-work

schemes for well-known cryptocurrencies such as

Litecoin and Dogecoin [36]. Since it is memory-intensive,

it reduces the risk of brute-force attacks by making them

more expensive computationally. Therefore, it is a good

option for password hashing and therefore used in

password storage.

As input, scrypt takes a passphrase P, a salt S, and

parameters N, p, and dkLen. These are CPU/Memory cost

parameters, parallelization parameter and the output

length in octet respectively. It then generates a derived

key DK with output of length dkLen octets to be used as a

cryptographic key.

First, it uses PBKDF2 with SHA256 and generates p

blocks of octets from the provided password and salt.

Generated blocks are mixed by a mixing function in order

to make the computation expensive. Lastly, the result is

used as salt for another PBKDF2 computation to get the

final result. However, it is vulnerable to attacks such as

cache-timing and garbage-collector attacks [50], [51].

2.5.2. Argon2

Argon2 is the next generation of memory hard hash

function Argon [33]. It became the winner of the

Password Hashing Competition (PHC) out of 24

submitted projects and became the standard for password

storage. It is the state of the art in memory-hard functions

for password storage. It is optimized for x86 architecture

and exploits the cache and memory organization of the

recent Intel and AMD processors [52].

It has two flavors: Argon2d and Argon2i. Argon2i is more

suitable to use for password storage because it uses data-

independent memory access and therefore preferred for

password hashing and password-based key derivation

[53]. Being slower compared to Argon2d helps provide

better security from tradeoff attacks. It is slower because

it uses the memory at a speed of two processor cycles per

byte [54]. Argon2d on the other hand uses data-dependent

memory access and is better suited for applications such

as backend servers and cryptocurrencies, where side-

channel attacks are not a threat [55].

Argon2 has two types of inputs: primary and secondary

inputs. Primary inputs are the message P as password with

length between 0 and 232 − 1 bytes; and a nonce S as a salt

for password hashing with length between 8 and 232−1

bytes. Secondary inputs are not mandatory, but they are

as follows: a degree of parallelism p, tag length ρ, memory

size m, number of iterations t, version number v, a key K,

associated data X and type(mode) as y [52].

3. DISCUSSION AND CONCLUSION

Although there are a lot of downsides to it, passwords are

still the primary way to authenticate users with various

systems. They are usually stored in the database in hashed

form. When attackers compromise the database, they

apply dictionary and brute-force attacks to crack these

hashes. They are often successful because passwords have

low-entropy. With the emergence of Crypt, developers

started to add salt values and use one-way hash functions

to passwords to make them secure against these types of

attacks.

Computers are rapidly advancing, leading to quicker

computation of hash algorithms. To combat this, hash

functions are iterated numerous times. But this isn’t

without its issues. As GPU technology advances, CPU-

intensive calculations aren’t as secure. Attackers migrated

to new architectures such as FPGAs, GPUs, dedicated

Kocatekin, T., Evolution and State of the Art in Password Storag

42

ASIC modules [33]. A solution to this problem was

memory-hard functions [34], like scrypt which require a

large amount of memory and therefore making it costlier

for attackers [49].

Table 1. Comparison of password storage algorithms

Algorithm Iterations Key Length Speed Security Highlights

Bcrypt Configurable

(>= 4,000)

192 Moderate Strong Resistant to rainbow tables

(salt)

Scrypt Configurable Varied Length Slow Very strong Memory hard

Argon2 Configurable Varied Length Slow Very strong Memory hard

PBKDF2 Configurable

(> 10,000)

Varied Length Moderate Strong Very popular and widely used

This research delves into the criticality of safe password

storage and various methods, ranging from less secure to

highly secure techniques. Given NIST’s recommendation

of key derivation functions, we shed light on their purpose

and application in password storage.

Recent studies advocate for the use of memory-hard

functions [11]. However, it’s essential to note that not all

systems are updated regularly. This paper serves as a

guide for those still using older security measures to

protect user credentials. It’s very important for system

admins to regularly upgrade their security, considering the

evolving threats.

To conclude, considering past studies that indicate

developers’ limited understanding of secure password

storage [9, 10, 11], our research aims to educate readers

on the current best practices for password storage.

Ethical Considerations

Compliance with ethical guidelines

Funding

No funding.

Conflict of interest

There is no conflict of interest.

REFERENCES

[1] Morris, R., Thompson, K. 1979. Password Security:

A Case History, Communications of the ACM, 22(

11), 594-597.

[2] Goode, S., Hoehle, H., Venkatesh, V., Brown, SA.

2017. User Compensation as a Data Breach Recovery

Action, MIS Quarterly, 41, 703–A16.

[3] Gibson, B., Townes, S., Lewis, D., Bhunia, S. 2021.

Vulnerability in Massive Api Scraping: 2021 linkedin

data breach, 2021 International Conference on

Computational Science and Computational

Intelligence (CSCI).

[4] webteknohaber. 2021. Yemeksepeti Hacklendi:

Kullanıcıların Hesap Bilgileri Ele Geçirildi, 27 Mart

2021. Available:

https://www.webtekno.com/yemeksepeti-kullanici-

veri-tabani-siber-saldiri-h108027.html.

[5] Hachman, M. 2011. PlayStation Hack to Cost Sony

$171M; Quake Costs Far Higher, 23 May 2011.

[Çevrimiçi]. Available:

https://news.yahoo.com/playstation-hack-cost-sony-

171m-quake-costs-far-163824525.html?guccounter=1.

[6] Sherr, I., Wingfield, N. 2011. Play by Play: Sony's

Struggles on Breach, 7 May 2011. [Çevrimiçi].

Available:

https://www.wsj.com/articles/SB10001424052748704

810504576307322759299038.

[7] Hatzivasilis, G. 2020. Password Management: How

Secure Is Your Login Process?, International

Workshop on Model-Driven Simulation and Training

Environments for Cybersecurity.

[8] Yang, X.-L., Lo, D., Xia, X., Wan, Z.-Y., Sun, J.-L.

2016. What Security Questions Do Developers Ask? A

Large-Scale Study of Stack Overflow Posts, Journal of

Computer Science and Technology, 31, 910–924.

[9] Hallett, J. , Patnaik, N., Shreeve, B., Rashid, A. 2021.

“Do this! Do that!, And Nothing Will Happen” Do

Specifications Lead to Securely Stored Passwords?,

2021 IEEE/ACM 43rd International Conference on

Software Engineering (ICSE).

[10] Van Der Linden, D., Anthonysamy, P., Nuseibeh, B.,

Tun, T. T., Petre, M., Levine, M., Towse, J., Rashid, A.

2020. Schrödinger's Security: Opening the Box on App

Developers' Security Rationale, Proceedings of the

ACM/IEEE 42nd International Conference on Software

Engineering, 2020.

[11] Naiakshina, A., Danilova, A., Tiefenau, C. , Herzog,

M., Dechand, M., Smith, M. 2017. Why do Developers

Get Password Storage Wrong? A Qualitative Usability

Study, Proceedings of the 2017 ACM SIGSAC

Conference on Computer and Communications

Security, 2017.

[12] Naiakshina, A., Danilova, A., Gerlitz, E., Von

Zezschwitz, E., Smith, M. 2019. If You Want, I Can

Store The Encrypted Password a Password-Storage

Field Study with Freelance Developers, Proceedings of

the 2019 CHI Conference on Human Factors in

Computing Systems, 2019.

[13] Christoforos Ntantogian, S. M. C. X. 2019. Evaluation

of Password Hashing Schemes in Open Source Web

Platforms, Computers & Security, 206-24.

Kocatekin, T., Evolution and State of the Art in Password Storag

43

[14] Raza, M., Iqbal, M., Sharif, M., Haider, W. 2012. A

survey Of Password Attacks and Comparative Analysis

on Methods for Secure Authentication, World Applied

Sciences Journal ,19(4), 439-444.

[15] Kyaw, A. K., Sioquim, F., Joseph, J. 2015. Dictionary

attack on Wordpress: Security and Forensic Analysis,

2015 Second International Conference on Information

Security and Cyber Forensics (InfoSec), Cape Town,

2015.

[16] Bošnjak, L., Sreš, J., Brumen, B. 2018. Brute-force and

Dictionary Attack On Hashed Real-World Passwords,

2018 41st İnternational Convention on Information and

Communication Technology, Electronics And

Microelectronics (Mipro), Opatija, 2018.

[17] Zviran, M., Haga, W. J. 1999. Password Security: an

Empirical Study, Journal of Management Information

Systems, 15(4), 161-185.

[18] Matt Weir, S. A. B. d. M. B. G. 2009. Password

Cracking Using Probabilistic Context-Free Grammars,

30th IEEE Symposium on Security and Privacy, 2009.

[19] Arvin Narayanan, V. S. 2005. Fast Dictionary Attacks

on Passwords Using TimeSpace Tradeoff, Proceedings

of the 12th ACM Conference on Computer and

Communications Security, Virginia, 2005.

[20] Marechal, S. 2012. Automatic Mangling Rules

Generation, December 2012. [Çevrimiçi]. Available:

https://www.openwall.com/presentations/Passwords12

-Mangling-Rules-Generation/Passwords12-Mangling-

Rules-Generation.pdf. [Erişildi: 25 09 2023].

[21] Briland, H., Paolo, G., Giuseppe, A., Fernando, P.-

C.2017. PassGAN: A Deep Learning Approach for

Password Guessing, CoRR, 2017.

[22] Josef Horálek, F. H. O. H. L. P. V. S. 2017. Analysis of

the Use of Rainbow Tables to Break Hash, Journal of

Intelligent & Fuzzy Systems, 1523-1534.

[23] Katz, J., Lindell, Y. 2020. Introduction to Modern

Cryptography, CRC press, 2020.

[24] Merkle, R. C. 1987. A Digital Signature Based on a

Conventional Encryption Function, Conference on the

theory and application of cryptographic techniques.

[25] Krawczyk, H., Bellare, M., Canetti, R. 1997. HMAC:

Keyed-hashing for Message Authentication.

[26] Oostveen, J., Kalker, T., Haitsma, J. 2002. Feature

Extraction and A Database Strategy for Video

Fingerprinting, Recent Advances in Visual Information

Systems: 5th International Conference, VISUAL 2002

Hsin Chu, Taiwan, March 11–13, 2002 Proceedings 5,

2002.

[27] Hatzivasilis, G., Papaefstathiou, I., Manifavas, C. 2015.

Password Hashing Competition-Survey and

Benchmark, Cryptology ePrint Archive.

[28] Forler, C., Lucks, S., Wenzel, J. 2013. Catena: A

Memory-Consuming Password-Scrambling

Framework, Cryptology ePrint Archive.

[29] Kelsey, J., Schneier, B., Hall, C., Wagner, D. 1997.

Secure Applications of Low-Entropy Keys,

International Workshop on Information Security.

[30] Abadi, M., Lomas, T. M., Needham, R. 1997.

Strengthening passwords, Digital Equipment

Corporation Systems Research Center [SRC].

[31] Ertaul, L., Kaur, M., Gudise, V. A. K. R. 2016.

Implementation and Performance Analysis of Pbkdf2,

Bcrypt, Scrypt Algorithms, Proceedings of the

international conference on wireless networks (ICWN).

[32] Percival, C., Josefsson, S. 2016. The Scrypt Password-

Based Key Derivation Function.

[33] Biryukov, A., Dinu, D., Khovratovich, D. 2015. Argon

2 : The Memory-Hard Function For Password Hashing

and Other Applications.

[34] Percival, C. 2009. Stronger Key Derivation Via

Sequential Memory-Hard Functions, BSDCan.

[35] Wilkes, M.V. 1968. Time-Sharing Computer Systems.

MacDonald Computer Monographs, American Elsevier

Publishing Company.

[36] Alwen, J., Chen, B., Pietrzak, K., Reyzin, L., Tessaro,

S. 2017. Scrypt is Maximally Memory-Hard, Annual

International Conference on the Theory and

Applications of Cryptographic Techniques.

[37] Mishra, J. K., Janarthanan, M. 2022. GPU-based

Security Of Password Hashing İn Cloud Computing,

Materials Today: Proceedings, 60, 939–944.

[38] Orman, H. 2013. Twelve Random Characters:

Passwords İn The Era Of Massive Parallelism, IEEE

Internet Computing, 17, 91–94.

[39] Kaliski, B. 2000. PKCS# 5: Password-based

cryptography Specification version 2.0.

[40] Provos, N., Mazieres, D. 1999. A future-Adaptable

Password Scheme., USENIX Annual Technical

Conference, FREENIX Track.

[41] Grassi, P., Garcia, M., Fenton, J. 2020. Digital İdentity

Guidelines.

[42] Boneh, D., Corrigan-Gibbs, H., Schechter, S. 2016.

Balloon Hashing: A Memory-Hard Function Providing

Provable Protection Against Sequential Attacks,

Advances in Cryptology–ASIACRYPT 2016: 22nd

International Conference on the Theory and

Application of Cryptology and Information Security,

Hanoi, Vietnam, December 4-8, 2016, Proceedings,

Part I 22.

[43] Kelsey, J., Chang, S.-j., Perlner, R. 2016. SHA-3

Derived Functions: cSHAKE, KMAC, TupleHash, and

ParallelHash, NIST special publication, 800, 185.

[44] Schneier, B. 1993. Description of a New Variable-

Length Key, 64-Bit Block Cipher (Blowfish),

International Workshop on Fast Software Encryption.

[45] Turan, M. S., Barker, E., Burr, W., Chen, L. 2010.

Recommendation for Password-Based Key Derivation,

NIST special publication, 800, 132.

[46] Smartphone forensics: cracking blackberry.

[47] Chen, J., Zhou, J., Pan, K., Lin, S., Zhao, C., Li, X.

2013. The Security of Key Derivation Functions in

WINRAR., J. Comput., 8, 2262–2268.

[48] Visconti, A., Mosnáček, O., Brož, M., Matyáš, V. 2019.

Examining PBKDF2 security margin—Case study of

Kocatekin, T., Evolution and State of the Art in Password Storag

44

LUKS, Journal of Information Security and

Applications, 46, 296–306.

[49] Blocki, J., Harsha, B., Zhou, S. 2018. On the economics

Of Offline Password Cracking, 2018 IEEE Symposium

on Security and Privacy (SP).

[50] Forler, C., Lucks, S., Wenzel, J. 2014. Memory-

Demanding Password Scrambling, Advances in

Cryptology – ASIACRYPT 2014, Berlin.

[51] Forler, C., List, E., Lucks, S., Wenzel, J. 2015.

Overview of the Candidates for the Password Hashing

Competition, Technology and Practice of Passwords,

Cham.

[52] Polasek, V. 2019. Argon2 Security Margin for Disk

Encryption Passwords.

[53] Biryukov, A., Dinu, D., Khovratovich, D. 2016.

Argon2: New Generation Of Memory-Hard Functions

For Password Hashing and Other Applications, 2016

IEEE European Symposium on Security and Privacy

(EuroS&P).

[54] Duka, M. 2020. Elliptic-curve Cryptography (ECC)

And Argon2 Algorıthm in Php Using Openssl and

Sodium Libraries, Informatyka, Automatyka, Pomiary

w Gospodarce i Ochronie Środowiska, 10, 91-94.

[55] Wetzels, J. 2016. Open Sesame: The Password Hashing

Competition And Argon2.

