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and have been developed for use in many areas. Such vehicles are capable of vertical take-off and landing and are 

used in various applications. To operate a quad-rotor aircraft efficiently and safely, fundamental issues such as math-

ematical modeling, control, and state estimation need to be studied. Mathematical modeling involves creating a ho-

listic model of the various subsystems of the aircraft including aerodynamic, kinematic, dynamic and control systems. 

The control system is a mechanism used for the aircraft to perform the desired movements. State estimation tech-

niques are used to obtain and predict information about the state of the aircraft. This study includes position control 

using a trajectory generation algorithm. Attitude estimation of the quad-rotor is improved with the Explicit Comple-

mentary Filter (ECF) and the state estimations is improved with the Extended Kalman Filter (EKF). Different from 

other studies, the results are obtained by feeding the model with a state estimation filter. The performances of the 

filters used for state estimation are compared. 
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1. Introduction 

Recently, unmanned aerial vehicles (UAVs) have been ever more attracting the attention of researchers 

and different kinds of industries due to their versatility, flexibility, low research and development costs (Pines 

& Bohorquez, 2012; Yoon & Doh, 2022).  

 Navigating a mobile platform from its initial point to a desired destination is a complex challenge in the field 

of robotics. A technique to produce time-optimal trajectories with the help of parametric functions was pre-

sented in (Bouktir, Haddad & Chettibi, 2008). The vehicle's movement along a path was governed by a con-

tinuously increasing function. Their numerical approach was designed to work in cases involving minimum 

time transfers problems. To move a quad-rotor as quickly as feasible from an initial to a final position, (Cham-

seddine,  Li,  Zhang,  Rabbath & Theilliol, 2012) suggested a flatness-based trajectory planner. They used a 

Sliding Mode Controller (SMC) and a Linear Quadratic Regulator (LQR). Implementing the controller using 

the linearized model of the vehicle resulted in effectively constraining the roll and pitch angles, demonstrating 

the success of this approach. 

The researchers in (Hoffmann, Waslander & Tomlin, 2008) developed a tracking controller that linked way-

points using line segments at a designated speed. A trajectory tracking system built on model predictive control 

was presented in (Castillo, Moreno & Valavanis, 2007). Their controller was tested on a miniature helicopter 

to track the waypoints. To decrease the computational cost the control was tested on a simplified vehicle model. 
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The proportional-integral-derivative (PID) position and velocity tracking controllers and the predictive con-

troller were compared in their research. An optimization-based framework of excavation trajectory generation 

was developed in (Yang, Long, Song, Pan & Zhang, 2021), various optimizing criteria for different terrains 

shapes were studied. 

One of the traditional problems in quad-rotor is dealing with state estimation. There are literature surveys on 

filtering techniques to estimate the parameters involved in state estimation. The Kalman filter and the Com-

plementary filter are frequently employed methods in linear systems due to their frequency filtering character-

istics (Mahony, Hamel & Ptlimlin, 2008). The Kalman filter is the subject of numerous studies (Hetenyi, Gatzy 

& Blazovics, 2016; Beck et al., 2016; Sebesta & Boizot, 2014; Hall, Knoebel & McLain, 2008) in the field of 

flight control. The standard Kalman filter is adapted to calculate the attitude of the air vehicle in (Hall et al., 

2008). The estimated values are obtained through the utilization of an enhanced Kalman multiplicative filter. 

The estimation process incorporates data from accelerometers, gyroscopes, and GPS to gather information. An 

Unscented Kalman Filter (UKF) was suggested in (De Marina, Pereda, Giron-Sierra & Espinosa, 2012) three-

axis attitude determination method as the observer was utilized. It was reported that the method functioned 

well, but the computational cost was high. 

In this study, position control using the state estimation and trajectory tracking of a quad-rotor is implemented. 

Different from other studies, the results are obtained by feeding the model with a state estimation filter. The 

performances of the filters used for state estimation are compared.  

In Section 2, the mathematical model of the quad-rotor, along with its kinematics, dynamics, and control, is 

introduced. Section 3 discusses the filter methods developed for state estimation. The experimental results and 

a comparison of the designed filters are presented in Section 4. Finally, in Section 5, the study concludes by 

highlighting the accomplishments and discussing potential future work. 

2. Quad-rotor Mathematical Model  

The mathematical model characterizes the motion and behavior of the system based on the input parame-

ters of the model and external factors affecting the system. It relates inputs to outputs. By utilizing the mathe-

matical model, it becomes feasible to anticipate the position as well as the state of the quad-rotor by knowing 

the propellers’ four angular velocities. 

The quad-rotor aircraft is capable of maneuvering in three-dimensional space by harnessing the forces gener-

ated by its four engines. To maintain the angular momentum, rotors 2 and 4 rotate counterclockwise, while 

rotors 1 and 3 rotate clockwise. Figure 1 depicts the impact of these rotor forces. 

 
Figure 1. Four rotor movements according to lifting forces (green rings; fast rotation and red rings, slow 

rotation) 

2.1. Quad-rotor Coordinate frames 

For the mathematical model, it is crucial to establish two coordinate frames (Benic, Piljek & Kotarski, 

2016); 
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▪ Earth Fixed Frame: 𝐹𝐸 is an inertial right-hand coordinate frame, where the positive direction of the 𝑍𝐸  

axis is from the earth. The quad-rotor attitude η and position ξ are defined within this coordinate frame 

(Figure 2). 

▪ Body Fixed Frame: 𝐹𝐵 is a coordinate frame fixed to the quad-rotor’s body axis. The origin of 𝐹𝐵coincides 

with the quad-rotor’s center of gravity. Linear velocities 𝑣𝑏, angular velocities 𝑤𝑏, forces 𝑓𝑏, and torques 

𝑇𝑏 are defined within this coordinate frame.  

 

 

Figure 2. Earth and Body Frames 
 

The quad-rotor's position is determined by the vector ξ, which represents the displacement between the origin 

of the Earth Fixed Frame and the Body Fixed Frame; 

ξ =  [𝑥 𝑦 𝑧]𝑇. (2.1) 

The quad-rotor’s attitude, denoted by η, is determined by the orientation of the Body Fixed Frame with respect 

to the Earth Fixed Frame. The orientation is described by three successive rotations around the coordinate axes 

of the Earth Fixed Frame. The quad-rotor's rotation around the y-axis is governed by the pitch angle θ. The 

rotation around the x-axis is determined by the roll angle φ, and the rotation around the z-axis is determined 

by the yaw angle ψ; 

η =  [φ θ ψ]𝑇. (2.2) 

2.2. Quad-rotor Kinematic Model 

The kinematics of a rigid body with 6 degrees of freedom are given by (Benic et al., 2016); 

ε ̇ = Jѵ (2.3) 

where ε̇ is comprised of a vector linear and angular velocity relative to the 𝐹𝐵. The generalized velocity vector 

ѵ is expressed in 𝐹𝐵 and  𝐽 represents the generalized transformation matrix. ε includes the position  ξ and 

attitude η as follows; 

ε =  [ξ η]𝑇 = [𝑥 𝑦 𝑧 φ θ ψ]𝑇 . (2.4) 

Generalized velocity vector ѵ within 𝐹𝐵 is defined in a similar manner;  

ѵ =  [𝑣𝑏 𝜔𝑏]𝑇 = [𝑢 𝑣 𝑤 𝑝 𝑞 𝑟]𝑇 . (2.5) 

The generalized rotation and transformation matrix facilitate the transfer of velocities from the Body Fixed 

Frame to the Earth Fixed Frame, providing a more intuitive representation of quad-rotor motion. This matrix 

comprises four submatrices; 
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𝐽 =  [
𝑅 03𝑥3

03𝑥3 𝑇
] (2.6) 

where R is the rotation matrix; 

𝑅 = [

cosψ cos θ cosψ sin θ sinφ − sinψ cosφ cosψ sinθ cosφ + sinψ sinφ
sinψ cos θ sinψ sinθ sinφ + cosψ cosφ sinψ sin θ cosφ − cosψ sinφ

− sinθ cos θ sinφ cosθ cosφ
]. (2.7) 

To address the requirement of converting measured values between different coordinate frames, a rotation 

matrix is employed. This matrix enables the transfer of the linear velocity vector from one coordinate frame to 

another through matrix multiplication. The matrix 𝑅 is used for this purpose and it is an orthonormal matrix. 

Angles as well as angular velocities are acquired within the Earth Fixed Frame. To transfer angular velocities 

from the Body Fixed Frame to the Earth Fixed Frame, a transformation matrix T is utilized; 

𝑇 = [

1 𝑠𝑖𝑛φ tan θ 𝑐𝑜𝑠φ tanθ
0 𝑐𝑜𝑠φ −𝑠𝑖𝑛φ

0
𝑠𝑖𝑛φ

cosθ

𝑐𝑜𝑠φ

cosθ

].  (2.8) 

To transfer angular velocities from the Earth Fixed Frame to the Body Fixed Frame, the angular velocity vector 

in 𝐹𝐸 needs to be multiplied by 𝑇−1.  

2.3. Quad-rotor Dynamics 

The dynamics of a quad-rotor are described using differential equations derived from the Newton-Euler 

method. These equations incorporate the mass (𝑚) and inertia (𝐼) of the body, accounting for the dynamics of 

a rigid body with six degrees of freedom. 

Quad-rotor has a symmetrical structure in which the four rotors in the quad-rotor are aligned with the 𝑋𝐵 and 

𝑌𝐵 axes. By assuming that the principal inertial axes align with the coordinate axes of 𝐹𝐵, the inertial matrix 

is simplified to a diagonal matrix with 𝐼𝑥𝑥 = 𝐼𝑦𝑦. 

I = [

𝐼𝑥𝑥  0 0
0 𝐼𝑦𝑦 0

0 0 𝐼𝑧𝑧 

]  (2.9) 

The dynamics of the quad-rotor are defined as follows;  

[
𝑚 𝐼3𝑥3 03𝑥3

03𝑥3 𝐼
] [�̇�

𝑏

�̇�𝑏] + [
𝜔𝑏 × (𝑚 𝜔𝑏)

𝜔𝑏 × (𝐼 𝜔𝑏)
] =  [

𝑓𝐵

𝜏𝐵
] (2.10) 

where 𝐼3𝑥3  is the identity matrix. The term �̇�𝑏 refers to the linear acceleration vector, �̇�𝑏 represents the angular 

acceleration vector, 𝑓𝐵 denotes the force vector acting on quad-rotor and 𝜏𝐵 represents the torque vector that 

is exerted on the quad-rotor. 

If the generalized force vector is defined as Υ; 

Υ = [𝑓𝐵 𝜏𝐵]𝑇 = [𝐹𝑥 𝐹𝑦 𝐹𝑧 𝜏𝑥
𝜏𝑦 𝜏𝑧]𝑇. (2.11) 

Equation (2.11) can be written in the following form; 

𝐼𝐵�̇� + 𝐶𝐵(𝑣)𝑣 =  Υ (2.12) 

where �̇� represents the generalized acceleration vector, 𝐼𝐵 represents inertia matrix of the system, 𝐶𝐵(𝑣) rep-

resents the Coriolis-centripetal matrix. Parameters of the quad-rotor are given in Table 1. 
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Table 1 

The parameters of quad-rotor model 

 

Parameter Value Unit 

𝑚 0.95 𝑘𝑔 

𝑚𝑤 0.01 𝑘𝑔 

𝑙 0.23 𝑚 

𝑔 9.81 𝑘𝑔 𝑚/𝑠2 

𝐼𝑤 0.000065 𝑘𝑔 𝑚2 

𝐽𝑥 0.0075 𝑘𝑔 𝑚2 

𝐽𝑦 0.0075 𝑘𝑔 𝑚2 

𝐽𝑧 0.0013 𝑘𝑔 𝑚2 

   
 

2.4. Controller Structure of the Quad-rotor 

PID is a common control scheme used in industrial applications. It is widely used for the control of quad-

rotors as well. The PID controller receives the feedback signal and compares it with a setpoint or reference 

signal, resulting in an error signal. Its objective is to minimize the difference between the plant/process variable 

and the setpoint or reference signal. The controller's behavior is determined by the combination of three control 

actions: proportional, integral, and derivative. The outputs of these actions are combined and provided as input 

to the plant/process as follows; 

𝑢(𝑡) = 𝐾𝑝𝑒(𝑡) + 𝐾𝑖 ∫ 𝑒(𝑡)𝑑𝑡 +
𝑡

0

𝐾𝑑

𝑑𝑒(𝑡)

𝑑𝑡
 (2.13) 

where, 𝐾𝑝 is the proportion coefficient, the output of the error multiplied by a certain gain value and calculates 

the current error, 𝐾𝑖 is the integral coefficient, the integral effect means the sum of errors the system has made 

in the past and 𝐾𝑑 is the derivative coefficient, it has a proportional effect on the output of the system according 

to the variation of the error. That is, it calculates the estimation of the future error. A conventional PID structure 

can be depicted using blocks, as shown in Figure 3a. In this study, the position controller, linear velocity 

controller, attitude controller, and angular velocity controller were designed using PID (Figure 3b) and the 

values of the PID coefficients were optimized using the MATLAB optimization toolbox. The PID coefficients 

of controllers are given in Table 2.  

 

 

 

Figure 3. a) General PID controller schematic, b) The overall control blocks for the quad-rotor in this study 
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Table 2 

PID coefficients of controllers. 

Control Terms Position Linear Velocity Attitude Angular Velocity 

𝐾𝑝 6.05 3.1 1.2 0.8 

𝐾𝑖 8.15 1.5 0.8 0.69 

𝐾𝑑 3.2 0.05 0.03 0.017 

     
 

The designed controller outputs are shown in Figure 4 and Figure 5. In Figure 4 the reference signal the one 

that the system should follow when the position information from the trajectory generation algorithm is pre-

sented to the quad-rotor system. The signal labeled as 'sensor measurements' contains data obtained from sen-

sor models, where white noise is added to the original sensor data values. Additionally, another signal displays 

the data as the designed controller outputs. P, Q, R signals shown in Figure 4 correspond to the angular velocity 

parameters. The North, East Down values indicate the quad-rotor's position along the NED axes The U, V 

signals presented in Figure 5 are the velocity of the quad-rotor on the NED axes. One can notice that ψ and W 

signals are not included in the graphs, since ψ and W are not controlled indeed in the system designed for the 

quad-rotor. ϕ and θ are the angle between the body axis of the quad-rotor and the NED axes respectively, and 

they provide essential information about the quad-rotor's attitude. Instead of employing lowercase notation 

like (𝑝, 𝑞, 𝑟), it becomes evident that the use of uppercase letters like P, Q, R serves to signify these signals 

within the simulations. 

 

Figure 4. Angular velocity control and position control 
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Figure 5. Linear velocity control and attitude control 

2.5. Trajectory Tracking Algorithm 

To initiate the trajectory tracking algorithm, the initial step involves generating a trajectory for subsequent 

tracking. The waypoints represent the planned path that the dynamic system should follow to efficiently 

achieve the tracking. The trajectory generation algorithm populates waypoints at a specified sampling rate and 

trajectory model. This trajectory then serves as the source for providing reference values for yaw angle, alti-

tude, and linear velocity. The control system operates on these trajectories. 

In the trajectory generation algorithm, the desired positions, i.e. waypoints, are determined on the (x, y, z) axes 

and the desired speed is determined at these waypoints. A system of linear equations will be created and gen-

erated with the help of the matrix. 

The position of the quad-rotor equation can be expressed as follows; 

𝑥(𝑡) =  𝑎0 + 𝑎1𝑡 + 𝑎2𝑡
2 + 𝑎3𝑡

3 

𝑦(𝑡) =  𝑏0 + 𝑏1𝑡 + 𝑏2𝑡
2 + 𝑏3𝑡

3 

𝑧(𝑡) =  𝑐0 + 𝑐1𝑡 + 𝑐2𝑡
2 + 𝑐3𝑡

3 

(2.14) 

where 𝑡 is time, and each one is a cubic function with real coefficients. The velocity of the quad-rotor equation 

can be expressed as follows; 

𝑣𝑥(𝑡) = �̇�(𝑡)  = 𝑎1 + 2𝑎2𝑡 + 3𝑎3𝑡
2 

𝑣𝑦(𝑡) = �̇�(𝑡)  = 𝑏1 + 2𝑏2𝑡 + 3𝑏3𝑡
2 

𝑣𝑧(𝑡) = �̇�(𝑡)  = 𝑐1 + 2𝑐2𝑡 + 3𝑐3𝑡
2 

(2.15) 

2.16 is obtained by solving 2.14 and 2.15 by specifying the first condition with an index value of 0 and the last 

condition with an index value 𝑓; 
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𝐺 = 

[
 
 
 
 
1 𝑡0
1 𝑡𝑓

𝑡0
2 𝑡0

3

𝑡𝑓
2 𝑡𝑓

3

0 1
0 1

2𝑡0 3𝑡0
2

2𝑡𝑓 3𝑡𝑓
2
]
 
 
 
 

,  

 

[
 
 
 
 
 
 
 
 
 
 
 
𝑥0
𝑥𝑓

𝑣𝑥0

𝑣𝑥𝑓

𝑦0
𝑦𝑓

𝑣𝑦0

𝑣𝑦𝑓

𝑧0

𝑧𝑓
𝑣𝑧0

𝑣𝑧𝑓]
 
 
 
 
 
 
 
 
 
 
 

=  [

𝐺 04𝑥4 04𝑥4

04𝑥4 𝐺 04𝑥4

04𝑥4 04𝑥4 𝐺
]

[
 
 
 
 
 
 
 
 
 
 
 
𝑎0
𝑎1

𝑎2

𝑎3

𝑏0

𝑏1

𝑏2

𝑏3
𝑐0

𝑐1
𝑐2

𝑐3 ]
 
 
 
 
 
 
 
 
 
 
 

 (2.16) 

The following expressions represent the linear matrix equations;  

𝐴𝜘 = 𝒷 (2.17) 

𝜘 = 𝐴−1𝒷 (2.18) 

and there is a very concise way of writing a system of linear equations, where 𝐴 is a matrix, 𝜘 and 𝒷 are vectors 

(usually of different sizes). As a result of the solution of the expression given in 2.16, the above linear equation 

results in a cubic polynomial that generates a trajectory according to the desired velocity dynamics between 

the start and end waypoints. Controlling the velocity dynamics as a result of generating the third-degree poly-

nomial is important in terms of control. To control the applied force, a higher-order polynomial proposition 

can be made that can be reduced to the derivative of the acceleration. 

Each range of waypoints is expressed by a different equation as a result of applying the trajectory generation 

algorithm to each one separately. The trajectory generation algorithm was given to the quad-rotor as a position 

reference. Thus, the quadcopter successfully followed the specified trajectory. The simulation results of tra-

jectory tracking created according to the equations 2.14-2.18 are shown in Figure 6. 

 

Figure 6. Trajectory tracking 

3. Quad-rotor Attitude Estimation 

Accurate and reliable attitude estimation is required for quad-rotor aircraft to fly successfully and perform 

their tasks. Attitude estimation is the process of estimating the current state of the aircraft, i.e., its position, 

speed, attitude, and angular velocity. A quad-rotor aircraft is usually equipped with various sensors such as 

accelerometers, gyroscopes, magnetometers, and barometers. These sensors measure the speed, acceleration, 

altitude, and orientation of the aircraft. However, the accuracy and precision of the sensors can be limited and 

may give inaccurate measurements due to external factors. Therefore, filtering and estimation algorithms are 

used in state estimation. Widely utilized algorithms, such as the Complementary Filter and Kalman Filter, 

analyze sensor data and rectify errors to estimate the aircraft's state. By leveraging sensor data and taking into 
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account the physical model, these filtering algorithms make use of estimation techniques to determine the 

current state. 

3.1. Explicit Complementary Filter use for Attitude Estimation 

The attitude estimation complementary filter employs low-pass filtering to refine a low-frequency attitude 

estimate. The attitude estimate is derived by applying high-pass filtering to biased high-frequency accelerom-

eter data and integrating the output of the gyroscope. These estimates are then combined to obtain a compre-

hensive estimate of attitude. If the pitch angle and roll angle of a quad-rotor are treated as decoupled processes, 

it is possible to design a Single Input Single Output filter for each signal, (Buskey, Roberts, Corke, Ridley & 

Wyeth, 2004). Figure 7 depicts the Explicit Complementary Filter (ECF) implementation. 

 

Figure 7. Acceleration compensated Explicit Complementary Filter scheme (edited from (Euston, Coote,  

Mahony, Kim & Hamel, 2008) 

In addition to the measured angular velocities �̅�𝑏, the ECF also captures the inertial direction, indicated as �̅�; 

�̅� =
𝑔𝑏

|𝑔𝑏|
 (3.1) 

where the estimation of the gravitational direction 𝑔𝑏 obtained from the system is used to derive the inertial 

direction �̅�. 

The ECF can be represented as a quaternion as follows (Euston et al., 2008); 

�̇̂� =  
1

2
�̂� ⊗ 𝑝(�̂� + 𝛿) (3.2) 

𝛿 =  𝑘𝑝𝑒 + 𝑘𝑖

𝑒

𝑠
 (3.3) 

𝑒 =  �̅�  × 𝑣 (3.4) 

where �̂� represents an estimate of the system attitude in a quaternion form. The innovation term 𝛿 here is 

generated by a PI block and the error 𝑒 represents the relative rotation between the measured inertial direction 

�̅� and the predicted inertial direction 𝑣. The proportional gain is denoted as 𝑘𝑝, while 𝑘𝑖 represents the integral 

gain. 

The estimated gravitational direction 𝑣 aligns with the z-axis of the inertial frame; 
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𝑣 =  [

2(𝑞1𝑞3 + 𝑞0𝑞2)
2(𝑞2𝑞3 − 𝑞0𝑞1)

𝑞0
2 − 𝑞1

2 − 𝑞2
2 + 𝑞3

2
]. (3.5) 

The most common approach for compensation with the ECF involves the use of proportional or proportional-

integral (PI) control. The proportional component is used to make the frequency transition between the gyro 

estimates obtained by the quaternion update and the attitude estimates based on accelerometers.  Gyro bias is 

adjusted for the use of the integral term in the PI correction. 

3.2. Extended Kalman Filter use for State Estimation 

The Extended Kalman Filter (EKF) utilizes both the system and observation expressions to perform state 

estimation in nonlinear systems. The algorithm uses the final prediction state and the associated error covari-

ance matrix to perform state estimation. 

The EKF filter linearizes the system equations using the Taylor series or by taking the Jacobian. It then com-

putes the prediction state using the linearized system equations. (Crasidis & Junkis, 2011). The observation 

equations are similarly linearized and provide feedback to ensure agreement between the forecast state and 

actual observations. This process updates the system state and covariance matrix, reducing errors and providing 

a more accurate estimate (Wang, Yang, Hatch & Zhang, 2004); 

𝓍𝑘 = 𝑓(𝓍𝑘−1, 𝓊𝑘) + 𝓌𝑘 

𝓏𝑘 = ℎ( 𝓍𝑘) + 𝓋𝑘 
(3.6) 

where 𝓌𝑘 represents the normal random process with zero mean and covariance matrix 𝑄𝑘.𝓋𝑘 represents the 

white Gaussian noise in the measurements also with zero mean and covariance matrix 𝑅𝑘.  𝓊 denotes the 

control vector, while 𝓏𝑘 represents the output of sensors measuring the state vector component 𝓍𝑘 of the state 

vector at time step 𝑘. Considering 2.4 and 2.5, the state vector can be expressed in the form as follows; 

𝓍𝑘 = [𝑥  𝑦  𝑧  𝑢  𝑣  𝑤  𝜑  𝜃  𝜓]𝑇 . (3.7) 

Expressions in 3.6 are nonlinear; therefore, we use the EKF where the model is linearized in a certain neigh-

borhood of the considered point (�̂�𝑘 , 𝓊𝑘) via an expansion into a Taylor series (Crasidis & Junkins, 2011); 

𝓍𝑘+1 ≈ 𝑓(�̂�𝑘 , 𝓊𝑘) + 𝐹𝑘(𝓍 − �̂�𝑘) + 𝓌𝑘 

𝓏𝑘 ≈ ℎ( �̂�𝑘) + 𝐻(𝓍𝑘 − �̂�𝑘) + 𝓋𝑘 
(3.8) 

where  

𝐹𝑘 = (
𝜕𝑓
𝜕𝓍 |𝓍 = �̂�𝑘) , 𝐻𝑘 = (

𝜕ℎ
𝜕𝓍 |𝓍 = �̂�𝑘) (3.9) 

The expressions for extrapolation and correction of the EKF follow; 

�̂�𝑘 = 𝑓(�̂�𝑘−1, �̂�𝑘−1) (3.10) 

𝑃𝑘 = 𝐹𝑘𝑃𝑘−1𝐹𝑘
𝑇 + 𝑄𝑘 (3.11) 

𝐾𝑘 =
𝑃𝑘𝐻𝑘

𝑇

𝐻𝑘𝑃𝑘𝐻𝑘
𝑇 + 𝑅𝑘

 
(3.12) 

𝑃𝑘 = (𝐼 − 𝐾𝑘𝐻𝑘)𝑃𝑘 (3.13) 
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4. Experimental Results 

In this section, the position control using trajectory generation and state estimation of the quad-rotor im-

plemented in MATLAB ®2022a Simulink environment are presented. The model runs by feeding the estima-

tion results to the controller.  

The North, East, and Down (NED) position of the quad-rotor and the result of the EKF filter are shown in 

Figure 8. The North, East, and Down (NED) velocity of the quad-rotor and the result of the EKF filter are 

shown in Figure 9. Quad-rotor attitude is estimated with ECF and EKF and the results are shown in Figure 10. 

The data represented with the legend sensor measurements is the position/velocity/direction information ob-

tained from the GNNS sensor model of the system. 

 

Figure 8. North, East, and Down (NED) position of the quad-rotor 

 

 

Figure 9. North, East, and Down (NED) velocity of the quad-rotor 
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Figure 10. The attitude angles of the quad-rotor 

The Root Mean Square Error (RMSE) values of the estimated states with EKF filter are given in the Table 3, 

since the error difference is difficult to notice on the figures. The values shown in this table vary depending on 

the process noise matrix and the Gaussian measurement noise matrix which are normally utilized with zero 

mean and covariance matrix. These matrices are formed considering parameters of the utilized sensor models 

and their regular working conditions. Upon examining the outcomes, it is evident that the EKF filter exhibits 

minimal prediction errors. Table 4 illustrates the RMSE values of the attitude estimation errors for EKF and 

ECF filters. The RMSE values given in this table were created by taking the attitude signal difference between 

filter estimations and the reference signals computed from the trajectory. The attitude estimation accuracy of 

the ECF filter is worse than that of the EKF filter, regarding the RMSE values of the filters' attitude estimates. 

This is because the ECF method is a fixed gain filter and cannot track the dynamic properties of the quad-rotor 

adaptively. The EKF and ECF filter estimation errors are computed for both the noisy and noise free data. 

 

Table 3 

The RMSE of the EKF state estimation 

State RMSE 

Position [NED]  0.449 m  

Velocity [NED] 0.25  m 𝑠⁄  

Yaw (ψ) 0.26 ° 

Pitch (θ) 0.22 ° 

Roll (φ) 0.22 ° 
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Table 4 

Attitude estimation of filters comparison table 

RMS Yaw (ψ) Pitch (θ) Roll (φ) Simulated Data Behaviour 

ECF 

Error 

1,62° 0,89° 0,76° Noisy 

EKF 

Error 

0,62° 0,8° 0,61° Noisy 

EKF-

ECF 

1,55° 0,4° 0,64° Noisy 

ECF 

Error 

0,97° 0,59° 0,51° Noise Free 

EKF 

Error 

0,42° 0,54° 0,59° Noise Free 

EKF-

ECF 

1,18° 0,32° 0,58° Noise Free 

 

5. Conclusions 

In this study, the state estimation, and position control using trajectory generation of a quad-rotor aircraft 

are implemented. The performances of the filters used for state estimation are compared.  

Position control was executed on the quad-rotor by planning an optimal path as waypoints within the trajectory 

tracking algorithm. These waypoints were populated and used to create a trajectory through the trajectory 

generation algorithm at a specified sampling rate. 

Dynamic modeling of the system was conducted, and sensor models were developed for state estimation. Ex-

plicit Complementary Filter and Extended Kalman Filter are designed for attitude estimation and state estima-

tion respectively. Differing from other studies, we integrated the output of the designed filter into the controller 

while the quad-rotor tracked the trajectory. Our analysis revealed that the filters introduced minimal errors 

during quad-rotor trajectory tracking. 

In our upcoming research, we will focus on path planning and trajectory optimization for the quad-rotor. We 

will also explore state estimation techniques, including the Unscented Kalman Filter (UKF), Adaptive Gain 

Complementary Filter (AGCF), and Particle Filters (PF), and compare their state estimates. 
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