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Abstract. We prove if α be a function of bounded variation on [a, b], [mi,Mi] ⊂ R be a closed interval for
1 ≤ i ≤ n, fi : [a, b] → [mi,Mi] be Riemann-Stieltjes integrable with respect to α, and G : Πi=n

i=1[mi,Mi] → R be
continuous, then H = G ◦ ( f1, . . . , fn) is Riemann-Stieltjes integrable with respect to α. Some other consequences,
applications and counterexamples are also provided.
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1. Introduction and Preliminaries

The definition of Riemann-Stieltjes integral (simply R-S integral) has yet remained as the subject of many current
mathematical researches in the last four decades. Some of them, which are in its own theory, are [6, 11, 13–15].

Some of the recent findings in this area such as [2, 7] are about to approximation theory, or refer to the bounds
of functionals. In [5], the authors gave lower and upper bounds of the Čebyšev functional for the R-S integral, and
provided some applications to the three-point quadrature rules of some special functions.

Many papers have been especially assigned to investigate the analogies of the R-S integration known for different
types of differential equations and their applications to analysis of their solutions. In [10], Rezounenko investigated
parabolic partial differential equations with delays presented by Stieltjes integral, and proved the existence of a compact
global attractor. Finally, some early results, related to the R-S integration, is interpreted in [8], where the author
provided some applications of R-S integration in complex analysis and probability theory.

The present paper is also a survey on R-S integrability. Note that, if f , g are two R-S integrable functions with
respect to an increasing function α on [a, b], then, in general, g◦ f is not R-S integrable with respect to same integrator.
But if f be a R-S integrable function with respect to an increasing function α on [a, b], m ≤ f ≤ M for m,M ∈ R, and
g be a continuous function on [m,M], then by a theorem in mathematics, g ◦ f is R-S integrable with respect to α on
[a, b] [12]. Here, we provide a generalization of this theorem, and some related consequences. The essential concepts
and symboles which we use in this study, such as “ partition of the interval [a, b]”, “a function of bounded variation
(simply B-V)”, and “total variation of a function of B-V”, are defined as [1, 3, 4]. “A partition of [a, b]”, and “the set
of all partitions of [a, b]” are denoted by P, and P[a, b] respectively. Finally, “the set of all R-S integrable functions
f : [a, b]→ R with respect to h : [a, b]→ R” is denoted byℜ(h)[a, b].
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2. Main Results

We intend to give an extension of a celebrated theorem in mathematical analysis. The structutre of a part of the
proof, is by an argument which generalizes the applied one in [12].

Theorem 2.1. Let the integrator α be a function of B-V on [a, b], mi,Mi ∈ R,mi < Mi, fi : [a, b] → [mi,Mi] and
fi ∈ ℜ(α)[a, b] for 1 ≤ i ≤ n. If G be a continuous function on C = Πi=n

i=1[mi,Mi] and H = G ◦ ( f1, . . . , fn), then
H ∈ ℜ(α)[a, b].

Proof. We devide the proof into two steps.
step 1. α is increasing:
Let the integrator α be a bounded increasing function on [a, b] and ϵ > 0. Since C is compact, then G is uniformly
continuous on C, and there exists δ > 0 less than ϵ such that, |G(t) −G(s)| < ϵ if ∥ t − s ∥< δ for all s, t ∈ C. Riemann’s
criterion of R-S integrability for fi implies that there exists a partition Pi of [a, b] such that U(Pi, fi, α)−L(Pi, fi, α) < δ2

for 1 ≤ i ≤ n [12]. Let
P = ∪i=n

i=1Pi = {a = x0, x1, . . . , xr−1, xr = b},
so, Pi ⊆ P, and U(P, fi, α) − L(P, fi, α) < δ2 for 1 ≤ i ≤ n. For 1 ≤ j ≤ r, let

Mi j = sup{ fi(x)|x j−1 ≤ x ≤ x j},

mi j = in f { fi(x)|x j−1 ≤ x ≤ x j},

M∗j = sup{H(x)|x j−1 ≤ x ≤ x j},

m∗j = in f {H(x)|x j−1 ≤ x ≤ x j},

m j = (m1 j, . . . ,mn j),
M j = (M1 j, . . . ,Mn j),

∥M j − m j∥ =

√
(M1 j − m1 j)2 + · · · + (Mn j − mn j)2,

A = { j|1 ≤ j ≤ r, ∥M j − m j∥ < δ},

B = { j|1 ≤ j ≤ r, ∥M j − m j∥ ≥ δ}.

Then, A ∩ B = ∅, A ∪ B = {1, . . . , r}.
(1) If j ∈ A, x j−1 ≤ y ≤ x j, x j−1 ≤ z ≤ x j, Y j = ( f1(y), . . . , fn(y)) and Z j = ( f1(z), . . . , fn(z)), then mi j ≤ fi(y) ≤ Mi j,

mi j ≤ fi(z) ≤ Mi j for 1 ≤ i ≤ n, and ||Y j−Z j|| ≤ ||M j−m j|| < δ. Therefore, |G(Y j)−G(Z j)| < ϵ and M∗j −m∗j ≤ ϵ.
(2) If j ∈ B, then clearly there exists a natural number k = k( j) ∈ N, such that 1 ≤ k ≤ n and Mk j − mk j ≥

δ
√

n .
Therefore,

δ
√

n
Σ j∈B∆α j ≤ Σ j∈B(Mk j − mk j)∆α j

≤ Σk(U(Pk, fk, α) − L(Pk, fk, α)) < nδ2

and so Σ j∈B∆α j ≤ n
√

nδ.
Let M = sup{H(x)|x ∈ [a, b]}, then M∗j − m∗j ≤ 2M for 1 ≤ j ≤ r. Now, we have

U(P,H, α) − L(P,H, α) = Σ j=r
j=1(M∗j − m∗j)∆α j

= Σ j∈A(M∗j − m∗j)∆α j + Σ j∈B(M∗j − m∗j)∆α j

≤ ϵ(α(b) − α(a)) + 2Mn
√

nδ < (α(b) − α(a) + 2Mn
√

n)ϵ.

Therefore, H ∈ ℜ(α)[a, b].
step 2. α is of B-V:
Let V be the total variation of α. Since fi ∈ ℜ(α)[a, b] for (1 ≤ i ≤ n), then fi ∈ ℜ(V)[a, b] and fi ∈ ℜ(V −α)[a, b] [1].
Therefore, H ∈ ℜ(V)[a, b] and H ∈ ℜ(V − α)[a, b] by step 1. Thus H ∈ ℜ(α)[a, b]. □

Proving the Corollary 2.3, is up to the following Theorem.

Theorem 2.2 ( [9]). Let the bounded integrator α is not of B-V on [a, b], then there exists a continuous function on
[a, b] doesn’t belong toℜ(α)[a, b].
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Corollary 2.3. Let the integrator α be a bounded function on [a, b] such that H = G ◦ ( f1, . . . , fn) ∈ ℜ(α)[a, b] for all
continuous functions fi : [a, b] → [mi,Mi], (1 ≤ i ≤ n), and all continuous functions G on C = Πi=n

i=1[mi,Mi]. Then, α
is of B-V on [a, b].

Corollary 2.4. If the integrator α be of B-V on [a, b], fi ∈ ℜ(α)[a, b] for 1 ≤ i ≤ n, then,
(1) Σi=n

i=1ci fi ∈ ℜ(α)[a, b] for c1, . . . , cn ∈ R.
(2) Σi=n

i=1| fi| ∈ ℜ(α)[a, b],
(3) Πi=n

i=1 fi ∈ ℜ(α)[a, b],
(4) min{ f1, . . . , fn} ∈ ℜ(α)[a, b],
(5) max{ f1, . . . , fn} ∈ ℜ(α)[a, b].

2.1. Applications and Counterexamples.

Corollary 2.5. Let pi, Pi ∈ R, pi < Pi for 1 ≤ i ≤ n and G : Πi=n
i=1[pi, Pi] → R be continuous. Let f : [a, b] → R be of

B-V, αi : [a, b]→ [pi, Pi] be such that f ∈ ℜ(αi)[a, b] for 1 ≤ i ≤ n, and K = G ◦ (α1, . . . , αn), then f ∈ ℜ(K)[a, b].

Corollary 2.6. Suppose that f is of B-V on [a, b], f ∈ ℜ(αi)[a, b] for 1 ≤ i ≤ n. Then,
(1) f ∈ ℜ(Σi=n

i=1ciαi)[a, b], for c1, . . . , cn ∈ R,
(2) f ∈ ℜ(Σi=n

i=1|αi|)[a, b],
(3) f ∈ ℜ(Πi=n

i=1αi)[a, b],
(4) f ∈ ℜ(min{α1, . . . , αn})[a, b],
(5) f ∈ ℜ(max{α1, . . . , αn})[a, b].

The following example shows that without the continuty of G, Theorem 2.1 does not hold.

Example 2.7. Suppose that f (x) = α(x) = x on [0, 1], and

G(x) =
{

1, i f x ∈ [0, 1] ∩ Q,
0, i f x ∈ [0, 1] ∩ (R − Q).

Then, α is of B-V on [0, 1], f ∈ ℜ(α)[0, 1], but (G ◦ f ) < ℜ(α)[0, 1] [12].

A similar form of Theorem 2.1 does not hold for the functions of B-V instead of R-S integrable ones.

Example 2.8. Let

G(x) =
{

x cos( π2x ), i f x ∈ [0, 1],
0, i f x = 0

and α = Id[0,1]. Then, G is continuous on [0, 1], α is a function of B-V on [0, 1], but G ◦ α is not of B-V on [0, 1] [1].

Despite the property that α and G be of B-V, in general, if G is not continuous, then the Corollary 2.5 does not hold.

Example 2.9. Let

G(x) =
{

1, i f x , 0,
0, i f x = 0, , α(x) =

{ 1
q3 , i f x = p

q , p , 0, q > 0, gcd(p, q) = 1,
0, i f x ∈ (R − Q) ∪ {0}.

Then,

(G ◦ α)(x) =
{

1, i f x ∈ Q − {0},
0, i f x ∈ (R − Q) ∪ {0}.

Obviously, the functions G, α and f = Id[0,1] are of B-V on [0, 1], and G is not continuous on [0, 1]. Now, Lebesgue’s
integrability criterion for Riemann’s integral [1, 12], besides the theorem of integration by parts imply that f ∈
ℜ(G)[0, 1] ∩ℜ(α)[0, 1] separately, but f < ℜ(G ◦ α)[0, 1].

The continuous composition of two functions of B-V, in general, is not of B-V.

Example 2.10. The function G : (0, 1] × (0, 1] → R, G(x, y) = x
y is continuous, and f , g : [0, 1] → R, defined by

f (x) = 1 and

g(x) =
{

1, i f x = 0,
x, i f x ∈ [0, 1]
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are of B-V on [0, 1], but H = G ◦ ( f , g) : [0, 1]→ R, defined by

H(x) =
{

1, i f x = 0,
1
x , i f x ∈]0, 1]

is not of B-V on [0, 1].

In the next Example, as an extension of the results in [1,3,4], some continuous composition of the functions of B-V,
which again are of B-V, are provided.

Example 2.11. Suppose that the functions αi(1 ≤ i ≤ n) are of B-V on [a, b], and c1, . . . , cn ∈ R. Then, Σi=n
i=1ciαi,

Σi=n
i=1|αi|, min{α1, . . . , αn}, max{α1, . . . , αn}, are of B-V on [a, b].
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