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Abstract. Let R be a commutative ring, and let M 6= 0 be an R-module

with a non-zero proper submodule N , where N? = N − {0}. Let ΓN? (M)

denote the (undirected) simple graph with vertices {x ∈M −N |x + x′ ∈ N?

for some x 6= x′ ∈M −N}, where distinct vertices x and y are adjacent if and

only if x+ y ∈ N?. We determine some graph theoretic properties of ΓN? (M)

and investigate the independence number and chromatic number.
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1. Introduction

Throughout, all rings are commutative with non-zero identity and all modules

are unitary. Let R be a ring, M 6= 0 an R-module, and N a non-zero proper

submodule of M . The total graph of a commutative ring R, denoted by T (Γ(R)),

was introduced by Anderson and Badawi in [3], as the graph with all elements

of R as vertices, and two distinct vertices x, y ∈ R are adjacent if and only if

x + y ∈ Z(R), where Z(R) denotes the set of zero-divisors of R. The concept of

total graphs is a great concept that is usually used in commutative algebra to obtain

many interesting graphs in this field. In [1] and [2], A. Abbasi and S. Habibi, gave a

generalization of the total graph. They studied in [2] the total graph T (ΓN (M)) of

a module M over a commutative ring with respect to a proper submodule N . It is

an undirected graph with the vertex set M , where two distinct vertices m and n are

adjacent if and only if m+ n ∈M(N), where M(N) = {m ∈M | rm ∈ N for some

r ∈ R − (N : M)}. It is easy to see that M(N) is closed under multiplication by

scalars. However, M(N) may not be an additive subgroup of M . Here we introduce

a generalization of total graphs, denoted by ΓN?(M), as the (undirected) simple

graph with vertices {x ∈ M −N |x + x′ ∈ N? for some x 6= x′ ∈ M −N}, where

distinct vertices x and y are adjacent if and only if x+ y ∈ N? = N − {0}.
Let G be a simple graph. If there is a path from any vertex to any other vertex of

graph G, then G is said to be connected, and G is said to be totally disconnected
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if there is no path connecting any pair of vertices. For vertices x1 and x2 of

G, we define d(x1, x2) to be the length of a shortest path between x1 and x2

(d(x, x) = 0 and d(x1, x2) = ∞ if there is no such path). The diameter of G is

diam(G) = sup{d(x1, x2)|x1 and x2 are vertices of G}. The girth of G, denoted

by gr(G), is the length of its shortest cycle; gr(G) = ∞ if G contains no cycles,

in this case, G is called an acyclic graph. A complete graph is one which every

two vertices are adjacent. A complete graph with n vertices is denoted by Kn. A

bipartite graph G is a graph whose vertex set V (G) can be partitioned into disjoint

subsets U1 and U2 in such a way that each edge of G has one end vertex in U1 and

the other in U2. In particular, if E consists of all possible such edges, thenG is called

a complete bipartite graph and is denoted by Km,n when |U1| = m and |U2| = n.

For a vertex v of G, deg(v) denotes the degree of v and we set δ(G) := min{deg(v):

v is a vertex of G}. A graph G is called k-regular if every vertex has degree k. A

subgraph of G is the graph formed by a subset of the vertices and edges of G. Two

subgraphs G1 and G2 of G are said to be disjoint if G1 and G2 have no common

vertices and no vertex of G1 (resp., G2 ) is adjacent (in G) to any vertex not in G1

(resp., G2). The union of two graphs G1 = (V1, E1) and G2 = (V2, E2) is the graph

G1 ∪ G2 whose vertex set is V1 ∪ V2 and whose edge set is E1 ∪ E2. A complete

subgraph of G is called a clique. The clique number, ω(G), is the greatest integer

n ≥ 1 such that Kn is a subgraph of G, and ω(G) =∞ if Kn ⊆ G for all n ≥ 1. A

matching in a graph G is a set of edges such that no two have a vertex in common.

A spanning matching of a graph is said to be a perfect matching. A star graph

Sk is the complete bipartite graph K1,k. A Hamiltonian cycle is a cycle that

visits each vertex exactly once. A graph that contains a Hamiltonian cycle is called

a Hamiltonian graph. A walk is an alternating sequence of vertices and edges

which are incident, that begins and ends with a vertex. A tour is a closed walk

that traverses each edge at least once. An Eulerian tour in an undirected graph

is a tour that traverses each edge exactly once. If such a tour exists, the graph

is called Eulerian. A connected component (or just component) of an undirected

graph is a maximal connected induced subgraph. An independent set is a set of

vertices in a graph, no two of which are adjacent. That is, it is a set S of vertices

such that for every two vertices in S, there is no edge connecting the two. The

vertex independence number of G, often called the independence number, is the

cardinality of a largest independent vertex set, i.e., the maximum size among all

independent vertex sets of G. The independence number is denoted by α(G).

A vertex cover of G is a set of vertices such that each edge of G is incident to

at least one vertex of the set. The vertex cover number is the minimum size
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among all vertex covers in the graph, denoted by β(G). A coloring of a graph

is a proper (vertex) coloring with colors such that no two vertices sharing the

same edge have the same color. A coloring using k colors is called a (proper) k-

coloring. The smallest number of colors needed to color the vertices of G is called

its chromatic number and is denoted by χ(G).

The main objective of this paper is to study some properties of the graph

ΓN?(M). We also investigate the independence number and chromatic number

of the graph ΓN?(M).

2. Properties of ΓN?(M)

In this section, we investigate some properties of ΓN?(M). Throughout, N is a

non-zero proper submodule of a non-zero R-module M , where R is commutative

ring.

Definition 2.1. Let R be a commutative ring, M be an R-module, N be a sub-

module of M , and let N? = N−{0}. We define an undirected simple graph ΓN?(M)

with vertices {x ∈M −N |x+ x′ ∈ N? for some x 6= x′ ∈M −N}, where distinct

vertices x and y are adjacent if and only if x+ y ∈ N?.

Remark 2.2. (1) x ∈ V (ΓN?(M)) if and only if N(x) 6= ∅, where N(x) =

{x′ ∈ V (ΓN?(M)) |x′ 6= x, x+ x′ ∈ N?}. So, there is no isolated vertex in

ΓN?(M). In particular, ΓN?(M) is not totally disconnected.

(2) Let x, y ∈ V (ΓN?(M)) be adjacent with x− y ∈ N?, then x+ y−x+ y ∈ N
and x+ y + x− y ∈ N ; so 2x, 2y ∈ N .

(3) Let x, y ∈ V (ΓN?(M)) with x 6= y and N(x)∩N(y) 6= ∅. Then x− y ∈ N?.

(4) ΓN?(M) is a perfect matching if and only if for all x, y ∈ V (ΓN?(M)) with

x 6= y, one has N(x) ∩N(y) = ∅ or |N(x)| = |N(y)| = 1.

Example 2.3. Let M = Z12 and N = {0, 4, 8}. Then ΓN?(M) has the following

form:

1• •3

5• •7 2• 6• •10

9• •11

Figure 1.

Theorem 2.4. If x, y ∈ V (ΓN?(M)) are distinct vertices connected by a path of

length 3 with x+ y 6= 0, then x, y are adjacent.
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Proof. Let x,m1,m2, y be distinct vertices of ΓN?(M) with a path x m1 m2 y.

Since x+m1, m1+m2 and m2+y ∈ N?, we have x+y = (x+m1)+(y+m2)−(m1+

m2) ∈ N . This yields x+ y ∈ N∗, since x+ y 6= 0 ; so x and y are adjacent. �

Corollary 2.5. Let e = xx′ and f = yy′ be edges of ΓN?(M), where the sum of

each end point of e and each end point of f does not equal zero. If two end points

of e and f are adjacent, then so are the other two.

Proof. Without loss of generality, we may assume that x′ and y are adjacent; so

there is a path x x′ y y′ in ΓN?(M). Therefore, x and y′ are adjacent, by

Theorem 2.4. �

Remark 2.6. In Corollary 2.5, the condition “does not equal zero” is necessary.

For instance, in Example 2.3, set x = 5, y = 9, x′ = 3, y′ = 11. Then x and y′ are

adjacent, but x′ and y are not.

Theorem 2.7. If x, y ∈ V (ΓN?(M)) are distinct vertices connected by a path of

length 4, then there exists a path of length 2 between them. In particular, there is

t ∈ V (ΓN?(M)) with t ∈ N(x) ∩N(y).

Proof. Let x,m1,m2,m3, y be distinct vertices of ΓN?(M) with a path x m1

m2 m3 y. If x+m3 6= 0 or m1+y 6= 0, then x and m3, or y and m1, are adjacent

by Theorem 2.4, as we desired. So let x = −m3 and y = −m1. Then we have a path

x(= −m3) m1 m2 m3 y(= −m1). Thus, x(= −m3) (−m2) y(=

−m1) is a path of length 2. �

Theorem 2.8. Let ΓN?(M) be connected. If t1 − t2 ∈ N? for all adjacent vertices

t1 and t2 of ΓN?(M), then diam(ΓN?(M)) ∈ {1, 2}.

Proof. For every path of length 3 such as x m1 m2 y in ΓN?(M), if

x+ y 6= 0, then x and y are adjacent by Theorem 2.4 and diam(ΓN?(M)) ≤ 2 . Let

x = −y. Then there is a path x(= −y) m1 m2 y. Our hypothesis yields

x m2, and we are done. �

Theorem 2.9. diam(ΓN?(M)) ∈ {1, 2, 3,∞}. In particular, if ΓN?(M) is con-

nected, then diam(ΓN?(M)) ≤ 3.

Proof. By Theorem 2.7, we can reduce every path of length greater than 3 to a

path of length at most 3. �
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Example 2.10. Let M = Z8 and N = {0, 2, 4, 6}. Then ΓN?(M) has the following

form:

1• •3

5• •7
Figure 2.

Theorem 2.11. Let ΓN?(M) be connected. Then it is complete if and only if

2t = 0 for every t ∈ V (ΓN?(M)).

Proof. Suppose that ΓN?(M) is complete and 2t 6= 0 for some t ∈ V (ΓN?(M)).

Then −t is a vertex and 0 = t + (−t) ∈ N?, which is a contradiction. Suppose

2t = 0 for all vertices t. Then diam(ΓN?(M)) ≤ 3 by Theorem 2.9. Let x t y

be a path in ΓN?(M). Then by part (3) of Remark 2.2, x + y ∈ N? (since by

assumption 2y = 0 implies that y = −y). Let d(x, y) = 3. So there is a path

x t1 t2 y in ΓN?(M). If x + y = 0, then x = −y = y (since 2y = 0); this

contradicts our assumption, so x+ y 6= 0. Hence, x and y are adjacent by Theorem

2.4. So, ΓN?(M) is complete. �

Theorem 2.12. If 2x 6= 0 for every x ∈ V (ΓN?(M)), then gr(ΓN?(M)) ∈ {3, 4, 6,∞}.

Proof. (1) It is clear that ΓN?(M) has more than two vertices. For all x ∈
V (ΓN?(M)), let |N(x)| = 1. Then gr(ΓN?(M)) =∞, since in this case ΓN?(M) is

just a perfect matching.

(2) Suppose there is t ∈ V (ΓN?(M)) such that |N(t)| ≥ 2.

(1′) If for all vertices t with |N(t)| ≥ 2, we have |N(x)| = 1 for every x ∈ N(t),

then there are not any cycles in ΓN?(M).

(2′) Suppose there exists y ∈ N(t) such that |N(y)| ≥ 2 and this condition is

satisfied just for y. There is an x ∈ N(t) such that |N(x)| = 1, since |N(t)| ≥
2. If x 6= −y, then by part 3 of Remark 2.2, one has (−y) x t y and

if x = −y, then (−y) t y m for some m ∈ N(y). This implies that

(−m) (−y) t y m, which contradicts |N(x)| = 1. So, we should have at

least two vertices x, y ∈ N(t) such that |N(x)|, |N(y)| ≥ 2. If x and y are adjacent,

then x t y x and gr(ΓN?(M)) = 3. We assume that x and y are not

adjacent for every x, y ∈ N(t).

(a) Let |N(x)∩N(y)| = 1. If 2t ∈ N?, then x+ t, y+ t ∈ N?; so x+ y+ 2t ∈ N .

This yields x+y ∈ N and so x+y = 0 (since x and y are not adjacent). Therefore,

x = −y and there exists a path (−y) t y (−t). This implies that −y and
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−t are adjacent. So, −t ∈ N(x) ∩ N(y) where contradicts our assumption, since

|N(x) ∩N(y)| = 1.

Now, assume that 2t /∈ N? and |N(t)| = 2. There is a path (−y) x t y

(−x) in ΓN?(M) by part 3 of Remark 2.2; so (−t) (−y) x t y (−x)

and −t and −x are adjacent. Hence gr(ΓN?(M)) ≤ 6. If |N(t)| ≥ 3, there is

a path m t y (−x) for some vertex m 6= x. Since m − x 6= 0, one has

gr(ΓN?(M)) ≤ 4, by Theorem 2.4. If −x, t are adjacent then there is a path

(−x) t y (−x) and gr(ΓN?(M)) = 3.

(b) Let |N(x)∩N(y)| ≥ 2. There is a path m x t y m. Hence ΓN?(M)

contains a 4-cycle and gr(ΓN?(M)) ≤ 4. �

Corollary 2.13. ΓN?(M) is an acyclic graph if and only if it is a disjoint union

of some star components.

Proof. Suppose that graph ΓN?(M) is an acyclic graph. If ΓN?(M) has a non-star

component, then there exists at least one path of length 3 as x t1 t2 y in

ΓN?(M). We assumed that ΓN?(M) is an acyclic graph, so x+ y = 0, by Theorem

2.4. Hence, we have a path (−t2) x t1 t2 y. Theorem 2.7 yields there

is a cycle in ΓN?(M), which contradicts our assumption. Hence all paths are of

lengths 1 or 2. This implies that all components are in the form of stars. �

Theorem 2.14. The following statements hold for the clique number of ΓN?(M).

(1) ω(ΓN?(M) = 2 if N(x) ∩N(y) = ∅ for every distinct x, y ∈ V (ΓN?(M)).

(2) If there exist adjacent vertices x and y in ΓN?(M) such that N(x)∩N(y) 6=
∅, then ω(ΓN?(M)) ≥ 3.

(3) If 2t = 0 for all t ∈ V (ΓN?(M)) and there are adjacent vertices x and y

in ΓN?(M) such that x′ + y′ 6= 0 for some x′ ∈ N(x) and y′ ∈ N(y), then

ω(ΓN?(M)) ≥ 4.

Proof. (1) It is clear, since ΓN?(M) is a perfect matching.

(2) It is clear, since there is a triangular cycle.

(3) There is a path x′ x y y′ in ΓN?(M). In view of Theorem 2.4, x′ and

y′ are adjacent. So, x′, y and x, y′ are adjacent by part 3 of Remark 2.2. Hence

ω(ΓN?(M) ≥ 4. �

Definition 2.15. (See [5, Definition 2.9]) Let m ∈ M − N . We call the subset

m + N? a column of ΓN?(M). If 2m ∈ N? for every m ∈ M − N , then we call

m+N? a connected column of ΓN?(M).

Theorem 2.16. Suppose ΓN?(M) contains at least one connected column and

|N?| ≥ 4 with 2m 6= 0 for every m ∈ N?. Then gr(ΓN?(M) = 3.
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Proof. Let x + N? be a connected column in ΓN?(M). Then 2x ∈ N?. Let

n 6= 2x,−2x in such a way that n ∈ N?. Then x (x + n) (x − n) x is a

cycle of length 3 in ΓN?(M). �

Recall that a vertex x of a connected graph G is called a cut-point of G if there

are vertices u,w of G such that x lies on every path from u to w (with x 6= u,

x 6= w). Equivalently, for a connected graph G, x is called a cut-point of G if

G− {x} is not connected.

Theorem 2.17. Let ΓN?(M) be connected with 2x 6= 0 for all x ∈ V (ΓN?(M)).

Then ΓN?(M) has no cut-points.

Proof. Assume the vertex x of ΓN?(M) is a cut-point. Then there exist vertices

u,w of ΓN?(M) such that x lies on every path from u to w (therefore, x 6= u,w).

By Theorem 2.9, the shortest path from u to w is of length 2 or 3.

Case 1. Suppose u x w is a path of shortest length from u to w. There is a

path (−w) u x w (−u) in ΓN?(M). So there exists a path u (−w) (−x)

(−u) w by part 3 of Remark 2.2, which contradicts our assumption.

Case 2. Suppose (without loss of generality) that u x y w is a path of

shortest length from u to w in ΓN?(M). Therefore, N(u) ∩ N(w) = ∅. Since

u and w are not adjacent, by Theorem 2.4, we have u + w = 0 and (−y) u(=

−w) x y w. So, there exists a path u (−y) (−x) w, which contradicts

our assumption. �

Remark 2.18. Suppose there is a path as u t w in ΓN?(M) such that |N(u)| =
|N(w)| = 1. Then ΓN?(M) has a cut-point.

Theorem 2.19. The degree of every vertex x of ΓN?(M) is either |N?| or |N?|−1.

In particular, if 2m ∈ N? for every vertex m of ΓN?(M), then ΓN?(M) is a |N?|−1-

regular graph.

Proof. Let x ∈ V (ΓN?(M)). If x is adjacent to y, then x+ y = a ∈ N? and hence,

y = a− x for some a ∈ N?. There are two cases:

Case 1. Suppose that 2x ∈ N?. Then x is adjacent to a − x for every a ∈
N? − {2x}. Thus the degree of x is |N?| − 1. In particular, if 2m ∈ N? for every

m ∈ V (ΓN?(M)), then ΓN?(M) is a |N?| − 1-regular graph.

Case 2. Suppose that 2x /∈ N?. Then x is adjacent to a− x for all a ∈ N?. Thus

the degree of x is |N?|. �
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In general, it is not easy to determine when the graph ΓN?(M) is Eulerian or

Hamiltonian. Here we consider M = Zn, for some positive integer n, and investi-

gate being Eulerian or Hamiltonian (or both) for ΓN?(M).

Lemma 2.20. The followings hold.

(1) [4, Theorem 3.4] If G is a simple graph with ν ≥ 3 and δ ≥ ν/2, where

ν = |V (G)|, then G is Hamiltonian.

(2) [4, Theorem 1.4] A connected graph G is Eulerian if and only if it contains

no vertices of odd degree.

Example 2.21. Let M = Zn and N = 2Zn with n ≥ 8. Considering Theo-

rem 2.19, ΓN?(M) is |N?| − 1-regular; so δ = |N?| − 1 = |N | − 2 ≥ N/2, where

|N |(= n/2) ≥ 4. Hence by Lemma 2.20, ΓN?(M) is Hamiltonian.

Remark 2.22. If ΓN?(M) is connected, 2x /∈ N? for every x ∈ V (ΓN?(M)), and

if |N?| is an even integer, then ΓN?(M) is Eulerian.

Remark 2.23. Let M = Zn and N = kZn (so, N = dZn for d = (k, n)), and let

ΓN?(M) be connected.

(1) If n is an odd integer, then |N?| is even. Let 2x ∈ N? for some x ∈
V (ΓN?(M)). Then 2x = td for some t ∈ Z. Hence x ∈ N is not a vertex. So

2x /∈ N? for every x ∈ V (ΓN?(M)). Hence, by Lemma 2.20 and Theorem 2.19,

ΓN?(M) is Eulerian.

(2) Assume that n and k are even integers; then d is an even integer. By Theorem

2.19, the degree of every vertex x is |N?| or |N?| − 1.

(i) Let n = 2l for some l ∈ N. If d > 2, then there exists at least one vertex x

such that 2x /∈ N?. So, the degree of the vertex x is |N?|. Note that |N?| is an

odd integer. Hence by Lemma 2.20, ΓN?(M) is not Eulerian. If d = 2, then by

Theorem 2.19, ΓN?(M) is a |N?| − 1-regular graph, so it is Eulerian.

(ii) Let n = 2lm for some l,m ∈ N such that (2,m) = 1. Since d = 2m′ ∈ N?

for some m′ ∈ V (ΓN?(M)), the degree of vertex m′ is |N?| − 1. Note that n = td

for some t ∈ Z. If t is an odd integer, then |N?| is even. So the degree of m′ is odd

and ΓN?(M) is not Eulerian. If t is an even integer, then |N?| is odd. We have

two cases.

(i′) If d > 2, there exists at least one vertex l such that 2l /∈ N?. Therefore, by

Theorem 2.19, deg(l) = |N?|, hence ΓN?(M) is not Eulerian.

(ii′) If d = 2, by Theorem 2.19, ΓN?(M) is a |N?| − 1-regular graph and so it is

Eulerian.
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(3) Let n be an even integer and k be an odd integer. Since |N?| is an odd integer

and by part (1), 2x /∈ N? for every x ∈ V (ΓN?(M)), ΓN?(M) is not Eulerian.

3. Independence number and chromatic number of ΓN?(M)

One of the interesting computing problems in graph theory is determining the

independence number of a graph. Here we obtain the independence number of

ΓN?(M) with some special conditions. It is well-known that α(Kn) = 1.

Lemma 3.1. [4, Theorem 1.7]

(1) A set is independent if and only if its complement is a vertex cover.

(2) The sum of the size of the largest independent set α(G) and the size of a

minimum vertex cover β(G) is equal to the number of vertices in the graph.

Theorem 3.2. Let ΓN?(M) be connected and let ν = |V (G)|.

(1) If diam(ΓN?(M)) = 3 and d(m,−m) = 3 for every m ∈ V (ΓN?(M)), then

α(ΓN?(M)) = β(ΓN?(M)) = ν/2.

(2) If diam(ΓN?(M)) = 2 and 2m 6= 0 for every m ∈ V (ΓN?(M)), then

α(ΓN?(M)) = 2 and β(ΓN?(M)) = ν − 2.

Proof. (1) Choose x ∈ V (ΓN?(M)). Put Ax = {−y ∈ V (ΓN?(M)) | y is adjacent to

x}, A′x = {y ∈ V (ΓN?(M)) | y 6= −x and y is not adjacent to x} and Px = Ax ∪A′x.

For every n ∈ V (ΓN?(M))− {x,−x}, n ∈ Px or −n ∈ Px.

Claim: Px is an independent set in ΓN?(M).

By way of contradiction, suppose there exist n1, n2 ∈ Px that they are adjacent.

Since n1, n2 ∈ Px, so n1, n2 are not adjacent to x. We claim that for every vertex

t other than x and −x, t is adjacent to either −x or x (but not to both of them,

otherwise, x t (−x), this yields d(x,−x) = 2). Hence, n1, n2 are not adjacent

to x, which implies that n1, n2 are adjacent to −x.

Suppose there exists t( 6= x,−x) ∈ V (ΓN?(M)) such that t is not adjacent to x and

−x. Since d(x,−x) = 3, there exists a path x m1 m2 (−x) in ΓN?(M). It is

clear that d(t, x) = d(t,−x) = 2; otherwise, t is adjacent to x or −x. So, there exists

l ∈ V (ΓN?(M)) such that t l x. There is a path t l x m1 m2 (−x)

such that t is adjacent to m1 (since m1 and x are adjacent and d(t,−x) = 2, so

t 6= −m1). Hence t m1 m2 (−x) implies that t and −x are adjacent

(since t 6= x) which is a contradiction. (Therefore, for every vertex t, all other

vertices except −t are adjacent to t or −t.) Since n1, n2 are not adjacent to x,

so n1, n2 are adjacent to −x and n1 (−x) n2 (−n1) which by assumption

n1 and n2 are adjacent. So, d(n1,−n1) = 2, a contradiction. This shows that

Px is independent. On the other hand, for every x 6= y ∈ V (ΓN?(M)), one has
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|Px| = |Py|. We have to show that Px is the largest independent set in ΓN?(M).

Suppose there exists an independent set U in ΓN?(M) such that |U | > |Px| = |ν|/2,

where ν = |V (G)|. So, there exists g ∈ V (ΓN?(M)) such that g,−g ∈ U . This

implies that U is not independent. Hence Px is the largest independent set in

ΓN?(M) and α(ΓN?(M)) = β(ΓN?(M)) = ν/2 by Lemma 3.1.

(2) Let ΓN?(M) be connected with diam(ΓN?(M)) = 2 and let 2m 6= 0 for every

m ∈ V (ΓN?(M)). Put Gx = {x,−x} for some x ∈ V (ΓN?(M)). We show that Gx

is the largest independent set in ΓN?(M).

Claim: Every vertex x is adjacent to every other vertex except −x.

By way of contradiction, assume that there is m ∈ V (ΓN?(M)) such that d(m,x) =

2 for some x( 6= −m) ∈ V (ΓN?(M)). So there is a path m t x in ΓN?(M)

for some t ∈ V (ΓN?(M)); therefore, (−x) m t x such that x and −m are

adjacent. Moreover, d(x,−x) = 2. Hence, there is a path x l (−x) in ΓN?(M)

for some l ∈ V (ΓN?(M)). Now, the path (−m) x l (−x) implies that −m
is adjacent to −x by Theorem 2.4. So m is adjacent to x, a contradiction.

Therefore, Gx is the largest independent set in ΓN?(M). In this case α(ΓN?(M)) =

2 and β(ΓN?(M)) = ν − 2 where ν = |V (G)| by Lemma 3.1. �

One of the important aims in graph theory is determining the chromatic number

of a given graph. Here we investigate the chromatic number of ΓN?(M) in some

special cases. It is well-known that χ(Kn) = n and χ(G) ≥ ω(G).

Remark 3.3. For all distinct x, y ∈ V (ΓN?(M)), if N(x) ∩ N(y) = ∅, then it is

obvious that ΓN?(M) is a perfect matching and χ(ΓN?(M)) = 2.

Theorem 3.4. Let ΓN?(M) be connected and non-complete. If there exist two

adjacent vertices x and y of ΓN?(M) with N(x) ∩N(y) 6= ∅ or for every two non-

adjacent vertices x and y of ΓN?(M), N(x) ∩N(y) 6= ∅, then χ(ΓN?(M)) ≥ 3.

Proof. Since ΓN?(M) is not complete, there exist non-adjacent vertices x and

y in ΓN?(M). By assumption, N(x) ∩ N(y) 6= ∅; so (−y) x t y and

l (−y) x t y l for some l ∈ N(y) ∩N(−y). Thus χ(ΓN?(M)) ≥ 3.

(It should be noted that if y = −y, then χ(ΓN?(M)) ≥ 3.) �

Theorem 3.5. (1) Let ΓN?(M) be connected with diam(ΓN?(M)) = 3 and

d(m,−m) = 3 for every m ∈ V (ΓN?(M)). Then χ(ΓN?(M)) = 2.

(2) Let ΓN?(M) be connected with diam(ΓN?(M)) = 2 and let 2m 6= 0 for

every m ∈ V (ΓN?(M)). Then χ(ΓN?(M)) = ν/2, where ν = |V (G)|.

Proof. (1) Let x ∈ V (ΓN?(M)). Considering our hypothesis and by the proof of

part 1 of Theorem 3.2, for every vertex t other than x and −x, t is adjacent to
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either −x or x (but not to both of them, otherwise, x t (−x), this implies

that d(x,−x) = 2). If t is adjacent to x, then t is not adjacent to −x; so t ∈ P−x,

otherwise, t ∈ Px. Hence Px ∪ P−x = V (ΓN?(M)). Now we assign color a to

elements of Px and color b to elements of P−x. Therefore, χ(ΓN?(M)) = 2.

(2) Let l1 ∈ V (ΓN?(M)). Here, by the proof of part 2 of Theorem 3.2, every

vertex m is adjacent to all other vertices except −m. At first we assign color

1 to l1 and −l1. Choose li(6= l1,−l1) ∈ V (ΓN?(M)) where i > 1. Since li is

adjacent to l1 and −l1 and all of other vertices except −li, we assign color i to

li and −li. Continuing in this manner for remaining vertices of ΓN?(M), one has

χ(ΓN?(M)) = ν/2 . �
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