A GENERALIZATION OF TOTAL GRAPHS OF MODULES

Ahmad Abbasi and Leila Hamidian Jahromi
Received: 15 September 2016; Revised: 15 June 2017
Communicated by Sarah Glaz

Abstract

Let R be a commutative ring, and let $M \neq 0$ be an R-module with a non-zero proper submodule N, where $N^{\star}=N-\{0\}$. Let $\Gamma_{N^{\star}}(M)$ denote the (undirected) simple graph with vertices $\left\{x \in M-N \mid x+x^{\prime} \in N^{\star}\right.$ for some $\left.x \neq x^{\prime} \in M-N\right\}$, where distinct vertices x and y are adjacent if and only if $x+y \in N^{\star}$. We determine some graph theoretic properties of $\Gamma_{N^{\star}}(M)$ and investigate the independence number and chromatic number.

Mathematics Subject Classification (2010): 13C99, 05C69
Keywords: Commutative ring, total graph, independence number

1. Introduction

Throughout, all rings are commutative with non-zero identity and all modules are unitary. Let R be a ring, $M \neq 0$ an R-module, and N a non-zero proper submodule of M. The total graph of a commutative ring R, denoted by $T(\Gamma(R)$), was introduced by Anderson and Badawi in [3], as the graph with all elements of R as vertices, and two distinct vertices $x, y \in R$ are adjacent if and only if $x+y \in Z(R)$, where $Z(R)$ denotes the set of zero-divisors of R. The concept of total graphs is a great concept that is usually used in commutative algebra to obtain many interesting graphs in this field. In [1] and [2], A. Abbasi and S. Habibi, gave a generalization of the total graph. They studied in [2] the total graph $T\left(\Gamma_{N}(M)\right)$ of a module M over a commutative ring with respect to a proper submodule N. It is an undirected graph with the vertex set M, where two distinct vertices m and n are adjacent if and only if $m+n \in M(N)$, where $M(N)=\{m \in M \mid r m \in N$ for some $r \in R-(N: M)\}$. It is easy to see that $M(N)$ is closed under multiplication by scalars. However, $M(N)$ may not be an additive subgroup of M. Here we introduce a generalization of total graphs, denoted by $\Gamma_{N^{\star}}(M)$, as the (undirected) simple graph with vertices $\left\{x \in M-N \mid x+x^{\prime} \in N^{\star}\right.$ for some $\left.x \neq x^{\prime} \in M-N\right\}$, where distinct vertices x and y are adjacent if and only if $x+y \in N^{\star}=N-\{0\}$.

Let G be a simple graph. If there is a path from any vertex to any other vertex of graph G, then G is said to be connected, and G is said to be totally disconnected

[^0]if there is no path connecting any pair of vertices. For vertices x_{1} and x_{2} of G, we define $d\left(x_{1}, x_{2}\right)$ to be the length of a shortest path between x_{1} and x_{2} $\left(d(x, x)=0\right.$ and $d\left(x_{1}, x_{2}\right)=\infty$ if there is no such path). The diameter of G is $\operatorname{diam}(G)=\sup \left\{d\left(x_{1}, x_{2}\right) \mid x_{1}\right.$ and x_{2} are vertices of $\left.G\right\}$. The girth of G, denoted by $\operatorname{gr}(G)$, is the length of its shortest cycle; $\operatorname{gr}(G)=\infty$ if G contains no cycles, in this case, G is called an acyclic graph. A complete graph is one which every two vertices are adjacent. A complete graph with n vertices is denoted by K^{n}. A bipartite graph G is a graph whose vertex set $V(G)$ can be partitioned into disjoint subsets U_{1} and U_{2} in such a way that each edge of G has one end vertex in U_{1} and the other in U_{2}. In particular, if E consists of all possible such edges, then G is called a complete bipartite graph and is denoted by $K^{m, n}$ when $\left|U_{1}\right|=m$ and $\left|U_{2}\right|=n$. For a vertex v of $G, \operatorname{deg}(v)$ denotes the degree of v and we set $\delta(G):=\min \{\operatorname{deg}(v)$: v is a vertex of $G\}$. A graph G is called k-regular if every vertex has degree k. A subgraph of G is the graph formed by a subset of the vertices and edges of G. Two subgraphs G_{1} and G_{2} of G are said to be disjoint if G_{1} and G_{2} have no common vertices and no vertex of G_{1} (resp., G_{2}) is adjacent (in G) to any vertex not in G_{1} (resp., G_{2}). The union of two graphs $G_{1}=\left(V_{1}, E_{1}\right)$ and $G_{2}=\left(V_{2}, E_{2}\right)$ is the graph $G_{1} \cup G_{2}$ whose vertex set is $V_{1} \cup V_{2}$ and whose edge set is $E_{1} \cup E_{2}$. A complete subgraph of G is called a clique. The clique number, $\omega(G)$, is the greatest integer $n \geq 1$ such that K^{n} is a subgraph of G, and $\omega(G)=\infty$ if $K^{n} \subseteq G$ for all $n \geq 1$. A matching in a graph G is a set of edges such that no two have a vertex in common. A spanning matching of a graph is said to be a perfect matching. A star graph S_{k} is the complete bipartite graph $K^{1, k}$. A Hamiltonian cycle is a cycle that visits each vertex exactly once. A graph that contains a Hamiltonian cycle is called a Hamiltonian graph. A walk is an alternating sequence of vertices and edges which are incident, that begins and ends with a vertex. A tour is a closed walk that traverses each edge at least once. An Eulerian tour in an undirected graph is a tour that traverses each edge exactly once. If such a tour exists, the graph is called Eulerian. A connected component (or just component) of an undirected graph is a maximal connected induced subgraph. An independent set is a set of vertices in a graph, no two of which are adjacent. That is, it is a set S of vertices such that for every two vertices in S, there is no edge connecting the two. The vertex independence number of G, often called the independence number, is the cardinality of a largest independent vertex set, i.e., the maximum size among all independent vertex sets of G. The independence number is denoted by $\alpha(G)$. A vertex cover of G is a set of vertices such that each edge of G is incident to at least one vertex of the set. The vertex cover number is the minimum size
among all vertex covers in the graph, denoted by $\beta(G)$. A coloring of a graph is a proper (vertex) coloring with colors such that no two vertices sharing the same edge have the same color. A coloring using k colors is called a (proper) k coloring. The smallest number of colors needed to color the vertices of G is called its chromatic number and is denoted by $\chi(G)$.

The main objective of this paper is to study some properties of the graph $\Gamma_{N^{\star}}(M)$. We also investigate the independence number and chromatic number of the graph $\Gamma_{N^{\star}}(M)$.

2. Properties of $\Gamma_{N^{\star}}(M)$

In this section, we investigate some properties of $\Gamma_{N^{\star}}(M)$. Throughout, N is a non-zero proper submodule of a non-zero R-module M, where R is commutative ring.

Definition 2.1. Let R be a commutative ring, M be an R-module, N be a submodule of M, and let $N^{\star}=N-\{0\}$. We define an undirected simple graph $\Gamma_{N^{\star}}(M)$ with vertices $\left\{x \in M-N \mid x+x^{\prime} \in N^{\star}\right.$ for some $\left.x \neq x^{\prime} \in M-N\right\}$, where distinct vertices x and y are adjacent if and only if $x+y \in N^{\star}$.

Remark 2.2. (1) $x \in V\left(\Gamma_{N^{\star}}(M)\right)$ if and only if $N(x) \neq \emptyset$, where $N(x)=$ $\left\{x^{\prime} \in V\left(\Gamma_{N^{\star}}(M)\right) \mid x^{\prime} \neq x, x+x^{\prime} \in N^{\star}\right\}$. So, there is no isolated vertex in $\Gamma_{N^{\star}}(M)$. In particular, $\Gamma_{N^{\star}}(M)$ is not totally disconnected.
(2) Let $x, y \in V\left(\Gamma_{N^{\star}}(M)\right)$ be adjacent with $x-y \in N^{\star}$, then $x+y-x+y \in N$ and $x+y+x-y \in N$; so $2 x, 2 y \in N$.
(3) Let $x, y \in V\left(\Gamma_{N^{\star}}(M)\right)$ with $x \neq y$ and $N(x) \cap N(y) \neq \emptyset$. Then $x-y \in N^{\star}$.
(4) $\Gamma_{N^{*}}(M)$ is a perfect matching if and only if for all $x, y \in V\left(\Gamma_{N^{*}}(M)\right)$ with $x \neq y$, one has $N(x) \cap N(y)=\emptyset$ or $|N(x)|=|N(y)|=1$.

Example 2.3. Let $M=\mathbb{Z}_{12}$ and $N=\{0,4,8\}$. Then $\Gamma_{N^{\star}}(M)$ has the following form:

Figure 1.
Theorem 2.4. If $x, y \in V\left(\Gamma_{N^{\star}}(M)\right)$ are distinct vertices connected by a path of length 3 with $x+y \neq 0$, then x, y are adjacent.

Proof. Let x, m_{1}, m_{2}, y be distinct vertices of $\Gamma_{N^{\star}}(M)$ with a path $x-m_{1}-m_{2}-y$. Since $x+m_{1}, m_{1}+m_{2}$ and $m_{2}+y \in N^{\star}$, we have $x+y=\left(x+m_{1}\right)+\left(y+m_{2}\right)-\left(m_{1}+\right.$ $\left.m_{2}\right) \in N$. This yields $x+y \in N^{*}$, since $x+y \neq 0$; so x and y are adjacent.

Corollary 2.5. Let $e=x x^{\prime}$ and $f=y y^{\prime}$ be edges of $\Gamma_{N^{*}}(M)$, where the sum of each end point of e and each end point of f does not equal zero. If two end points of e and f are adjacent, then so are the other two.

Proof. Without loss of generality, we may assume that x^{\prime} and y are adjacent; so there is a path $x-x^{\prime}-y-y^{\prime}$ in $\Gamma_{N^{\star}}(M)$. Therefore, x and y^{\prime} are adjacent, by Theorem 2.4.

Remark 2.6. In Corollary 2.5, the condition "does not equal zero" is necessary. For instance, in Example 2.3, set $x=5, y=9, x^{\prime}=3, y^{\prime}=11$. Then x and y^{\prime} are adjacent, but x^{\prime} and y are not.

Theorem 2.7. If $x, y \in V\left(\Gamma_{N^{\star}}(M)\right)$ are distinct vertices connected by a path of length 4, then there exists a path of length 2 between them. In particular, there is $t \in V\left(\Gamma_{N^{*}}(M)\right)$ with $t \in N(x) \cap N(y)$.

Proof. Let $x, m_{1}, m_{2}, m_{3}, y$ be distinct vertices of $\Gamma_{N^{\star}}(M)$ with a path $x-m_{1}-$ $m_{2}-m_{3}-y$. If $x+m_{3} \neq 0$ or $m_{1}+y \neq 0$, then x and m_{3}, or y and m_{1}, are adjacent by Theorem 2.4, as we desired. So let $x=-m_{3}$ and $y=-m_{1}$. Then we have a path $x\left(=-m_{3}\right)-m_{1}-m_{2}-m_{3}-y\left(=-m_{1}\right)$. Thus, $x\left(=-m_{3}\right)-\left(-m_{2}\right)-y(=$ $\left.-m_{1}\right)$ is a path of length 2 .

Theorem 2.8. Let $\Gamma_{N^{\star}}(M)$ be connected. If $t_{1}-t_{2} \in N^{\star}$ for all adjacent vertices t_{1} and t_{2} of $\Gamma_{N^{\star}}(M)$, then $\operatorname{diam}\left(\Gamma_{N^{\star}}(M)\right) \in\{1,2\}$.

Proof. For every path of length 3 such as $x-m_{1}-m_{2}-y$ in $\Gamma_{N^{\star}}(M)$, if $x+y \neq 0$, then x and y are adjacent by Theorem 2.4 and $\operatorname{diam}\left(\Gamma_{N^{\star}}(M)\right) \leq 2$. Let $x=-y$. Then there is a path $x(=-y)-m_{1}-m_{2}-y$. Our hypothesis yields $x-m_{2}$, and we are done.

Theorem 2.9. $\operatorname{diam}\left(\Gamma_{N^{\star}}(M)\right) \in\{1,2,3, \infty\}$. In particular, if $\Gamma_{N^{\star}}(M)$ is connected, then $\operatorname{diam}\left(\Gamma_{N^{\star}}(M)\right) \leq 3$.

Proof. By Theorem 2.7, we can reduce every path of length greater than 3 to a path of length at most 3 .

Example 2.10. Let $M=\mathbb{Z}_{8}$ and $N=\{0,2,4,6\}$. Then $\Gamma_{N^{\star}}(M)$ has the following form:

Figure 2.

Theorem 2.11. Let $\Gamma_{N^{\star}}(M)$ be connected. Then it is complete if and only if $2 t=0$ for every $t \in V\left(\Gamma_{N^{*}}(M)\right)$.

Proof. Suppose that $\Gamma_{N^{\star}}(M)$ is complete and $2 t \neq 0$ for some $t \in V\left(\Gamma_{N^{\star}}(M)\right)$. Then $-t$ is a vertex and $0=t+(-t) \in N^{\star}$, which is a contradiction. Suppose $2 t=0$ for all vertices t. Then $\operatorname{diam}\left(\Gamma_{N^{\star}}(M)\right) \leq 3$ by Theorem 2.9. Let $x-t-y$ be a path in $\Gamma_{N^{\star}}(M)$. Then by part (3) of Remark $2.2, x+y \in N^{\star}$ (since by assumption $2 y=0$ implies that $y=-y$). Let $d(x, y)=3$. So there is a path $x-t_{1}-t_{2}-y$ in $\Gamma_{N^{\star}}(M)$. If $x+y=0$, then $x=-y=y$ (since $2 y=0$); this contradicts our assumption, so $x+y \neq 0$. Hence, x and y are adjacent by Theorem 2.4. So, $\Gamma_{N^{\star}}(M)$ is complete.

Theorem 2.12. If $2 x \neq 0$ for every $x \in V\left(\Gamma_{N^{\star}}(M)\right)$, then $g r\left(\Gamma_{N^{\star}}(M)\right) \in\{3,4,6, \infty\}$.
Proof. (1) It is clear that $\Gamma_{N^{\star}}(M)$ has more than two vertices. For all $x \in$ $V\left(\Gamma_{N^{\star}}(M)\right)$, let $|N(x)|=1$. Then $\operatorname{gr}\left(\Gamma_{N^{\star}}(M)\right)=\infty$, since in this case $\Gamma_{N^{\star}}(M)$ is just a perfect matching.
(2) Suppose there is $t \in V\left(\Gamma_{N^{\star}}(M)\right)$ such that $|N(t)| \geq 2$.
(1') If for all vertices t with $|N(t)| \geq 2$, we have $|N(x)|=1$ for every $x \in N(t)$, then there are not any cycles in $\Gamma_{N^{\star}}(M)$.
(2') Suppose there exists $y \in N(t)$ such that $|N(y)| \geq 2$ and this condition is satisfied just for y. There is an $x \in N(t)$ such that $|N(x)|=1$, since $|N(t)| \geq$ 2. If $x \neq-y$, then by part 3 of Remark 2.2 , one has $(-y)-x-t-y$ and if $x=-y$, then $(-y)-t-y-m$ for some $m \in N(y)$. This implies that $(-m)-(-y)-t-y-m$, which contradicts $|N(x)|=1$. So, we should have at least two vertices $x, y \in N(t)$ such that $|N(x)|,|N(y)| \geq 2$. If x and y are adjacent, then $x-t-y-x$ and $\operatorname{gr}\left(\Gamma_{N^{*}}(M)\right)=3$. We assume that x and y are not adjacent for every $x, y \in N(t)$.
(a) Let $|N(x) \cap N(y)|=1$. If $2 t \in N^{\star}$, then $x+t, y+t \in N^{\star}$; so $x+y+2 t \in N$. This yields $x+y \in N$ and so $x+y=0$ (since x and y are not adjacent). Therefore, $x=-y$ and there exists a path $(-y)-t-y-(-t)$. This implies that $-y$ and
$-t$ are adjacent. So, $-t \in N(x) \cap N(y)$ where contradicts our assumption, since $|N(x) \cap N(y)|=1$.

Now, assume that $2 t \notin N^{\star}$ and $|N(t)|=2$. There is a path $(-y)-x-t-y$ $-(-x)$ in $\Gamma_{N^{\star}}(M)$ by part 3 of Remark 2.2; so $(-t)-(-y)-x-t-y-(-x)$ and $-t$ and $-x$ are adjacent. Hence $\operatorname{gr}\left(\Gamma_{N^{\star}}(M)\right) \leq 6$. If $|N(t)| \geq 3$, there is a path $m-t-y-(-x)$ for some vertex $m \neq x$. Since $m-x \neq 0$, one has $\operatorname{gr}\left(\Gamma_{N^{\star}}(M)\right) \leq 4$, by Theorem 2.4. If $-x, t$ are adjacent then there is a path $(-x)-t-y-(-x)$ and $\operatorname{gr}\left(\Gamma_{N^{\star}}(M)\right)=3$.
(b) Let $|N(x) \cap N(y)| \geq 2$. There is a path $m-x-t-y-m$. Hence $\Gamma_{N^{*}}(M)$ contains a 4 -cycle and $\operatorname{gr}\left(\Gamma_{N^{\star}}(M)\right) \leq 4$.

Corollary 2.13. $\Gamma_{N^{\star}}(M)$ is an acyclic graph if and only if it is a disjoint union of some star components.

Proof. Suppose that graph $\Gamma_{N^{\star}}(M)$ is an acyclic graph. If $\Gamma_{N^{\star}}(M)$ has a non-star component, then there exists at least one path of length 3 as $x-t_{1}-t_{2}-y$ in $\Gamma_{N^{\star}}(M)$. We assumed that $\Gamma_{N^{\star}}(M)$ is an acyclic graph, so $x+y=0$, by Theorem 2.4. Hence, we have a path $\left(-t_{2}\right)-x-t_{1}-t_{2}-y$. Theorem 2.7 yields there is a cycle in $\Gamma_{N^{*}}(M)$, which contradicts our assumption. Hence all paths are of lengths 1 or 2 . This implies that all components are in the form of stars.

Theorem 2.14. The following statements hold for the clique number of $\Gamma_{N^{\star}}(M)$.
(1) $\omega\left(\Gamma_{N^{\star}}(M)=2\right.$ if $N(x) \cap N(y)=\emptyset$ for every distinct $x, y \in V\left(\Gamma_{N^{\star}}(M)\right)$.
(2) If there exist adjacent vertices x and y in $\Gamma_{N^{\star}}(M)$ such that $N(x) \cap N(y) \neq$ \emptyset, then $\omega\left(\Gamma_{N^{\star}}(M)\right) \geq 3$.
(3) If $2 t=0$ for all $t \in V\left(\Gamma_{N^{\star}}(M)\right)$ and there are adjacent vertices x and y in $\Gamma_{N^{\star}}(M)$ such that $x^{\prime}+y^{\prime} \neq 0$ for some $x^{\prime} \in N(x)$ and $y^{\prime} \in N(y)$, then $\omega\left(\Gamma_{N^{\star}}(M)\right) \geq 4$.

Proof. (1) It is clear, since $\Gamma_{N^{\star}}(M)$ is a perfect matching.
(2) It is clear, since there is a triangular cycle.
(3) There is a path $x^{\prime}-x-y-y^{\prime}$ in $\Gamma_{N^{\star}}(M)$. In view of Theorem 2.4, x^{\prime} and y^{\prime} are adjacent. So, x^{\prime}, y and x, y^{\prime} are adjacent by part 3 of Remark 2.2. Hence $\omega\left(\Gamma_{N^{\star}}(M) \geq 4\right.$.

Definition 2.15. (See [5, Definition 2.9]) Let $m \in M-N$. We call the subset $m+N^{\star}$ a column of $\Gamma_{N^{\star}}(M)$. If $2 m \in N^{\star}$ for every $m \in M-N$, then we call $m+N^{\star}$ a connected column of $\Gamma_{N^{\star}}(M)$.

Theorem 2.16. Suppose $\Gamma_{N^{\star}}(M)$ contains at least one connected column and $\left|N^{\star}\right| \geq 4$ with $2 m \neq 0$ for every $m \in N^{\star}$. Then $\operatorname{gr}\left(\Gamma_{N^{\star}}(M)=3\right.$.

Proof. Let $x+N^{\star}$ be a connected column in $\Gamma_{N^{\star}}(M)$. Then $2 x \in N^{\star}$. Let $n \neq 2 x,-2 x$ in such a way that $n \in N^{\star}$. Then $x-(x+n)-(x-n)-x$ is a cycle of length 3 in $\Gamma_{N^{*}}(M)$.

Recall that a vertex x of a connected graph G is called a cut-point of G if there are vertices u, w of G such that x lies on every path from u to w (with $x \neq u$, $x \neq w)$. Equivalently, for a connected graph G, x is called a cut-point of G if $G-\{x\}$ is not connected.

Theorem 2.17. Let $\Gamma_{N^{\star}}(M)$ be connected with $2 x \neq 0$ for all $x \in V\left(\Gamma_{N^{\star}}(M)\right)$. Then $\Gamma_{N^{\star}}(M)$ has no cut-points.

Proof. Assume the vertex x of $\Gamma_{N^{\star}}(M)$ is a cut-point. Then there exist vertices u, w of $\Gamma_{N^{*}}(M)$ such that x lies on every path from u to w (therefore, $x \neq u, w$). By Theorem 2.9, the shortest path from u to w is of length 2 or 3 .
Case 1. Suppose $u-x-w$ is a path of shortest length from u to w. There is a path $(-w)-u-x-w-(-u)$ in $\Gamma_{N^{\star}}(M)$. So there exists a path $u-(-w)-(-x)$ - $(-u)-w$ by part 3 of Remark 2.2, which contradicts our assumption.

Case 2. Suppose (without loss of generality) that $u-x-y-w$ is a path of shortest length from u to w in $\Gamma_{N^{\star}}(M)$. Therefore, $N(u) \cap N(w)=\emptyset$. Since u and w are not adjacent, by Theorem 2.4, we have $u+w=0$ and $(-y)-u(=$ $-w)-x-y-w$. So, there exists a path $u-(-y)-(-x)-w$, which contradicts our assumption.

Remark 2.18. Suppose there is a path as $u-t-w$ in $\Gamma_{N^{*}}(M)$ such that $|N(u)|=$ $|N(w)|=1$. Then $\Gamma_{N^{\star}}(M)$ has a cut-point.

Theorem 2.19. The degree of every vertex x of $\Gamma_{N^{\star}}(M)$ is either $\left|N^{\star}\right|$ or $\left|N^{\star}\right|-1$. In particular, if $2 m \in N^{\star}$ for every vertex m of $\Gamma_{N^{\star}}(M)$, then $\Gamma_{N^{\star}}(M)$ is a $\left|N^{\star}\right|-1-$ regular graph.

Proof. Let $x \in V\left(\Gamma_{N^{\star}}(M)\right)$. If x is adjacent to y, then $x+y=a \in N^{\star}$ and hence, $y=a-x$ for some $a \in N^{\star}$. There are two cases:
Case 1. Suppose that $2 x \in N^{\star}$. Then x is adjacent to $a-x$ for every $a \in$ $N^{\star}-\{2 x\}$. Thus the degree of x is $\left|N^{\star}\right|-1$. In particular, if $2 m \in N^{\star}$ for every $m \in V\left(\Gamma_{N^{\star}}(M)\right)$, then $\Gamma_{N^{\star}}(M)$ is a $\left|N^{\star}\right|-1$-regular graph.
Case 2. Suppose that $2 x \notin N^{\star}$. Then x is adjacent to $a-x$ for all $a \in N^{\star}$. Thus the degree of x is $\left|N^{\star}\right|$.

In general, it is not easy to determine when the graph $\Gamma_{N^{\star}}(M)$ is Eulerian or Hamiltonian. Here we consider $M=\mathbb{Z}_{n}$, for some positive integer n, and investigate being Eulerian or Hamiltonian (or both) for $\Gamma_{N^{\star}}(M)$.

Lemma 2.20. The followings hold.
(1) [4, Theorem 3.4] If G is a simple graph with $\nu \geq 3$ and $\delta \geq \nu / 2$, where $\nu=|V(G)|$, then G is Hamiltonian.
(2) $[4$, Theorem 1.4] A connected graph G is Eulerian if and only if it contains no vertices of odd degree.

Example 2.21. Let $M=\mathbb{Z}_{n}$ and $N=2 \mathbb{Z}_{n}$ with $n \geq 8$. Considering Theorem 2.19, $\Gamma_{N^{\star}}(M)$ is $\left|N^{\star}\right|-1$-regular; so $\delta=\left|N^{\star}\right|-1=|N|-2 \geq N / 2$, where $|N|(=n / 2) \geq 4$. Hence by Lemma 2.20, $\Gamma_{N^{\star}}(M)$ is Hamiltonian.

Remark 2.22. If $\Gamma_{N^{\star}}(M)$ is connected, $2 x \notin N^{\star}$ for every $x \in V\left(\Gamma_{N^{\star}}(M)\right)$, and if $\left|N^{\star}\right|$ is an even integer, then $\Gamma_{N^{\star}}(M)$ is Eulerian.

Remark 2.23. Let $M=\mathbb{Z}_{n}$ and $N=k \mathbb{Z}_{n}$ (so, $N=d \mathbb{Z}_{n}$ for $d=(k, n)$), and let $\Gamma_{N^{\star}}(M)$ be connected.
(1) If n is an odd integer, then $\left|N^{\star}\right|$ is even. Let $2 x \in N^{\star}$ for some $x \in$ $V\left(\Gamma_{N^{*}}(M)\right)$. Then $2 x=t d$ for some $t \in \mathbb{Z}$. Hence $x \in N$ is not a vertex. So $2 x \notin N^{\star}$ for every $x \in V\left(\Gamma_{N^{\star}}(M)\right)$. Hence, by Lemma 2.20 and Theorem 2.19, $\Gamma_{N^{\star}}(M)$ is Eulerian.
(2) Assume that n and k are even integers; then d is an even integer. By Theorem 2.19, the degree of every vertex x is $\left|N^{\star}\right|$ or $\left|N^{\star}\right|-1$.
(i) Let $n=2^{l}$ for some $l \in \mathbb{N}$. If $d>2$, then there exists at least one vertex x such that $2 x \notin N^{\star}$. So, the degree of the vertex x is $\left|N^{\star}\right|$. Note that $\left|N^{\star}\right|$ is an odd integer. Hence by Lemma 2.20, $\Gamma_{N^{\star}}(M)$ is not Eulerian. If $d=2$, then by Theorem 2.19, $\Gamma_{N^{\star}}(M)$ is a $\left|N^{\star}\right|-1$-regular graph, so it is Eulerian.
(ii) Let $n=2^{l} m$ for some $l, m \in \mathbb{N}$ such that $(2, m)=1$. Since $d=2 m^{\prime} \in N^{\star}$ for some $m^{\prime} \in V\left(\Gamma_{N^{\star}}(M)\right)$, the degree of vertex m^{\prime} is $\left|N^{\star}\right|-1$. Note that $n=t d$ for some $t \in \mathbb{Z}$. If t is an odd integer, then $\left|N^{\star}\right|$ is even. So the degree of m^{\prime} is odd and $\Gamma_{N^{\star}}(M)$ is not Eulerian. If t is an even integer, then $\left|N^{\star}\right|$ is odd. We have two cases.
$\left(i^{\prime}\right)$ If $d>2$, there exists at least one vertex l such that $2 l \notin N^{\star}$. Therefore, by Theorem 2.19, $\operatorname{deg}(l)=\left|N^{\star}\right|$, hence $\Gamma_{N^{*}}(M)$ is not Eulerian.
($i i^{\prime}$) If $d=2$, by Theorem 2.19, $\Gamma_{N^{\star}}(M)$ is a $\left|N^{\star}\right|-1$-regular graph and so it is Eulerian.
(3) Let n be an even integer and k be an odd integer. Since $\left|N^{\star}\right|$ is an odd integer and by part (1), $2 x \notin N^{\star}$ for every $x \in V\left(\Gamma_{N^{\star}}(M)\right), \Gamma_{N^{\star}}(M)$ is not Eulerian.

3. Independence number and chromatic number of $\Gamma_{N^{\star}}(M)$

One of the interesting computing problems in graph theory is determining the independence number of a graph. Here we obtain the independence number of $\Gamma_{N^{\star}}(M)$ with some special conditions. It is well-known that $\alpha\left(K^{n}\right)=1$.

Lemma 3.1. [4, Theorem 1.7]
(1) A set is independent if and only if its complement is a vertex cover.
(2) The sum of the size of the largest independent set $\alpha(G)$ and the size of a minimum vertex cover $\beta(G)$ is equal to the number of vertices in the graph.

Theorem 3.2. Let $\Gamma_{N^{\star}}(M)$ be connected and let $\nu=|V(G)|$.
(1) If $\operatorname{diam}\left(\Gamma_{N^{\star}}(M)\right)=3$ and $d(m,-m)=3$ for every $m \in V\left(\Gamma_{N^{\star}}(M)\right)$, then $\alpha\left(\Gamma_{N^{\star}}(M)\right)=\beta\left(\Gamma_{N^{\star}}(M)\right)=\nu / 2$.
(2) If $\operatorname{diam}\left(\Gamma_{N^{\star}}(M)\right)=2$ and $2 m \neq 0$ for every $m \in V\left(\Gamma_{N^{\star}}(M)\right)$, then $\alpha\left(\Gamma_{N^{\star}}(M)\right)=2$ and $\beta\left(\Gamma_{N^{\star}}(M)\right)=\nu-2$.

Proof. (1) Choose $x \in V\left(\Gamma_{N^{\star}}(M)\right)$. Put $A_{x}=\left\{-y \in V\left(\Gamma_{N^{\star}}(M)\right) \mid y\right.$ is adjacent to $x\}, A_{x}^{\prime}=\left\{y \in V\left(\Gamma_{N^{*}}(M)\right) \mid y \neq-x\right.$ and y is not adjacent to $\left.x\right\}$ and $P_{x}=A_{x} \cup A_{x}^{\prime}$. For every $n \in V\left(\Gamma_{N^{\star}}(M)\right)-\{x,-x\}, n \in P_{x}$ or $-n \in P_{x}$.
Claim: P_{x} is an independent set in $\Gamma_{N^{\star}}(M)$.
By way of contradiction, suppose there exist $n_{1}, n_{2} \in P_{x}$ that they are adjacent. Since $n_{1}, n_{2} \in P_{x}$, so n_{1}, n_{2} are not adjacent to x. We claim that for every vertex t other than x and $-x, t$ is adjacent to either $-x$ or x (but not to both of them, otherwise, $x-t-(-x)$, this yields $d(x,-x)=2)$. Hence, n_{1}, n_{2} are not adjacent to x, which implies that n_{1}, n_{2} are adjacent to $-x$.
Suppose there exists $t(\neq x,-x) \in V\left(\Gamma_{N^{\star}}(M)\right)$ such that t is not adjacent to x and $-x$. Since $d(x,-x)=3$, there exists a path $x-m_{1}-m_{2}-(-x)$ in $\Gamma_{N^{\star}}(M)$. It is clear that $d(t, x)=d(t,-x)=2$; otherwise, t is adjacent to x or $-x$. So, there exists $l \in V\left(\Gamma_{N^{\star}}(M)\right)$ such that $t-l-x$. There is a path $t-l-x-m_{1}-m_{2}-(-x)$ such that t is adjacent to m_{1} (since m_{1} and x are adjacent and $d(t,-x)=2$, so $\left.t \neq-m_{1}\right)$. Hence $t-m_{1}-m_{2}-(-x)$ implies that t and $-x$ are adjacent (since $t \neq x$) which is a contradiction. (Therefore, for every vertex t, all other vertices except $-t$ are adjacent to t or $-t$.) Since n_{1}, n_{2} are not adjacent to x, so n_{1}, n_{2} are adjacent to $-x$ and $n_{1}-(-x)-n_{2}-\left(-n_{1}\right)$ which by assumption n_{1} and n_{2} are adjacent. So, $d\left(n_{1},-n_{1}\right)=2$, a contradiction. This shows that P_{x} is independent. On the other hand, for every $x \neq y \in V\left(\Gamma_{N^{\star}}(M)\right)$, one has
$\left|P_{x}\right|=\left|P_{y}\right|$. We have to show that P_{x} is the largest independent set in $\Gamma_{N^{\star}}(M)$. Suppose there exists an independent set U in $\Gamma_{N^{\star}}(M)$ such that $|U|>\left|P_{x}\right|=|\nu| / 2$, where $\nu=|V(G)|$. So, there exists $g \in V\left(\Gamma_{N^{*}}(M)\right)$ such that $g,-g \in U$. This implies that U is not independent. Hence P_{x} is the largest independent set in $\Gamma_{N^{\star}}(M)$ and $\alpha\left(\Gamma_{N^{\star}}(M)\right)=\beta\left(\Gamma_{N^{\star}}(M)\right)=\nu / 2$ by Lemma 3.1.
(2) Let $\Gamma_{N^{\star}}(M)$ be connected with $\operatorname{diam}\left(\Gamma_{N^{\star}}(M)\right)=2$ and let $2 m \neq 0$ for every $m \in V\left(\Gamma_{N^{\star}}(M)\right)$. Put $G_{x}=\{x,-x\}$ for some $x \in V\left(\Gamma_{N^{\star}}(M)\right)$. We show that G_{x} is the largest independent set in $\Gamma_{N^{\star}}(M)$.
Claim: Every vertex x is adjacent to every other vertex except $-x$.
By way of contradiction, assume that there is $m \in V\left(\Gamma_{N^{*}}(M)\right)$ such that $d(m, x)=$ 2 for some $x(\neq-m) \in V\left(\Gamma_{N^{\star}}(M)\right)$. So there is a path $m-t-x$ in $\Gamma_{N^{\star}}(M)$ for some $t \in V\left(\Gamma_{N^{\star}}(M)\right)$; therefore, $(-x)-m-t-x$ such that x and $-m$ are adjacent. Moreover, $d(x,-x)=2$. Hence, there is a path $x-l-(-x)$ in $\Gamma_{N^{\star}}(M)$ for some $l \in V\left(\Gamma_{N^{*}}(M)\right)$. Now, the path $(-m)-x-l-(-x)$ implies that $-m$ is adjacent to $-x$ by Theorem 2.4. So m is adjacent to x, a contradiction.
Therefore, G_{x} is the largest independent set in $\Gamma_{N^{\star}}(M)$. In this case $\alpha\left(\Gamma_{N^{\star}}(M)\right)=$ 2 and $\beta\left(\Gamma_{N^{\star}}(M)\right)=\nu-2$ where $\nu=|V(G)|$ by Lemma 3.1.

One of the important aims in graph theory is determining the chromatic number of a given graph. Here we investigate the chromatic number of $\Gamma_{N^{\star}}(M)$ in some special cases. It is well-known that $\chi\left(K^{n}\right)=n$ and $\chi(G) \geq \omega(G)$.

Remark 3.3. For all distinct $x, y \in V\left(\Gamma_{N^{\star}}(M)\right)$, if $N(x) \cap N(y)=\emptyset$, then it is obvious that $\Gamma_{N^{\star}}(M)$ is a perfect matching and $\chi\left(\Gamma_{N^{\star}}(M)\right)=2$.

Theorem 3.4. Let $\Gamma_{N^{\star}}(M)$ be connected and non-complete. If there exist two adjacent vertices x and y of $\Gamma_{N^{\star}}(M)$ with $N(x) \cap N(y) \neq \emptyset$ or for every two nonadjacent vertices x and y of $\Gamma_{N^{\star}}(M), N(x) \cap N(y) \neq \emptyset$, then $\chi\left(\Gamma_{N^{\star}}(M)\right) \geq 3$.

Proof. Since $\Gamma_{N^{\star}}(M)$ is not complete, there exist non-adjacent vertices x and y in $\Gamma_{N^{\star}}(M)$. By assumption, $N(x) \cap N(y) \neq \emptyset ;$ so $(-y)-x-t-y$ and $l-(-y)-x-t-y-l$ for some $l \in N(y) \cap N(-y)$. Thus $\chi\left(\Gamma_{N^{\star}}(M)\right) \geq 3$.
(It should be noted that if $y=-y$, then $\chi\left(\Gamma_{N^{\star}}(M)\right) \geq 3$.)
Theorem 3.5. (1) Let $\Gamma_{N^{\star}}(M)$ be connected with $\operatorname{diam}\left(\Gamma_{N^{\star}}(M)\right)=3$ and $d(m,-m)=3$ for every $m \in V\left(\Gamma_{N^{\star}}(M)\right)$. Then $\chi\left(\Gamma_{N^{\star}}(M)\right)=2$.
(2) Let $\Gamma_{N^{\star}}(M)$ be connected with $\operatorname{diam}\left(\Gamma_{N^{\star}}(M)\right)=2$ and let $2 m \neq 0$ for every $m \in V\left(\Gamma_{N^{\star}}(M)\right)$. Then $\chi\left(\Gamma_{N^{\star}}(M)\right)=\nu / 2$, where $\nu=|V(G)|$.

Proof. (1) Let $x \in V\left(\Gamma_{N^{\star}}(M)\right)$. Considering our hypothesis and by the proof of part 1 of Theorem 3.2, for every vertex t other than x and $-x, t$ is adjacent to
either $-x$ or x (but not to both of them, otherwise, $x-t-(-x)$, this implies that $d(x,-x)=2$). If t is adjacent to x, then t is not adjacent to $-x$; so $t \in P_{-x}$, otherwise, $t \in P_{x}$. Hence $P_{x} \cup P_{-x}=V\left(\Gamma_{N^{\star}}(M)\right)$. Now we assign color a to elements of P_{x} and color b to elements of P_{-x}. Therefore, $\chi\left(\Gamma_{N^{\star}}(M)\right)=2$.
(2) Let $l_{1} \in V\left(\Gamma_{N^{\star}}(M)\right)$. Here, by the proof of part 2 of Theorem 3.2, every vertex m is adjacent to all other vertices except $-m$. At first we assign color 1 to l_{1} and $-l_{1}$. Choose $l_{i}\left(\neq l_{1},-l_{1}\right) \in V\left(\Gamma_{N^{\star}}(M)\right)$ where $i>1$. Since l_{i} is adjacent to l_{1} and $-l_{1}$ and all of other vertices except $-l_{i}$, we assign color i to l_{i} and $-l_{i}$. Continuing in this manner for remaining vertices of $\Gamma_{N^{\star}}(M)$, one has $\chi\left(\Gamma_{N^{\star}}(M)\right)=\nu / 2$.

Acknowledgment. The authors would like to thank the referee for the valuable suggestions and comments.

References

[1] A. Abbasi and S. Habibi, The total graph of a commutative ring with respect to proper ideals, J. Korean Math. Soc., 49(1) (2012), 85-98.
[2] A. Abbasi and S. Habibi, The total graph of a module over a commutative ring with respect to proper submodules, J. Algebra Appl., 11(3) (2012), 1250048 (13 $\mathrm{pp})$.
[3] D. F. Anderson and A. Badawi, The total graph of a commutative ring, J. Algebra, 320(7) (2008), 2706-2719.
[4] J. A. Bondy and U. S. R. Murty, Graph Theory with Applications, American Elsevier Publishing Co., Inc., New York, 1976.
[5] S. P. Redmond, An ideal-based zero-divisor graph of a commutative ring, Comm. Algebra, 31(9) (2003), 4425-4443.

Ahmad Abbasi (Corresponding Author)
Department of Pure Mathematics
Faculty of Mathematical Sciences
University of Guilan
Rasht, Iran
e-mail: aabbasi@guilan.ac.ir

Leila Hamidian Jahromi

Department of Pure Mathematics
Faculty of Mathematical Sciences
University of Guilan, University Campus 2
Rasht, Iran
e-mail: acz459@yahoo.com

[^0]: This work has been supported by the University of Guilan.

