

INTERNATIONAL ELECTRONIC JOURNAL OF ALGEBRA Volume 22 (2017) 39-44 DOI: 10.24330/ieja.325920

A GG NOT FH SEMISTAR OPERATION ON MONOIDS

Ryûki Matsuda

Received: 17 September 2016; Revised: 27 March 2017 Communicated by Sait Halıcıoğlu

ABSTRACT. Let S be a g-monoid with quotient group q(S). Let $\overline{F}(S)$ (resp., F(S), f(S)) be the S-submodules of q(S) (resp., the fractional ideals of S, the finitely generated fractional ideals of S). Briefly, set f := f(S), g := F(S), $h := \overline{F}(S)$, and let $\{x, y\}$ be a subset of the set $\{f, g, h\}$ of symbols. For a semistar operation \star on S, if $(E + E_1)^{\star} = (E + E_2)^{\star}$ implies $E_1^{\star} = E_2^{\star}$ for every $E \in \mathbf{x}$ and every $E_1, E_2 \in \mathbf{y}$, then \star is called xy-cancellative. In this paper, we prove that a gg-cancellative semistar operation need not be fh-cancellative.

Mathematics Subject Classification (2010): 13A15 Keywords: Semistar operation, monoid

1. Introduction

A subsemigroup $S \supseteq \{0\}$ of a torsion-free abelian additive group is called *a* grading monoid (or, a g-monoid) (D. Northcott [12]). We will use, for g-monoids, the following terminologies: module, ideal, valuation, star operation analogously to them for rings (cf., [4]). Thus, let S be a g-monoid, and let X be a non-empty set. Assume that, for every $s \in S$ and $x \in X$, an element s + x of X is defined so that 0 + x = x and, for every s_1 and s_2 in S, $(s_1 + s_2) + x = s_1 + (s_2 + x)$, then Xis called a module over S (or, an S-module). For the general theory of g-monoids, we refer to [5] and [7]. The additive group $q(S) := \{s - s' \mid s, s' \in S\}$ is called the quotient group of S. Let $\overline{F}(S)$ be the set of S-submodules of q(S). An element Eof $\overline{F}(S)$ is called a fractional ideal of S if $s + E \subseteq S$ for some $s \in S$. Let F(S) be the set of fractional ideals of S. A fractional ideal I is called an ideal of S if $I \subseteq S$. Let $f(S) := \{E \in F(S) \mid E \text{ is a finitely generated fractional ideal}\}$. A mapping $\star: \overline{F}(S) \longrightarrow \overline{F}(S), E \longmapsto E^*$ is called a semistar operation on S if it satisfies the following properties for every $x \in q(S)$ and $E, F \in \overline{F}(S)$:

- (1) $(x+E)^* = x + E^*;$
- (2) $E \subseteq E^*$ and $(E^*)^* = E^*$;
- (3) $E \subseteq F$ implies $E^* \subseteq F^*$.

Set f := f(S), g := F(S), $h := \overline{F}(S)$, and let $\{x, y\}$ be a subset of the set $\{f, g, h\}$. For a semistar operation \star on S, if $(E + E_1)^{\star} = (E + E_2)^{\star}$ implies $E_1^{\star} = E_2^{\star}$ for every $E \in x$ and $E_1, E_2 \in y$, then \star is called *xy-cancellative*. A mapping $\star: F(S) \longrightarrow F(S), E \longmapsto E^{\star}$ is called *a star operation on* S if it satisfies the following properties for every $x \in q(S)$ and $E, F \in F(S)$:

- (1) $S^{\star} = S;$
- (2) $(x+E)^* = x + E^*;$
- (3) $E \subseteq E^*$ and $(E^*)^* = E^*$;
- (4) $E \subseteq F$ implies $E^* \subseteq F^*$.

We refer to M. Fontana and K. A. Loper [1] and F. Halter-Koch [6] for star and semistar operations and their Kronecker function rings.

The mapping $E \mapsto q(S)$ from $\overline{F}(S)$ to $\overline{F}(S)$ for every $E \in \overline{F}(S)$ is a semistar operation, called the *e-semistar operation on* S. Also, a star (resp., semistar) operation \star on S is said to have finite type, if $E^{\star} = \bigcup \{F^{\star} \mid F \in f(S) \text{ with } F \subseteq E\}$ for every $E \in F(S)$ (resp., $E \in \overline{F}(S)$). Let Γ be a totally ordered abelian additive group, and let v be a mapping from q(S) onto Γ . If v(a+b) = v(a) + v(b) for every $a, b \in q(S)$, then v is called *a valuation on* q(S). Γ is called the value group of v, and the set $V := \{a \in q(S) \mid v(a) \geq 0\}$ is called the valuation semigroup belonging to v. If $V \supseteq S$, then V is called *a valuation oversemigroup of* S.

Let $\{V_{\lambda} \mid \lambda \in \Lambda\}$ be a non-empty set of valuation oversemigroups of S. Then the mapping $E \longmapsto \bigcap_{\lambda \in \Lambda} (E + V_{\lambda})$ from $\overline{F}(S)$ to $\overline{F}(S)$ is a semistar operation on S, called the semistar operation defined by $\{V_{\lambda} \mid \lambda \in \Lambda\}$. This semistar operation is fh-cancellative (cf., [4, Theorem 32.5]). If $\{V_{\lambda} \mid \lambda \in \Lambda\}$ is the set of all valuation oversemigroups of S, the semistar operation defined by the set is called the *b*semistar operation on S.

In this paper, we prove that a gg-cancellative semistar operation need not be fh-cancellative.

2. Preliminary results

Various implications hold among the cancellation properties of semistar operations:

Proposition 2.1. ([3], [8], [9], [10], [11]) Let \star be a semistar operation on a gmonoid S.

(1) \star is hh-cancellative if and only if \star coincides with the e-semistar operation.

We have the following diagram of implications:

$$\begin{split} hh = hg = hf & \Longrightarrow & gh & \Longrightarrow & gg & \Longrightarrow & gf \\ & \downarrow & & \downarrow & & \downarrow \\ & fh & \Longrightarrow & fg & \Longrightarrow & ff \end{split}$$

- (2) A gh-cancellative semistar operation of finite type need not be hh-cancellative.
 A gf-cancellative semistar operation of finite type need not be gg-cancellative.
 An fh-cancellative semistar operation of finite type need not be gf-cancellative.
 A gg-cancellative semistar operation of finite type need not be gh-cancellative.
- (3) A gf-cancellative semistar operation need not be fg-cancellative.

Remark 2.2. ([2, Lemma 3]) We have a simplified diagram of implications in the case of finite type semistar operations:

 $hh = hg = hf \implies gh \implies gg \implies gf \implies fh = fg = ff.$

3. A gg not fh semistar operation

Throughout the section, let u_1, u_2, u_3, \cdots be an infinite set of indeterminates over a torsion-free abelian additive group L. Define $S_0 := \{a + k_1u_1 + \cdots + k_nu_n \mid a \in L, 0 \leq k_i \in \mathbb{Z}, \text{ and } 0 < n \in \mathbb{Z}\}$. Then S_0 is a g-monoid, and $S_0 \supseteq M := \{a+k_1u_1+\cdots+k_nu_n \mid k_i > 0 \text{ for some } i\}$ is the unique maximal ideal of S_0 . Let $q(S_0)$ be the quotient group of S_0 . We have $q(S_0) = \{a+l_1u_1+\cdots+l_nu_n \mid a \in L, l_i \in \mathbb{Z}\}$.

First, we review the following.

Lemma 3.1. ([11]) Let S be a g-monoid, and let S_0 be the above g-monoid.

- (1) For every $E \in \overline{F}(S)$, we have $E^b = \{x \in q(S) \mid nx \in nE \text{ for some positive integer } n\}$, where $nE := \{x_1 + \dots + x_n \mid every \ x_i \in E\}$.
- (2) The b-semistar operation on S has finite type.
- (3) On S_0 , the b-semistar operation is gg-cancellative and not gh-cancellative.

Lemma 3.2. ([4, Proposition (32.4)]) Let S be a subset of $\overline{F}(S)$ with $S \ni q(S)$ such that, for every $x \in q(S)$ and every $E \in S$, $x + E \in S$. For every $H \in \overline{F}(S)$, set $H^* := \bigcap \{E \in S \mid E \supseteq H\}$. Then the mapping $H \longmapsto H^*$ is a semistar operation on S.

The semistar operation \star in Lemma 3.2 is said to be defined by the set S. Let $H_0 := (u_1 - u_2, u_2 - u_3, \cdots)$, and let $F_0 := (u_1, u_2)$, where, for a subset $X \subseteq q(S_0)$, (X) denotes the S_0 -submodule of $q(S_0)$ generated by X. Let S := $\{G^b, x + H_0^b, q(S_0) \mid G \in F(S_0), x \in q(S_0)\}$, and let \star be the semistar operation on S_0 defined by \mathcal{S} .

Let v be a valuation on $q(S_0)$ non-negative on S_0 with value group Γ . Let $v(u_i) = \gamma_i$ for every i. Then we denote $v = v < u_1, u_2, u_3, \dots > = < \gamma_1, \gamma_2, \gamma_3, \dots >$.

Lemma 3.3. We have the following:

(1) $F_0 \subseteq (u_1, u_2, u_3, \cdots) \subseteq H_0$, and $H_0 \notin F(S_0)$. (2) $0 \notin H_0^{b}$.

Proof. (1) For every *i*, we have $u_i = u_{i+1} + (u_i - u_{i+1}) \in S_0 + H_0 \subseteq H_0$. Suppose that $H_0 \in F(S_0)$. Then there is $x \in q(S_0)$ such that $x + H_0 \subseteq S_0$. We may set $x = l_1u_1 + \cdots + l_nu_n$ with every $l_i \in \mathbb{Z}$. We have $u_n - u_{n+1} \in H_0$, hence $x + u_n - u_{n+1} \in S_0$, hence $l_1u_1 + \cdots + l_nu_n + u_n - u_{n+1} \in S_0$; a contradiction.

(2) Let $\{\alpha_i \mid i = 1, 2, \dots\}$ be a set of positive real numbers such that $\alpha_i > \alpha_{i+1}$ for every *i*. Define the valuation *v* (and its valuation oversemigroup *V*) to the real numbers \mathbb{R} by $v = v < u_1, u_2, \dots > = < \alpha_1, \alpha_2, \dots >$. Then $0 \notin H_0 + V$, hence $0 \notin H_0^b$.

Lemma 3.4. We have the following:

- (1) We have $H_0^{\star} = H_0^{b}$, hence $0 \notin H_0^{\star}$.
- (2) We have $G^* = G^b$ for every $G \in F(S_0)$.

Proof. (1) Set $\{x_{\sigma} \mid \sigma \in \Sigma\} := \{x \in q(S_0) \mid H_0 \subseteq x + H_0{}^b\}$. Since $H_0 \notin F(S_0)$ by Lemma 3.3(1), there is no element $G \in F(S_0)$ such that $H_0 \subseteq G^b$. Hence $H_0^* = \bigcap_{\sigma} (x_{\sigma} + H_0{}^b)$. Since $H_0 \subseteq x_{\sigma} + H_0{}^b$, we have $H_0^b \subseteq (x_{\sigma} + H_0{}^b)^b = x_{\sigma} + (H_0{}^b)^b = x_{\sigma} + H_0{}^b$. It follows that $H_0^* = H_0{}^b$.

(2) Set $\{G_{\lambda} \mid \lambda \in \Lambda\} := \{G' \in F(S_0) \mid G \subseteq G'^b\}$, and set $\{x_{\sigma} \mid \sigma \in \Sigma\} := \{x \in q(S_0) \mid G \subseteq x + H_0^b\}$. Then $G^{\star} = \bigcap_{\lambda} G_{\lambda}{}^b \bigcap_{\sigma} (x_{\sigma} + H_0^b)$. Since $G \subseteq G_{\lambda}{}^b$, we have $G^b \subseteq (G_{\lambda}{}^b)^b = G_{\lambda}{}^b$, hence $\bigcap_{\lambda} G_{\lambda}{}^b = G^b$. Since $G \subseteq x_{\sigma} + H_0^b$, we have $G^b \subseteq (x_{\sigma} + H_0^b)^b = x_{\sigma} + (H_0^b)^b = x_{\sigma} + H_0^b$, i.e., $G^b \subseteq \bigcap_{\sigma} (x_{\sigma} + H_0^b)$. It follows that $G^{\star} = G^b$.

Lemma 3.5. \star is a gg-cancellative semistar operation on S_0 .

Proof. Let $G \in (G + G')^*$, where $G, G' \in F(S_0)$. By Lemma 3.4(2), we have $G \subseteq (G + G')^b$. By Lemma 3.1(3), we have $0 \in (G')^b$, hence $0 \in (G')^*$.

Lemma 3.6. Let $F_0 + H_0 \subseteq x + H_0^b$, and let $x = l_1u_1 + l_2u_2 + \cdots + l_nu_n$ with every $l_i \in \mathbb{Z}$. Then we have

- (1) Every $l_i < 0$.
- (2) $(F_0 + H_0)^* = H_0^{\ b}$.

Proof. (1) Suppose the contrary. There are the following cases.

(i) The case $p_1 := l_1 > 0$. We have $-x + F_0 + H_0 \subseteq H_0^{b}$. Define the valuation v (and its valuation oversemigroup V) to \mathbb{Z} by $v = v < u_1, u_2, u_3, \dots > = < 1, 0, 0, \dots >$. Then we have $(-p_1u_1 - l_2u_2 - \dots - l_nu_n) + (u_2) + (u_4) \in H_0^{b} \subseteq H_0 + V$, hence $-p_1 \geq \min v(H_0) = 0$; a contradiction.

(ii) The case $p_2 := l_2 > 0$. We have $-x + F_0 + H_0 \subseteq H_0^{b}$. Define the valuation v (and its valuation oversemigroup V) to \mathbb{Z} by $v = v < u_1, u_2, u_3, u_4, \dots > = < 0, 1, 0, 0, \dots >$. Then we have $(-l_1u_1 - p_2u_2 - \dots - l_nu_n) + (u_1) + (u_1 - u_2) \in H_0^{b} \subseteq H_0 + V$, hence $-p_2 - 1 \ge \min v(H_0) = -1$; a contradiction.

(iii) The case $p_a := l_a > 0$ for some $a \ge 3$. We have $-x + F_0 + H_0 \subseteq H_0^b$. Define the valuation v (and its valuation oversemigroup V) to \mathbb{Z} by $v = v < u_1, u_2, \cdots, u_a, u_{a+1}, \cdots > = < 0, 0, \cdots, 1, 0, \cdots >$. Then we have $(-l_1u_1 - l_2u_2 - \cdots - p_au_a - \cdots) + (u_1) + (u_{a-1} - u_a) \in H_0^b \subseteq H_0 + V$, hence $-p_a - 1 \ge \min v(H_0) = -1$; a contradiction.

(2) Set $\{x_{\lambda} \mid \lambda \in \Lambda\} := \{x \in q(S_0) \mid F_0 + H_0 \subseteq x + H_0^b\}$. By Lemma 3.3(1), we have $(F_0 + H_0)^* = \bigcap_{\lambda} (x_{\lambda} + H_0^b)$. By (1), we have $-x_{\lambda} \in S_0$ for every λ , hence $H_0^b \subseteq x_{\lambda} + H_0^b$. It follows that $(F_0 + H_0)^* = H_0^b$.

Lemma 3.7. The semistar operation \star on S_0 is not fh-cancellative.

Proof. By Lemma 3.6(2), we have $F_0 \subseteq (F_0 + H_0)^*$. On the other hand, by Lemma 3.4(1), we have $0 \notin H_0^*$.

Lemma 3.5 and Lemma 3.7 imply the following.

Proposition 3.8. A gg-cancellative semistar operation need not be fh-cancellative.

We finish with an easy note.

Remark 3.9. We have that $S_0^* = S_0, M^* = M$, and that \star is not of finite type. Further, the restriction of \star to $F(S_0)$ is a star operation on S_0 .

References

 M. Fontana and K. A. Loper, *Kronecker function rings: a general approach*, Ideal theoretic methods in commutative algebra (Columbia, MO, 1999), Lecture Notes in Pure and Appl. Math., 220 (2001), 189-205.

RYÛKI MATSUDA

- [2] M. Fontana and K. A. Loper, Cancellation properties in ideal systems: A classification of e.a.b. semistar operations, J. Pure Appl. Algebra, 213(11) (2009), 2095-2103.
- [3] M. Fontana, K. A. Loper and R. Matsuda, Cancellation properties in ideal systems: an e.a.b. not a.b. star operation, Arab. J. Sci. Eng. ASJE. Math., 35 (2010), 45-49.
- [4] R. Gilmer, Multiplicative Ideal Theory, Pure and Applied Mathematics, 12, Marcel Dekker, Inc., New York, 1972.
- [5] R. Gilmer, Commutative Semigroup Rings, Chicago Lectures in Mathematics, University of Chicago Press, Chicago, IL, 1984.
- [6] F. Halter-Koch, Ideal Systems: An Introduction to Multiplicative Ideal Theory, Monographs and Textbooks in Pure and Applied Mathematics, 211, Marcel Dekker, Inc., New York, 1998.
- [7] R. Matsuda, Multiplicative Ideal Theory for Semigroups, 2nd ed., Kaisei, Tokyo, 2002.
- [8] R. Matsuda, Note on g-monoids, Math. J. Ibaraki Univ., 42 (2010), 17-41.
- [9] R. Matsuda, Cancellation properties in ideal systems of monoids, Int. Electron. J. Algebra, 9 (2011), 61-68.
- [10] R. Matsuda, Note on cancellation properties in ideal systems, Comm. Algebra, 43(1) (2015), 23-28.
- [11] R. Matsuda, A gg not gh semistar operation on monoids, Bull. Allahabad Math. Soc., 31(1) (2016), 111-119.
- [12] D. G. Northcott, Lessons on Rings, Modules and Multiplicities, Cambridge Univ. Press, London, 1968.

Ryûki Matsuda

2241-42 Hori, Mito Ibaraki 310-0903, JAPAN email: rmazda@adagio.ocn.ne.jp