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Abstract. Let S be a g-monoid with quotient group q(S). Let F̄(S) (resp.,

F(S), f(S)) be the S-submodules of q(S) (resp., the fractional ideals of S, the

finitely generated fractional ideals of S). Briefly, set f := f(S), g := F(S), h :=

F̄(S), and let {x, y} be a subset of the set {f, g, h} of symbols. For a semistar

operation ? on S, if (E+E1)? = (E+E2)? implies E1
? = E2

? for every E ∈ x

and every E1, E2 ∈ y, then ? is called xy-cancellative. In this paper, we prove

that a gg-cancellative semistar operation need not be fh-cancellative.
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1. Introduction

A subsemigroup S % {0} of a torsion-free abelian additive group is called a

grading monoid (or, a g-monoid) (D. Northcott [12]). We will use, for g-monoids,

the following terminologies: module, ideal, valuation, star operation analogously to

them for rings (cf., [4]). Thus, let S be a g-monoid, and let X be a non-empty set.

Assume that, for every s ∈ S and x ∈ X, an element s+ x of X is defined so that

0 + x = x and, for every s1 and s2 in S, (s1 + s2) + x = s1 + (s2 + x), then X

is called a module over S (or, an S-module). For the general theory of g-monoids,

we refer to [5] and [7]. The additive group q(S) := {s− s′ | s, s′ ∈ S} is called the

quotient group of S. Let F̄(S) be the set of S-submodules of q(S). An element E

of F̄(S) is called a fractional ideal of S if s + E ⊆ S for some s ∈ S. Let F(S) be

the set of fractional ideals of S. A fractional ideal I is called an ideal of S if I ⊆ S.

Let f(S) := {E ∈ F(S) | E is a finitely generated fractional ideal}. A mapping

?: F̄(S) −→ F̄(S), E 7−→ E? is called a semistar operation on S if it satisfies the

following properties for every x ∈ q(S) and E,F ∈ F̄(S):

(1) (x+ E)? = x+ E?;

(2) E ⊆ E? and (E?)? = E?;

(3) E ⊆ F implies E? ⊆ F ?.
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Set f := f(S), g := F(S), h := F̄(S), and let {x, y} be a subset of the set {f, g,

h}. For a semistar operation ? on S, if (E + E1)? = (E + E2)? implies E1
? = E2

?

for every E ∈ x and E1, E2 ∈ y, then ? is called xy-cancellative. A mapping

?: F(S) −→ F(S), E 7−→ E? is called a star operation on S if it satisfies the

following properties for every x ∈ q(S) and E,F ∈ F(S):

(1) S? = S;

(2) (x+ E)? = x+ E?;

(3) E ⊆ E? and (E?)? = E?;

(4) E ⊆ F implies E? ⊆ F ?.
We refer to M. Fontana and K. A. Loper [1] and F. Halter-Koch [6] for star and

semistar operations and their Kronecker function rings.

The mapping E 7−→ q(S) from F̄(S) to F̄(S) for every E ∈ F̄(S) is a semistar

operation, called the e-semistar operation on S. Also, a star (resp., semistar) op-

eration ? on S is said to have finite type, if E? =
⋃
{F ? | F ∈ f(S) with F ⊆ E}

for every E ∈ F(S) (resp., E ∈ F̄(S)). Let Γ be a totally ordered abelian additive

group, and let v be a mapping from q(S) onto Γ. If v(a+ b) = v(a) + v(b) for every

a, b ∈ q(S), then v is called a valuation on q(S). Γ is called the value group of v,

and the set V := {a ∈ q(S) | v(a) ≥ 0} is called the valuation semigroup belonging

to v. If V ⊇ S, then V is called a valuation oversemigroup of S.

Let {Vλ | λ ∈ Λ} be a non-empty set of valuation oversemigroups of S. Then

the mapping E 7−→
⋂
λ∈Λ(E + Vλ) from F̄(S) to F̄(S) is a semistar operation on

S, called the semistar operation defined by {Vλ | λ ∈ Λ}. This semistar operation

is fh-cancellative (cf., [4, Theorem 32.5]). If {Vλ | λ ∈ Λ} is the set of all valuation

oversemigroups of S, the semistar operation defined by the set is called the b-

semistar operation on S.

In this paper, we prove that a gg-cancellative semistar operation need not be

fh-cancellative.

2. Preliminary results

Various implications hold among the cancellation properties of semistar opera-

tions:

Proposition 2.1. ([3], [8], [9], [10], [11]) Let ? be a semistar operation on a g-

monoid S.

(1) ? is hh-cancellative if and only if ? coincides with the e-semistar operation.
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We have the following diagram of implications:

hh = hg = hf =⇒ gh =⇒ gg =⇒ gf

⇓ ⇓ ⇓
fh =⇒ fg =⇒ ff

(2) A gh-cancellative semistar operation of finite type need not be hh-cancellative.

A gf-cancellative semistar operation of finite type need not be gg-cancellative.

An fh-cancellative semistar operation of finite type need not be gf-cancellative.

A gg-cancellative semistar operation of finite type need not be gh-cancellative.

(3) A gf-cancellative semistar operation need not be fg-cancellative.

Remark 2.2. ([2, Lemma 3]) We have a simplified diagram of implications in the

case of finite type semistar operations:

hh = hg = hf =⇒ gh =⇒ gg =⇒ gf =⇒ fh = fg = ff.

3. A gg not fh semistar operation

Throughout the section, let u1, u2, u3, · · · be an infinite set of indeterminates over

a torsion-free abelian additive group L. Define S0 := {a+ k1u1 + · · ·+ knun | a ∈
L, 0 ≤ ki ∈ Z, and 0 < n ∈ Z}. Then S0 is a g-monoid, and S0 ⊇ M :=

{a+k1u1+· · ·+knun | ki > 0 for some i} is the unique maximal ideal of S0. Let q(S0)

be the quotient group of S0. We have q(S0) = {a+ l1u1 + · · ·+ lnun | a ∈ L, li ∈ Z}.
First, we review the following.

Lemma 3.1. ([11]) Let S be a g-monoid, and let S0 be the above g-monoid.

(1) For every E ∈ F̄(S), we have Eb = {x ∈ q(S) | nx ∈ nE for some positive

integer n}, where nE := {x1 + · · ·+ xn | every xi ∈ E}.
(2) The b-semistar operation on S has finite type.

(3) On S0, the b-semistar operation is gg-cancellative and not gh-cancellative.

Lemma 3.2. ([4, Proposition (32.4)]) Let S be a subset of F̄(S) with S 3 q(S) such

that, for every x ∈ q(S) and every E ∈ S, x + E ∈ S. For every H ∈ F̄(S), set

H? :=
⋂
{E ∈ S | E ⊇ H}. Then the mapping H 7−→ H? is a semistar operation

on S.

The semistar operation ? in Lemma 3.2 is said to be defined by the set S.

Let H0 := (u1 − u2, u2 − u3, · · · ), and let F0 := (u1, u2), where, for a subset

X ⊆ q(S0), (X) denotes the S0-submodule of q(S0) generated by X. Let S :=
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{Gb, x+H0
b, q(S0) | G ∈ F(S0), x ∈ q(S0)}, and let ? be the semistar operation on

S0 defined by S.

Let v be a valuation on q(S0) non-negative on S0 with value group Γ. Let

v(ui) = γi for every i. Then we denote v = v < u1, u2, u3, · · · > = < γ1, γ2, γ3, · · · >.

Lemma 3.3. We have the following:

(1) F0 ⊆ (u1, u2, u3, · · · ) ⊆ H0, and H0 6∈ F(S0).

(2) 0 6∈ H0
b.

Proof. (1) For every i, we have ui = ui+1 + (ui − ui+1) ∈ S0 +H0 ⊆ H0. Suppose

that H0 ∈ F(S0). Then there is x ∈ q(S0) such that x + H0 ⊆ S0. We may

set x = l1u1 + · · · + lnun with every li ∈ Z. We have un − un+1 ∈ H0, hence

x+ un − un+1 ∈ S0, hence l1u1 + · · ·+ lnun + un − un+1 ∈ S0; a contradiction.

(2) Let {αi | i = 1, 2, · · · } be a set of positive real numbers such that αi > αi+1

for every i. Define the valuation v (and its valuation oversemigroup V ) to the real

numbers R by v = v < u1, u2, · · · > = < α1, α2, · · · >. Then 0 6∈ H0 + V , hence

0 6∈ H0
b. �

Lemma 3.4. We have the following:

(1) We have H0
? = H0

b, hence 0 6∈ H0
?.

(2) We have G? = Gb for every G ∈ F(S0).

Proof. (1) Set {xσ | σ ∈ Σ} := {x ∈ q(S0) | H0 ⊆ x + H0
b}. Since H0 6∈ F(S0)

by Lemma 3.3(1), there is no element G ∈ F(S0) such that H0 ⊆ Gb. Hence

H0
? =

⋂
σ(xσ + H0

b). Since H0 ⊆ xσ + H0
b, we have H0

b ⊆ (xσ + H0
b)b =

xσ + (H0
b)b = xσ +H0

b. It follows that H0
? = H0

b.

(2) Set {Gλ | λ ∈ Λ} := {G′ ∈ F(S0) | G ⊆ G′
b}, and set {xσ | σ ∈ Σ} :=

{x ∈ q(S0) | G ⊆ x + H0
b}. Then G? =

⋂
λGλ

b ⋂
σ(xσ + H0

b). Since G ⊆ Gλ
b,

we have Gb ⊆ (Gλ
b)b = Gλ

b, hence
⋂
λGλ

b = Gb. Since G ⊆ xσ + H0
b, we have

Gb ⊆ (xσ + H0
b)b = xσ + (H0

b)b = xσ + H0
b, i.e., Gb ⊆

⋂
σ(xσ + H0

b). It follows

that G? = Gb. �

Lemma 3.5. ? is a gg-cancellative semistar operation on S0.

Proof. Let G ∈ (G + G′)?, where G,G′ ∈ F(S0). By Lemma 3.4(2), we have

G ⊆ (G+G′)b. By Lemma 3.1(3), we have 0 ∈ (G′)b, hence 0 ∈ (G′)?. �

Lemma 3.6. Let F0 + H0 ⊆ x + H0
b, and let x = l1u1 + l2u2 + · · · + lnun with

every li ∈ Z. Then we have
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(1) Every li ≤ 0.

(2) (F0 +H0)? = H0
b.

Proof. (1) Suppose the contrary. There are the following cases.

(i) The case p1 := l1 > 0. We have −x + F0 + H0 ⊆ H0
b. Define the valuation

v (and its valuation oversemigroup V ) to Z by v = v < u1, u2, u3, · · · > = <

1, 0, 0, · · · >. Then we have (−p1u1−l2u2−· · ·−lnun)+(u2)+(u4) ∈ H0
b ⊆ H0+V ,

hence −p1 ≥ min v(H0) = 0; a contradiction.

(ii) The case p2 := l2 > 0. We have −x + F0 + H0 ⊆ H0
b. Define the valuation

v (and its valuation oversemigroup V ) to Z by v = v < u1, u2, u3, u4, · · · > = <

0, 1, 0, 0, · · · >. Then we have (−l1u1−p2u2−· · ·− lnun)+(u1)+(u1−u2) ∈ H0
b ⊆

H0 + V , hence −p2 − 1 ≥ min v(H0) = −1; a contradiction.

(iii) The case pa := la > 0 for some a ≥ 3. We have −x + F0 + H0 ⊆ H0
b.

Define the valuation v (and its valuation oversemigroup V ) to Z by v = v <

u1, u2, · · · , ua, ua+1, · · · > = < 0, 0, · · · , 1, 0, · · · >. Then we have (−l1u1 − l2u2 −
· · · − paua − · · · ) + (u1) + (ua−1 − ua) ∈ H0

b ⊆ H0 + V , hence −pa − 1 ≥ min

v(H0) = −1; a contradiction.

(2) Set {xλ | λ ∈ Λ} := {x ∈ q(S0) | F0 + H0 ⊆ x + H0
b}. By Lemma 3.3(1),

we have (F0 +H0)? =
⋂
λ(xλ +H0

b). By (1), we have −xλ ∈ S0 for every λ, hence

H0
b ⊆ xλ +H0

b. It follows that (F0 +H0)? = H0
b. �

Lemma 3.7. The semistar operation ? on S0 is not fh-cancellative.

Proof. By Lemma 3.6(2), we have F0 ⊆ (F0+H0)?. On the other hand, by Lemma

3.4(1), we have 0 6∈ H0
?. �

Lemma 3.5 and Lemma 3.7 imply the following.

Proposition 3.8. A gg-cancellative semistar operation need not be fh-cancellative.

We finish with an easy note.

Remark 3.9. We have that S?0 = S0,M
? = M , and that ? is not of finite type.

Further, the restriction of ? to F(S0) is a star operation on S0.
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