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1. Introduction

Throughout this paper, R is an associative commutative ring with identity. For

an R-module M , fdRM (resp. idRM) stands for the flat (resp. injective) dimension

of M . We also use w.gl.dim(R) (resp. gl.dim(R)) to denote the weak global (resp.

global) dimension of R.

A ring R is said to be hereditary if every ideal of R is projective, and a hereditary

domain is called a Dedekind domain. More generally, a ring R is called semihered-

itary if every finitely generated ideal of R is projective. It is well known that a

ring R is semihereditary if and only if R is coherent and w.gl.dim(R) ≤ 1. A

semihereditary domain is said to be a Prüfer domain.

An R-module M is said to be Gorenstein projective (G-projective for short) if

there is an exact sequence of projective modules

P = · · · → P1 → P0 → P 0 → P 1 → · · ·

such that M ∼= Im(P0 → P 0) and that HomR(−, Q) leaves the sequence P exact

whenever Q is a projective R-module. We say that a module M has Gorenstein

projective dimension at most a positive integer n and we write GpdRM ≤ n, if
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there is an exact sequence of modules 0 → Pn → Pn−1 → · · · → P1 → P0 →
M → 0 where each Pi is Gorenstein projective. The Gorenstein global dimension

G-gl.dim(R) of R is defined as G-gl.dim(R) = sup{GpdRM |M is any R-module }.
Recall that a ring R is called Gorenstein hereditary if G-gl.dim(R) ≤ 1 ( i.e., R is a

ring such that all submodules of a projective R-module are Gorenstein projective).

Also, a Gorenstein hereditary domain is called a Gorenstein Dedekind domain.

An R-module M is said to be Gorenstein flat (G-flat for short) if there is an

exact sequence of flat modules

F = · · · → F1 → F0 → F 0 → F 1 → · · ·

such that M ∼= Im(F0 → F 0) and that E
⊗

R−, leaves the sequence F exact when-

ever E is an injective R-module. We say that a module M has Gorenstein flat

dimension at most a positive integer n and we write GfdRM ≤ n, if there is an

exact sequence of modules 0 → Fn → Fn−1 → · · · → F1 → F0 → M → 0 where

each Fi is Gorenstein flat. The Gorenstein weak global dimension G-w.gl.dim(R)

of R is defined as G-w.gl.dim(R) = sup{GfdRM |M is any R-module }. Recall

that a ring R is called Gorenstein semihereditary [24] if it is a coherent ring with

G-w.gl.dim(R) ≤ 1, ( i.e., R is a coherent ring such that all submodules of a flat

R-module are Gorenstein flat). In [11], Gao and Wang shown that a ring R is Goren-

stein semihereditary if and only if all finitely generated submodules of a projective

R-module are Gorenstein projective. The Gorenstein semihereditary domains are

called Gorenstein Prüfer domains in [28].

Let us to denote the class of R-modules with flat dimension at most a fixed

nonnegative integer n by Fn. In [9], Fu et al. introduced the concepts of copure

projective modules, n-copure projective modules, strongly copure projective mod-

ules, and the copure projective dimension. An R-module M is called n-copure

projective if Ext1R(M,N) = 0 for any R-module N ∈ Fn. 0-copure projective mod-

ules are said simply to copure projective. M is said to be strongly copure projective

if Exti+1
R (M,F ) = 0 for any flat R-module F , and all i ≥ 0. The copure projective

dimension cpdR(M) of an R-module M is defined to be the smallest integer n ≥ 0

such that Extn+iR (M,F ) = 0 for any flat R-module F and for any i ≥ 0. Of course,

if no such n exists, write cpdR(M) = ∞. Thus cpdR(M) ≤ m is equivalent to M

has a strongly copure projective resolution

0 −→ Pm −→ Pm−1 −→ · · · −→ P1 −→ P0 −→M −→ 0,
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where each Pi is strongly copure projective. The copure projective dimension of a

ring R is defined as

cpD(R) = sup{ cpdR(M) |M is an R-module }.

In [33,35], Xiong et al. proved that a ring R has cpD(R) ≤ 1 if and only if every

submodule of a projectiveR-module is copure projective. In this case, R is said to be

a CPH (Copure-Projective-Hereditary) ring provisionally. Moreover, they proved

that a domain R is a Gorenstein Dedekind domain if and only if cpD(R) ≤ 1.

As in [6], Enochs and Jenda introduce the concepts of copure flat modules and

strongly copure flat modules. For an R-module M , M is called copure flat if

TorR1 (E,M) = 0 for any injective R-module E, and M is called strongly copure

flat if TorRi (E,M) = 0 for any injective R-module E and for all i ≥ 1. Mao and

Ding introduced the concept of n-copure flat modules in [25]. For an R-module M ,

M is called n-copure flat if TorR1 (E,M) = 0 for any R-module E with idRE ≤ n.

In the paper [6] the author defined the copure flat dimension cfdRM of an R-

module M to be the largest integer n ≥ 0 such that TorRn (E,M) 6= 0 for some

injective R-module E. Of course, if no such n exists, write cfdR(M) = ∞. Thus

cfdRM = 0 if and only if M is strongly copure flat. As in [8, Lemma 3.2], it was

shown that for an R-module M , cfdRM ≤ m if and only if TorRm+i(E,M) = 0

for any injective R-module E. The copure flat dimension of a ring R is defined as

cfD(R) = sup{ cfdR(M) |M is an R-module }. Recently, Xiong proved [34] that a

domain R has cfD(R) ≤ 1 if and only if it is a Gorenstein Prüfer domain.

In this paper, a coherent ring R with cfD(R) ≤ 1 is called a semi-CPH ring.

We prove that all Gorenstein semihereditary rings exactly are semi-CPH rings. In

terms of this result, we study the Gorenstein Prüfer domains.

2. Semi-CPH rings and Gorenstein semihereditary rings

We give some examples as follow.

Example 2.1. A ring R with cfD(R) ≤ 1 is not necessarily coherent. For exam-

ple, let M be a family of pairwise disjoint intervals of the real line with rational

endpoints, such that between any two intervals of M there is at least another in-

terval in M . Let A be the ring of continuous functions that are rational constant

except on finitely many of these intervals on which it is given by a polynomial with

rational coefficients. Then A is a noncoherent ring with w.gl.dim(A) = 1 by [32,

Example 6.2]. But cfD(A) ≤ w.gl.dim(A) = 1.
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Example 2.2. A coherent ring not necessarily has cfD(R) ≤ 1. Set R = Z[x],

where Z is the set of integers and x is an indeterminate over Z. Then R is a coherent

domain. If cfD(R) ≤ 1, by [36, Theorem 5], cfD(Z ∼= R/xR) = cfD(R)− 1 = 0.

By [8, Corollary 3.11], Z is an IF domain. Then Z is a field. This is a contradiction.

Hence cfD(R) > 1.

Lemma 2.3. [8, Theorem 3.8] The following statements are equivalent for a ring

R:

(1) cfD(R) ≤ 1.

(2) fdRE ≤ 1 for any injective R-module E.

Proof. (1) ⇒ (2) Let E be an injective R-module. For any R-module N , there

exists an exact sequence 0→ K → F → N → 0 with F flat and K strongly copure

flat by hypothesis. Since 0 = TorR2 (E,F ) → TorR2 (E,N) → TorR1 (E,K) = 0 is

exact, TorR2 (E,N) = 0. Hence fdRE ≤ 1.

(2)⇒ (1) LetM be any R-module. For any injective R-module E, TorR2 (E,M) =

0 since fdRE ≤ 1 by hypothesis. Then cfdRM ≤ 1. Hence the result holds. �

Theorem 2.4. The following statements are equivalent for a ring R:

(1) R is a semi-CPH ring.

(2) Every finitely generated ideal of R is finitely presented strongly copure pro-

jective.

(3) Every finitely generated ideal of R is finitely presented copure projective.

(4) R is coherent, and every submodule of a projective module is strongly copure

flat.

(5) R is coherent, and every submodule of a projective module is copure flat.

(6) Every finitely generated submodule of a projective module is finitely pre-

sented strongly copure projective.

(7) Every finitely generated submodule of a projective module is finitely pre-

sented copure projective.

(8) R is coherent, and cfdRM ≤ 1 for all finitely presented R-module M .

(9) R is coherent, and cpdRM ≤ 1 for all finitely presented R-module M .

Proof. (1) ⇒ (4) ⇒ (5) and (9) ⇒ (2) ⇒ (3) Clear.

(1) ⇒ (2) Let I be a finitely generated ideal of R. Then I is a finitely pre-

sented strongly copure flat R-module. By [9, Proposition 3.7], I is strongly copure

projective.

(3) ⇒ (1) Let I be an ideal of R. Then I = lim
−→

Ii where each Ii is finitely

generated ideal of R. By [9, Proposition 3.7] again, Ii is copure flat. For any
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injective R-module E, TorR1 (E, I = lim
−→

Ii) ∼= lim
−→

TorR1 (E, Ii) = 0 holds. Hence

cfD(R) ≤ 1 holds.

(5) ⇒ (1) Let E be an injective R-module. For any R-module X, there exists

an exact sequence 0 → A → P → X → 0 with P projective and A copure flat by

hypothesis. Since 0 = TorR2 (E,P ) → TorR2 (E,X) → TorR1 (E,A) = 0 is exact, we

get TorR2 (E,X) = 0. Hence fdRE ≤ 1 and cfD(R) ≤ 1 by Lemma 2.3.

(4) ⇒ (6) ⇒ (8) and (5) ⇒ (7) ⇒ (9) ⇒ (8) By [9, Proposition 3.7].

(8) ⇒ (9) Let M be a finitely presented R-module. By hypothesis, cfdRM ≤ 1.

Then there exists an exact sequence 0 → P1 → P0 → M → 0, where P0 finitely

generated projective and P1 is strongly copure flat. Since R is coherent, P1 is

finitely presented. For any flat R-module F , F+ is injective by [7, Theorem 3.2.10].

Then ExtiR(P1, F )+ ∼= TorRi (P1, F
+) = 0 by [13, Lemma 1.2.11]. It follows that P1

is strongly copure projective. Hence cpdRM ≤ 1. �

Theorem 2.5. A ring R is a Gorenstein semihereditary ring if and only if R is a

semi-CPH ring.

Proof. If R is a Gorenstein semihereditary ring, let M be a finitely generated sub-

module of a projective R-module P . By [11, Theorem 2.6], M is a finitely generated

Gorenstein projective module. Since R is coherent, M is finitely presented. Let

F be a flat module. By [30, Theorem 5.40], F = lim
−→

Fi, where each Fi is finitely

generated free R-module. Then Ext1R(M,F = lim
−→

Fi) ∼= lim
−→

Ext1R(M,Fi) = 0 by

[12, Theorem 2.1.5] and [7, Theorem 10.4.18]. Thus M is finitely presented copure

projective. Hence R is a semi-CPH ring by Theorem 2.4.

Assume that R is a semi-CPH ring, let E be an injective R-module. For any

finitely presented R-module M , cfdRM ≤ 1 holds by Theorem 2.4. By [8, Lemma

3.1], TorR2 (M,E) = 0 holds. Thus fdRE ≤ 1. Hence R is a Gorenstein semiheredi-

tary ring by [24, Proposition 3.3]. �

An R-module M is said to be Ding projective in [37], if there is an exact sequence

of projective modules

P = · · · → P1 → P0 → P 0 → P 1 → · · ·

such that M ∼= Im(P0 → P 0) and that HomR(−, F ) leaves the sequence P exact

whenever F is a flat R-module. It is clear that all Ding projective modules are

Gorenstein projective.

Let F be a class of R-modules, by an F-preenvelope of an R-module M we mean

a morphism ϕ : M → F where F ∈ F such that for any morphism f : M → F
′

with

F
′ ∈ F , there is a g : F → F

′
such that f = gϕ. We say that F is preenveloping if
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every R-module has an F-preenvelope. For an R-module M , we use M+ to denote

HomZ(M,Q/Z).

Let M be an R-module. We say that M has a right flat resolution if there is a

sequence 0→M → F 0 → F 1 → · · · (not necessarily exact) with each F i flat, and

the sequence HomR(−, F ) is exact for any flat R-module F .

Theorem 2.6. The following statements are equivalent for a ring R:

(1) R is a Gorenstein semihereditary ring.

(2) Every finitely generated submodule of a finitely generated projective module

is a finitely presented Ding projective module.

(3) Every finitely generated ideal of R is a finitely presented Ding projective

module.

Proof. (1) ⇒ (2) Let P be a finitely generated projective module and let M

be a finitely generated submodule of P . By Theorem 2.4 and Theorem 2.5, M

is strongly copure projective. Since R is coherent, M has a flat preenvelope

f : M → F 0 with F 0 being flat by [7, Proposition 6.5.1]. Consider the exact se-

quence 0 → A0 → P 0 λ→ F 0 → 0 with P 0 projective and A0 flat, the sequence

0 → HomR(M,A0) → HomR(M,P 0) → HomR(M,F 0) → Ext1R(M,A0) = 0.

There exists g ∈ HomR(M,P 0) such that f = λg. It is clear that g : M → P 0 is a

flat preenvelope. Thus for any flat R-module F , the sequence HomR(P 0, F ) →
HomR(Im(g), F ) → 0 is exact. In addition, the exactness of 0 → Im(g) →
P 0 → cok(g) → 0 yields the exact sequence HomR(P 0, F ) → HomR(Im(g), F ) →
Ext1R(cok(g), F ) → Ext1R(P 0, F ) = 0. Hence Ext1R(cok(g), F ) = 0 and cok(g) is

copure projective. So cok(g) has a flat preenvelope s : cok(g) → P 1 with P 1

projective by the proof above. Continuing this process, we can get the sequence

0→M → P 0 → P 1 → · · · with each P i projective such that for any flat module F ,

the sequence HomR(−, F ) is exact, that is, M has an exact right flat resolution. For

all i ≥ 1, ExtiR(M,R+) = 0 holds since R+ is injective, and M+ ∼= HomR(M,R+).

Since R+ is injective cogenerator, the sequence 0 → M → P 0 → P 1 → · · · is

exact. On the other hand, since M is strongly copure projective, for any flat

R-module F , ExtiR(M,F ) = 0 for all i ≥ 1. So there exists an exact sequence

· · · → P1 → P0 → M → 0 such that HomR(−, F ) is exact. Now, we get an

exact sequence · · · → P1 → P0 → P 0 → P 1 → · · · of projective modules with

M ∼= Im(P0 → P 0), and for any flat R-module F , HomR(−, F ) is exact. Hence M

is Ding projective.

(2) ⇒ (3) Trivial.
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(3) ⇒ (1) Let F be a flat R-module. It is clear that R is coherent. Let I

be a finitely generated ideal of R. By hypothesis, I is a finitely presented Ding

projective module. Then there exists an exact sequence I = · · · → P1 → P0 →
P 0 → P 1 → · · · of finitely generated projective modules with I ∼= Im(P0 → P 0),

and HomR(I, F ) is exact. Then the sequence I
′

= · · · → P1 → P0 → I → 0 is

exact and HomR(I
′
, F ) is exact. So we can get Ext1R(I, F ) = 0. Thus I is finitely

presented copure projective. By Theorem 2.4, R is a semi-CPH ring. Hence (1)

holds by Theorem 2.5. �

Let M be an R-module. For any a ∈ R which is neither a non-zero-divisor

nor a unit, set Ma = {m ∈M | am = 0 }. It is clear that Ma ∼= TorR1 (R/aR,M).

Let us say that an R-module M is torsion-free if, ax = 0, for x ∈ M and for a

non-zero-divisor a, we have x = 0, that is, Ma = 0. Note that flat modules are

torsion-free. We pose the following question: whether Gorenstein flat modules are

also torsion-free.

Theorem 2.7. Let R be a Gorenstein semihereditary ring. Then every Gorenstein

flat R-module M is torsion-free. Moreover, if R is a Gorenstein Prüfer domain,

every finitely generated torsion-free module is finitely presented copure projective.

Proof. Let M be a Gorenstein flat R-module. For any a ∈ R which is neither

a non-zero-divisor nor a unit, fdRR/aR ≤ 1 and the sequence 0 → aR → R →
R/aR → 0 is exact. Let I be an ideal of R. By hypothesis, R is a Gorenstein

semihereditary ring, and so cfD(R) ≤ 1 by Theorem 2.5. Then cfdR(R/I) ≤ 1,

and hence TorR2 (R/I,R+) = 0. Thus fdRR
+ ≤ 1. Now, let X be an R-module.

Then we can obtain fdR(R/aR)+ ≤ 1 from the sequence 0 = TorR3 (X, (aR)+) →
TorR2 (X, (R/aR)+) → TorR2 (X,R+) = 0. Then idRR/aR ≤ 1 by [5, Theorem

2.2.13]. So there is an exact sequence 0 → R/aR → E → C → 0 with E,C

injective. For any ideal I of R, TorR2 (R/I,C) = 0 since cfdR(R/I) ≤ 1. Hence

fdRC ≤ 1. Then 0 = TorR2 (C,M) → Ma → TorR1 (E,M) is exact. Since M is a

Gorenstein flat module, TorR1 (E,M) = 0 by [3, Lemma 2.4]. Hence Ma = 0. Thus

M is torsion-free.

Now, assume R is a Gorenstein Prüfer domain. Let M be a finitely generated

torsion-free module. Then M can be imbedded into a finitely generated free module.

Hence M is finitely presented copure projective by Theorem 2.5 and Theorem 2.4,

as desired. �
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An R-module M is called FP-injective (or absolutely pure) [23] if Ext1R(N,M) =

0 for all finitely presented R-module N . As in [26], Mao and Ding called an R-

module M Gorenstein FP-injective in case there exists an exact sequence

E = · · · → E1 → E0 → E0 → E1 → · · ·

of injective R-modules with M ∼= Im(E0 → E0) such that HomR(E,−) leaves the

sequence exact whenever E is an FP-injective module. In [37], Gorenstein FP-

injective modules are renamed as Ding injective modules.

Theorem 2.8. The following statements are equivalent for a ring R:

(1) R is semihereditary.

(2) R is Gorenstein semihereditary with w.gl.dim(R) ≤ 1.

(3) R is Gorenstein semihereditary with w.gl.dim(R) <∞.

(4) R is Gorenstein semihereditary, and every Gorenstein flat module is flat.

(5) R is Gorenstein semihereditary, and every Gorenstein FP-injective module

is FP-injective.

(6) R is Gorenstein semihereditary, and every Gorenstein FP-injective module

is injective.

Proof. (1) ⇒ (2) ⇒ (3) It is clear.

(3) ⇒ (1) We only need to prove that w.gl.dim(R) ≤ 1. Set k = w.gl.dim(R).

If k > 1, then there exists an R-module M such that 1 < k := fdRM < ∞.

Without loss of generality we can assume k = 2. For any R-module N , there

exists an exact sequence 0 → N → E → C → 0 with E injective. It yields the

exactness of 0 = TorR3 (C,M) → TorR2 (N,M) → TorR2 (E,M). By [24, Proposition

3.3], TorR2 (E,M) = 0 holds. Thus TorR2 (N,M) = 0 and fdRM ≤ 1. This is a

contradiction. Hence w.gl.dim(R) ≤ 1.

(2) ⇒ (4) By [4, Theorem 2.2].

(4) ⇒ (5) Let M be a Gorenstein FP-injective module. Then there exists an ex-

act sequence E = · · · → E1 → E0 → E0 → E1 → · · · of injective R-modules

with M ∼= Im(E0 → E0). Thus E+ = · · · → (E1)+ → (E0)+ → (E0)+ →
(E1)+ → · · · is an exact sequence such that M+ ∼= Im((E0)+ → (E0)+). Let

E be an injective R-module. By [24, Proposition 3.3], there exists an exact se-

quence 0 → F1 → F0 → E → 0, where F0, F1 are flat. So E+
⊗

R Fi = · · · →
(E1)+

⊗
R Fi → (E0)+

⊗
R Fi → (E0)+

⊗
R Fi → (E1)+

⊗
R Fi → · · · are exact for

i = 0, 1. So is E+
⊗

RE = · · · → (E1)+
⊗

RE → (E0)+
⊗

RE → (E0)+
⊗

RE →
(E1)+

⊗
RE → · · · by [29, Theorem 6.3]. Notice that all (Ei)+, (Ei)

+ are flat,

hence M+ is Gorenstein flat. By hypothesis, M+ is flat, and M is FP-injective.
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(5) ⇒ (2) Let A be a submodule of a flat R-module F . Then A = lim
−→

Ai

where each Ai is finitely generated submodule of F . By hypothesis, each Ai is

Gorenstein flat. Hence for each i, there exists an exact sequence of flat modules

Fi = · · · → Fi1 → Fi0 → F i0 → F i1 → · · · such that Ai ∼= Im(Fi0 → F i0).

Then F+
i = · · · → (F i1)+ → (F i0)+ → (Fi0)+ → (Fi1)+ → · · · such that A+

i
∼=

Im((F i0)+ → (Fi0)+). Let N be an FP-injective R-module. Then there exists a

pure exact sequence 0 → N → E → E/N → 0 such that 0 → (E/N)+ → E+ →
N+ → 0 is split. Thus Ext1R(Ai, N

+)
⊕

Ext1R(Ai, (E/N)+) ∼= Ext1R(Ai, E
+) ∼=

TorR1 (E,Ai)
+ = 0 since Ai is Gorenstein flat. So TorR1 (N,Ai)

+ ∼= Ext1R(Ai, E
+) =

0. Then Fi

⊗
RN = · · · → Fi1

⊗
RN → Fi0

⊗
RN → F i0

⊗
RN → F i1

⊗
RN →

· · · is exact. By the isomorphism (X
⊗

RN)+ ∼= HomR(N, (X)+), we get that

· · · → HomR(N, (F i0)+) → HomR(N, (Fi0)+) → HomR(N, (Fi1)+) → · · · is exact.

That is A+
i is Gorenstein FP-injective. By hypothesis, A+

i is FP-injective. The

fact that Ai is flat follows from the fact TorR1 (X,Ai)
+ ∼= Ext1R(X,A+

i ) = 0 for any

finitely presented R-module X. By [7, Exercises 4, Page 43], A is flat.

(6) ⇒ (5) Trivial.

(5)⇒ (6) LetM be a Gorenstein FP-injective module. Then there exists an exact

sequence 0→M → E0 → E0/M → 0, where E0 is an injective envelope of M , and

E/M is FP-injective since it is Gorenstein FP-injective. Then Ext1R(E0/M,M) = 0

holds. Then the sequence 0→M → E0 → E0/M → 0 is split and M is injective. �

Corollary 2.9. Let R be a Gorenstein semihereditary ring. Then either R is

semihereditary or w.gl.dim(R) =∞.

3. Gorenstein Prüfer domains

Let R be a domain with quotient field K. Let F (R) denote the set of all non-

zero fractional ideals of R and f(R) the subset of finitely generated members of

F (R). For any 0 6= I ∈ F (R), its inverse I−1 is defined as {x ∈ K |xI ⊆ R }.
An ideal I ∈ f(R) is called a GV-ideal if I−1 = R. We write GV(R) = {I ∈
f(R) | I is a GV-ideal of R}. In [27], a domain R is called a DW-domain if GV(R) =

{R}.

Proposition 3.1. Let R be a Gorenstein Prüfer domain. Then R is a DW-domain.

Proof. Let J 6= 0 be a finitely generated proper ideal of R. Pick 0 6= a ∈ J ,

set T = R/(a). Then I = J/(a) is a finitely generated proper ideal of T . So

we can write I = (b1, · · · , bn), where b1, · · · , bn ∈ T . If ann(I) = 0, then the

homomorphism f : T → T s, f(r) = (b1r, · · · , bnr), r ∈ T is monic. Then the
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sequence 0 → T
f→ T s → cok(f) → 0 is exact and cok(f) is finitely presented.

Notice that 0→ cok(f)+ → (T s)+ → T+ → 0 is exact and (T s)+, T+ are injective

T -modules. By [28, Theorem 4.2], T is an IF ring. Then (T s)+, T+ are flat. It yields

that cok(f) is projective and TorT1 (T/I, cok(f)) = 0 holds. Then f : T/I → T s/IT s

also is monic. By Im(f) ⊆ IT s, then f = 0 and I = T . This is a contradiction.

Therefore, ann(I) 6= 0. So there exists an element b ∈ R−(a) such that I(b+(a)) =

0, so Jb ⊆ (a). Then b
a /∈ R and J ba ⊆ R. Therefore, GV(R) = {R}. Hence R is a

DW-domain. �

An ideal I ∈ F (R) of R is called divisorial if I = Iv = (I−1)−1. A domain R is

said to be a PVMD [16] if the finite-type divisorial ideal of R form a group under

v-multiplication, that is, if for any finitely generated ideal 0 6= I ∈ F (R) of R, there

exists a finitely generated ideal J ∈ F (R) of R such that R = (IJ)v.

Let A be an R-module. Set A∗ = HomR(A,R). An R-module M is said te be

reflexive if M ∼= M∗∗. Reflexive ideals over a domain are divisorial ideals.

For any R-module M , the rank of M is defined as rank(M) = dimK(K
⊗
R

M).

Theorem 3.2. The following statements are equivalent for a domain R:

(1) R is a Prüfer domain.

(2) R is a Gorenstein Prüfer domain and an integrally closed domain.

Proof. (1) ⇒ (2) [16, Proposition 0.1] and Theorem 2.8.

(2) ⇒ (1) Let I be a finitely generated ideal of R. By Theorem 2.7, I is finitely

presented copure projective. Then there exists an exact sequence 0 → A → P →
I → 0 where P is finitely generated projective. Then 0 → I∗ → P ∗ → A∗ → 0

is exact and P ∗ is finitely generated projective. Hence A∗ is finitely generated

torsion-free. Consider the exact sequence 0→ A∗ → F → F/A∗ → 0 with F being a

finitely generated free R-module. Then we get Ext1R(A∗, R)+ ∼= Ext2R(F/A∗, R)+ ∼=
TorR2 (F/A∗, R+) = 0. Hence 0→ A∗∗ → P ∗∗ → I∗∗ → 0 is exact. Notice that P is

a reflexive submodule of a finitely generated torsion-free R-module. Then we have

the following commutative diagram with exact rows

0 // A //

ρ

��

P // I //

f
��

0

0 // A∗∗ // P // P/A∗∗ // 0

Then 0→ kerf ∼= cokρ→ I
f→ P/A∗∗ → 0 is exact. Because rank(A) = rank(A∗∗),

we have rank(I) = rank(P/A∗∗). By Theorem 2.7, I is finitely generated torsion-

free. Hence kerf = 0 since rank(ker(f)) = 0 and ker(f) is torsion-free. That is
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A ∼= A∗∗. We infer that I is reflexive by the following commutative diagram with

exact rows

0 // A //

∼=
��

P //

∼=
��

I //

��

0

0 // A∗∗ // P ∗∗ // I∗∗ // 0

Hence I is a finitely generated divisorial ideal of R. Then I−1, II−1 also are finitely

generated divisorial ideals of R. For any x ∈ (II−1)−1, xI−1I ⊂ R. So, xI−1 ⊂ I−1,

that is, x is integral over R. Then x ∈ R since R is an integrally closed domain.

Thus R = (II−1)v = II−1. Hence I is projective, as desired. �

Example 3.3. A Gorenstein Prüfer domain is not necessarily a Prüfer domain.

For example, set R = Q + x2Q[x], where x is an indeterminate over Q. Then

R is a Gorenstein Prüfer domain, but not a Prüfer domain by [28, Example 4.1].

Moreover, w.gl.dim(R) = ∞ by Theorem 2.8, and R is not an integrally closed

domain by Theorem 3.2.

Example 3.4. A coherent domain is not necessarily a Gorenstein Prüfer domain.

Let (R,m) be a regular local ring of Krull dimension 2. Then R is a coherent

domain, but not a Gorenstein Prüfer domain by Corollary 2.9.

In [2], Bass introduced the finitistic projective dimension of a ring R as

FPD(R) = sup{pdRM |M is any R-module with pdRM <∞}.

Kaplansky proved that R is perfect if and only if every flat R-module is pro-

jective, see [2, Page 466]. It is well-known that a ring R is perfect if and only if

FPD(R) = 0.

Recall that a ring R is called almost perfect if its proper epic images are perfect.

An almost perfect domain is said simply an APD. For Noetherian domain R, it

was shown [20, Theorem 90] that R is an APD if and only if its Krull dimension

dim(R) 6 1.

It was shown [28, Corollary 4.3] that a Gorenstein Prüfer domain R is a Goren-

stein Dedekind domain if and only if R is Noetherian. Now, for a Gorenstein

Prüfer domain R, we study that when R is a Gorenstein Dedekind domain in terms

of FPD(R).

In what follows, let us to denote the class of R-modules with projective dimension

at most a fixed nonnegative integer n by Pn. In [1, Lemma 2.3], it was shown that

a domain R is an APD if and only if P1 = F1.
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An R-module D is said to be divisible if Ext1R(R/aR,D) = 0 for all a ∈ R; and

an R-module M is called h-divisible if it is an epic image of an injective R-module.

Note that injective modules and all h-divisible R-modules are divisible.

Recall that a domain R is called a Matlis domain [14] if the projective dimension

of the field of quotients is at most one. It is shown [21] that a domain R is a Matlis

domain if and only if every divisible module is h-divisible.

Recall from [22] that an R-module W is called weak-injective if Ext1R(M,W ) = 0

for all modules M with fdRM ≤ 1. It is proved in [10, Corollary 6.4.8] that a domain

R is an APD if and only if every divisible module is weak-injective; if and only if

every h-divisible module is weak-injective.

Lemma 3.5. [1, Proposition 3.2] Let R be a domain. Then R is an APD if and

only if FPD(R) ≤ 1.

Theorem 3.6. The following statements are equivalent for a domain R:

(1) R is a Gorenstein Dedekind domain.

(2) R is a Gorenstein Prüfer domain such that every submodule of a Ding

projective module is Ding projective.

(3) R is a Gorenstein Prüfer domain such that every ideal of R is Ding pro-

jective.

(4) R is a Gorenstein Prüfer domain and an APD.

Proof. (1)⇒ (2) Let R be a Gorenstein Dedekind domain. Then R is a Gorenstein

Prüfer domain. Now, let D be a Ding projective module and M a submodule of

D. By the proof that (1) ⇒ (2) in Theorem 2.6, we obtain an exact sequence

P = · · · → P1 → P0 → P 0 → P 1 → · · · of projective with M ∼= Im(P0 → P 0). Let

F be a flat R-module and I 6= 0 an ideal of R. Pick 0 6= u ∈ I and note R = R/uR.

Then uRI = 0 and R/I is R-module. By [17, Corollary 2.7], R is a QF ring. Then

R/I is a strongly copure projective R-module by [9, Remark 4.2]. Certainly, u is a

non-zero-divisor of F . By Rees Theorem Ext2R(R/I, F ) ∼= Ext1
R

(R/I, F/uF ) = 0.

Thus idRF ≤ 1 and ExtiR(M,F ) = 0 for i ≥ 2. Consider the exact sequence

Ext1R(D,F ) → Ext1R(M,F ) → Ext2R(D/M,F ) = 0. By hypothesis, D is a Ding

projective module, Ext1R(D,F ) = 0 holds. So Ext1R(M,F ) = 0 and HomR(−, F )

leaves the sequence P exact. Hence M is Ding projective.

(2) ⇒ (3) Trivial.

(3) ⇒ (1) Let R be a Gorenstein Prüfer domain such that every ideal of R is

Ding projective. To prove that R is a Gorenstein Dedekind domain, we only have

to prove that R is a Noetherian domain by [28, Corollary 4.3].
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Let P be a nonzero prime ideal of R and let F be any flat R-module. Pick 0 6=
a ∈ P . For any ideal J of R, by hypothesis, J is Ding projective. Then idRF ≤ 1

follows from Ext2R(R/J, F ) ∼= Ext1R(J, F ) = 0. By [9, Theorem 4.11], cpD(R) ≤ 1.

Set T = R/aR and let M be a T -module. Let P = F/aF be a flat T -module, where

F is a flat R-module. Then by Rees Theorem, Ext1T (M,P ) ∼= Ext2R(M,F ) = 0.

Therefore, cpdT (M) = 0, whence cpD(T ) = 0. By [9, Remark 4.2], T is a QF ring.

Since a QF ring is Artinian, P/(a) is finitely generated. Consequently, P is finitely

generated, and hence R is Noetherian.

(1) ⇒ (4) Let R be a Gorenstein Dedekind domain. Then R is a Gorenstein

Prüfer domain. Let I 6= 0 be an ideal of R. Set M = R/I. Pick 0 6= u ∈ I

and note R = R/uR. Then uM = 0 and M is R-module. By [17, Corollary 2.7],

R is a QF ring. Then M is a copure projective R-module. Let N be a flat R-

module. Certainly, u is a non-zero-divisor of N . By Rees Theorem Ext2R(M,N) ∼=
Ext1

R
(M,N/uN) = 0. Thus cpdR(M) ≤ 1. By [9, Proposition 4.3 & Corollary

4.12], FPD(R) ≤ cpD(R) ≤ 1. Hence R is an APD by Lemma 3.5.

(4) ⇒ (1) Let P be a nonzero prime ideal of R. Pick 0 6= a ∈ P and set

T = R/aR. Let A 6= 0 be any T -module with pdT (A) < ∞. Then by Rees

Theorem, pdR(A) = pdT (A) + 1 < ∞. pdT (A) = 0 by Lemma 3.5. That is,

FPD(T ) = 0 and T is perfect. Notice that T is coherent, by [29, Theorem B &

Theorem C, Page 114], T is Artinian. P/(a) is finitely generated. Consequently,

P is finitely generated, and hence R is Noetherian. By [28, Corollary 4.3], R is a

Gorenstein Dedekind domain. �

Corollary 3.7. Let R be a Gorenstein Dedekind domain. Then dim(R) 6 1.

Proof. By the proof of (4) ⇒ (1) in Theorem 3.6, R is Noetherian. By [20,

Theorem 90], dim(R) 6 1 holds. �

Example 3.8. Now we give an example of a domain R with FPD(R) ≤ 1 which

is not a Gorenstein Prüfer domain. Let L be a field and F an extension field of L

with [F : L] = ∞. Construct R = L + xF [x]. Then R is an APD by [31]. Hence

FPD(R) = 1 by Lemma 3.5. Because R is not Noetherian, R is not a Gorenstein

Dedekind domain. Hence R is not a Gorenstein Prüfer domain by Theorem 3.6.

Example 3.9. A Gorenstein Prüfer domain is not necessarily a Gorenstein Dedekind

domain. For example, let Z be the set of integers and let Q be the field of ra-

tional numbers, and let X be an indeterminate over Q. Construct a ring R =

Z+XQ[X](X). Then R is a Gorenstein Prüfer domain. By [19, Example 2.11] and
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[22, Lemma 3.6] and Lemma 3.5, FPD(R) > 1 holds. Hence R is not a Gorenstein

Dedekind domain by Theorem 3.6.

Example 3.10. Gorenstein Dedekind domains are not necessarily integrally closed.

In fact, construct R = Q[x, y]/(x2 + 2y2). Since x2 + 2y2 is an irreducible polyno-

mial, we have that R is a Gorenstein Dedekind domain. By Theorem 3.6, R is a

Gorenstein Prüfer domain. Noting that w.gl.dim(R) = ∞, by Theorem 3.2, R is

not integrally closed.

We conclude this article with the following theorem.

Theorem 3.11. The following statements are equivalent for a domain R:

(1) R is a Dedekind domain.

(2) R is a Gorenstein Dedekind domain with w.gl.dim(R) ≤ 1.

(3) R is a Gorenstein Dedekind domain with w.gl.dim(R) <∞.

(4) R is a Gorenstein Dedekind domain and every Gorenstein projective module

is projective.

(5) R is a Gorenstein Dedekind domain and an integrally closed domain.

Proof. (1) ⇒ (2) ⇒ (3) and (2) ⇒ (5) Trivial.

(5) ⇒ (2) By Theorem 3.6 and Theorem 3.2.

(3) ⇒ (4) Let M be a Gorenstein projective module and let F be any flat R-

module. By Theorem 3.6, FPD(R) ≤ 1 holds. By [18, Proposition 6], pdRF <∞.

Then for all k ≥ 1, ExtkR(M,F ) = 0 by [15, Proposition 2.3], that is, M is strongly

copure projective. Now, let X be any R-module. Set n = fdRX < ∞, there is

an exact sequence 0 → Fn → Fn−1 → · · · → F1 → F0 → X → 0 with each Fi

flat. Write Ks = ker(Fs → Fs−1). The sequence 0 → Fn → Fn−1 → Kn−2 → 0 is

exact. For any i > 1, we can infer that ExtiR(M,Kn−2) = 0 by the exact sequence

0 = ExtiR(M,Fn−1) → ExtiR(M,Kn−2) → Exti+1
R (M,Fn) = 0. We obtain the

exact sequence 0 = ExtiR(M,Fn−2) → ExtiR(M,Kn−3) → Exti+1
R (M,Kn−2) = 0

by the exact sequence 0→ Kn−2 → Fn−2 → Kn−3 → 0. Then ExtiR(M,Kn−3) = 0.

Continuing this process, we can get ExtiR(M,X) = 0. Hence M is projective.

(4) ⇒ (1) Let A be a submodule of a projective R-module P . Since R is a

Gorenstein Dedekind domain, A is Gorenstein projective. By hypothesis, A is

projective. Hence R is a Dedekind domain. �
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Corollary 3.12. The following statements are equivalent for a domain R:

(1) R is a Dedekind domain.

(2) R is a Noetherian Prüfer domain.

(3) R is a Prüfer domain with FPD(R) ≤ 1.
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[35] T. Xiong, F. G. Wang and K. Hu, Copure projective modules and CPH-rings

(in Chinese), Journal of Sichuan Normal University (Natural Science), 36(2)

(2013), 198-201.

[36] T. Xiong, F. G. Wang, G. L. Xia and X. W. Sun, Change theorem of rings on

copure flat dimensions (in Chinese), Journal of Natural Science of Heilongjiang

University, 33(4) (2016), 435-437.

[37] G. Yang, Z. K. Liu and L. Liang, Ding projective and Ding injective modules,

Algebra Colloq., 20(4) (2013), 601-612.

Tao Xiong

College of Mathematics and Information

China West Normal University

637002 Nanchong, P. R. China

e-mail: Taoxiong2004@163.com


