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Abstract. The notion of a zero-divisor graph is considered for commutative

groupoids with zero. Moufang groupoids and certain medial groupoids with

zero are shown to have connected zero-divisor graphs of diameters at most

four and three, respectively. As x ranges over the elements of a commutative

groupoid A (not necessarily with zero), a system of pseudographs is obtained

such that the vertices of a pseudograph are the elements of A and vertices

a and b are adjacent if and only if ab = x. These systems are completely

characterized as being partitions of complete pseudographs Kn whose parts are

indexed by the vertices of Kn. Furthermore, morphisms are defined in the class

of all such systems of pseudographs making it (categorically) isomorphic to the

category of commutative groupoids, thereby combinatorializing the theory of

commutative groupoids. Also, concepts of “congruence” and “direct product”

that are compatible with those in the category of commutative groupoids are

established for these systems of pseudographs.
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1. Introduction

There are several methods that exist for generating a groupoid (that is, a set

endowed with a binary operation1) from a graph. For example, cycle decompositions

of complete graphs are used to produce groupoids in [17], and 1-factorizations of

complete graphs are used to construct quasigroups (that is, cancellative groupoids

A such that aA = Aa = A for every a ∈ A, i.e., for every a, b ∈ A there exist

unique x, y ∈ A such that ax = ya = b) in [15] and [22]. The zero-divisor graph of a

commutative ring R was first defined in [5] to be the graph Γ(R) whose vertices are

the elements of R such that distinct a and b are adjacent if and only if ab = 0. The

1The present use of the term “groupoid” coincides with the work of B.A. Hausmann and O. Ore

in [11] and seems to be standard among a majority of the related work in nonassociative algebra.

It should not be confused with the categorical convention in which a groupoid is defined to be a

category such that every morphism is invertible.
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definition of Γ(R) was later revised in [2] to only include the nonzero zero-divisors

of R, as the algebraic structure reflected by the adjacency relations involving 0

and nonzero-divisors are of little interest. The zero-divisor graph concept was

extended to noncommutative rings in [21], commutative semigroups in [9], and

partially ordered sets in [10].

In this paper, the notion of a zero-divisor graph is considered for commutative

groupoids with 0. Furthermore, it is extended in a manner that permits any com-

mutative groupoid to be viewed as a partition of a complete pseudograph, where

a pseudograph is regarded as a graph without multiple edges that may (but is not

required to) have some looped vertices. (Also, to avoid trivialities, the vertex-set

V (G) of any pseudograph G will always be assumed nonempty.)

A zero of a commutative groupoid A is an element 0 ∈ A such that a0 = 0 for

every a ∈ A. Clearly a zero of A is unique. If A is a commutative groupoid with

0 then define the zero-divisor graph of A to be the graph Γ(A) whose vertices are

the elements of {a ∈ A \ {0} | ab = 0 for some b ∈ A \ {0}} (i.e., the nonzero

zero-divisors of A) and distinct vertices a, b ∈ A are adjacent if and only if ab = 0.

Diameter has been a topic of broad interest in the study of zero-divisor graphs

(e.g., it has been investigated in zero-divisor graphs of various algebraic structures

among [2], [3], [4], [9], [14], [18], [19], and [21], and other contributions have been

made that are not reflected in the bibliography of this article). In particular, it was

shown in [9] that the zero-divisor graph of a commutative semigroup is connected

with diameter at most three. Therefore, the class of graphs that are realizable as

zero-divisor graphs of commutative semigroups is relatively “small.” In contrast

with semigroups, Theorem 2.1 shows that every simple graph is realizable as the

zero-divisor graph of a commutative groupoid with 0. In fact, for every simple

graph G, the “freest” groupoid with 0 whose zero-divisor graph is G is given.

Nevertheless, it is natural to question the extent to which known results on diam-

eter for zero-divisor graphs of semigroups can be generalized. An obvious approach

is to examine more general notions of associativity. For example, a groupoid A is

called a Moufang groupoid if (ab)(ca) = (a(bc))a for all a, b, c ∈ A. This condi-

tion has been considered extensively for quasigroups (e.g., a Moufang quasigroup

was used in a construction of the notorious “monster group” in [7]), and has re-

cently been studied in more general groupoids (see [20]). Theorem 2.2 addresses

diameter for commutative Moufang groupoids with 0. Specifically, it is shown that

zero-divisor graphs of commutative Moufang groupoids with 0 are connected with

diameter at most four.
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Another well known generalization of associativity is given by the “medial” prop-

erty. A groupoid A is called medial (or entropic) if the equality (ab)(cd) = (ac)(bd)

holds for every a, b, c, d ∈ A. Note that medial groupoids with identity are associa-

tive (let b be the identity). However, the weaker identity-type condition “a ∈ aA
for every a ∈ A” does not guarantee associativity in a medial groupoid (e.g. let

A = Q be the set of rational numbers under the operation ab := a+a+b+b, where

“+” is the usual addition). Theorem 2.3 shows that if A is a commutative medial

groupoid with 0 such that a ∈ aA for every a ∈ A then its zero-divisor graph is

connected with diameter at most three. We reference [13] for other work on medial

groupoids, where the stronger condition “A = aA for every a ∈ A” is considered.

Let x be an element of a commutative groupoid A. Attempting to extend the

definition of a zero-divisor graph in order to arrive at a notion of an “x-divisor

graph,” one might choose the vertex-set to be {a ∈ A \ {x} | ab = x for some

b ∈ A \ {x}}. For general x, however, algebraic relations involving x may not be

clear, i.e., the solutions a ∈ A to the equation ax = x might be interesting. Thus, it

seems constructive to allow every element of {a ∈ A | ab = x for some b ∈ A} to be

a vertex. Actually, in the present article, we are interested in examining “x-divisor

graphs” of a given groupoid A for several different elements x ∈ A simultaneously.

Comparisons of the relations between different graphs are more meaningful if the

graphs have the same vertex-sets, so it will be beneficial to consider every element

of A to be a vertex. Moreover, we will permit looped vertices, and define the

x-divisor pseudograph of A to be the pseudograph Γx(A) whose vertices are the

elements of A such that (not necessarily distinct) a, b ∈ A are adjacent if and only

if ab = x.

Let A be a commutative groupoid. For every a, b ∈ A, there exists a unique

x ∈ A such that ab = x. Therefore, the complete pseudograph K|A| (i.e., the

complete graph on |A| looped vertices) is given by the union as x ranges over A of

the pseudographs Γx(A). More generally, define a complete system of pseudographs

(abbreviated by C.S.P.) to be a |I|-tuple ⟨Gi⟩i∈I (where I is an indexing set) of

pseudographs Gi such that V (Gi) = I for every i ∈ I and, for all i, j ∈ I, there

exists a unique k ∈ I such that i and j are adjacent in Gk. Throughout, the C.S.P.

⟨Γx(A)⟩x∈A given by a commutative groupoid A will be denoted by D(A), and

will be referred to as the divisor pseudograph system of A.

Section 3 is devoted to developing a framework for an algebraic theory of C.S.P.s

that is compatible with that of commutative groupoids by determining the “cor-

rect” definitions of a “C.S.P.-homomorphism” and its “image,” a “quotient-C.S.P.,”
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and a “direct product” of C.S.P.s. The “homomorphisms” of C.S.P.s defined in Sec-

tion 3 make the class of C.S.P.s into a category that is isomorphic to the category

of commutative groupoids with usual groupoid-homomorphisms (Theorem 3.4(2)).

In particular, two commutative groupoids A and B are isomorphic if and only if

the C.S.P.s D(A) and D(B) are “isomorphic” (Theorem 3.4(1)). A notion of “con-

gruence” is given such that an equivalence relation ∼ on a commutative groupoid

A is a congruence relation on A if and only if it induces a “congruence relation”

on D(A), and in this case the C.S.P.s D(A/∼) and D(A)/∼ are “isomorphic”

(in fact, they are equal; Theorem 3.7). Moreover, a “direct product” of C.S.P.s

is defined such that, for a family {Aj}j∈J of commutative groupoids, the C.S.P.s

D(
∏

j∈J Aj) and
∏

j∈J D(Aj) are “isomorphic” (in fact, they are equal), where∏
j∈J Aj is the usual direct product of groupoids (Theorem 3.9).

Throughout, if groupoids A and B are isomorphic then we will write A ∼= B.
If x is a vertex of a pseudograph G then define NG(x) = {y ∈ V (G) | x and y

are adjacent in G}. Let G and G′ be pseudographs. A homomorphism from G

into G′ is a function φ : V (G) → V (G′) such that φ(a) ∈ NG′(φ(b)) whenever

a ∈ NG(b). The pseudographs G and G′ are isomorphic, written G ∼= G′ (there will

be no risk of confusion with the notation for isomorphic groupoids), if there exists

a bijective homomorphism φ : V (G) → V (G′) such that φ−1 : V (G′) → V (G)

is also a homomorphism. A reference on graph theory can be found in [16], and

[12] sufficiently addresses the relevant concepts from category theory. Surveys on

zero-divisor graphs are given in [1] and [8], and a standard reference on groupoids

is [6].

2. Zero-divisor graphs of commutative groupoids

While the more general x-divisor graph (an idea conceived from the notion of a

zero-divisor graph) commands the primary focus of the present article, discussions

on this subject seem premature in the absence of any literature on zero-divisor

graphs of groupoids. The purpose of this section is to submit a brief introduction

to these zero-divisor graphs by considering their diameters in contrast to those of the

associative algebraic structures that have already been widely studied. We show

that every simple graph is realizable as the zero-divisor graph of a commutative

groupoid, and then close the section by presenting examples of results that show the

“connected zero-divisor graph” phenomenon extends beyond associative algebra.

Given any nonempty set X, let F(X) be the free commutative groupoid on X,

i.e., F(X) is the unique (up to isomorphism) commutative groupoid containing X
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satisfying the following universal property: If f : X → A is any function from X

into a commutative groupoid A then there exists a unique groupoid-homomorphism

ψ : F(X) → A that agrees with f on the set X. Note that F(X) can be regarded as

the collection of all finite bracketed products of elements from X such that ab = xy

for some a, b, x, y ∈ F(X) if and only if {a, b} = {x, y}. Let 0 be an element (not

in F(X)) and define F0(X) = F(X) ∪ {0} to be the commutative groupoid with

zero given by extending the operation on F(X) so that 0a = a0 = 0 for every

a ∈ F0(X).

The following theorem shows that, for every simple graph G, there exists a

“freest” commutative groupoid A with 0 whose zero-divisor graph is isomorphic to

G.

Theorem 2.1. Let G be a simple graph. There exists a commutative groupoid

A with 0 such that Γ(A) = G, and A has the following universal property: Let

ιA : V (G) → A be the inclusion map. If B is a commutative groupoid with 0 and

φ : V (G) → V (Γ(B)) ⊆ B is a graph-homomorphism then there exists a unique

groupoid-homomorphism Φ : A → B that agrees with φ on V (G), i.e., the following

diagram is commutative.

V (G) A

B

φ

ιA

Φ

Moreover, A is unique (up to isomorphism).

Proof. Let I ⊆ F0(V (G)) be the set consisting of 0, all elements that have a

bracketed factor of the form ab for some a, b ∈ V (G) with a ∈ NG(b), and all

elements that have a bracketed factor of the form cc for some isolated vertex c ∈
V (G) (i.e., NG(c) = ∅). Define an equivalence relation ∼ on F0(V (G)) by x ∼ y if

and only if either x = y or x, y ∈ I. Set A = {a | a ∈ F0(V (G))}, where a denotes

the equivalence class of a. It is straightforward to check that ∼ is a congruence

relation on F0(V (G)), and so the operation ab = ab makes A into a commutative

groupoid with zero element 0 = I.

By identifying an element a ∈ V (G) with a in A, it is clear that Γ(A) = G.

Let B be a commutative groupoid with 0 and φ : V (G) → V (Γ(B)) ⊆ B a graph-

homomorphism. Set Φ(0) = 0, and for every finite bracketed product x of elements
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from V (G) let Φ(x) be the finite bracketed product in B obtained from x by re-

placing every factor a ∈ V (G) of x with φ(a). The resulting function Φ : A → B is

a well defined (since φ is a graph-homomorphism) groupoid-homomorphism such

that ΦιA = φ, and the verification of the remaining assertions in the theorem are

routine: Φ is unique because A is generated by (the image of) V (G), and then the

uniqueness of A follows since, for any other A′ with Γ(A′) = G that satisfies the

universal property, there exist homomorphisms Φ1 : A → A′ (by setting B = A′

and φ = ιA′ and applying the universal property to A) and Φ2 : A′ → A (by set-

ting B = A and φ = ιA and applying the universal property to A′) such that Φ1Φ2

is the identity homomorphism on A′ (by setting B = A′ and φ = ιA′ and using

the “unique groupoid-homomorphism” portion of the universal property applied to

A′) and Φ2Φ1 is the identity homomorphism on A (by setting B = A and φ = ιA

and using the “unique groupoid-homomorphism” portion of the universal property

applied to A). �

The next two theorems show that the well known fact that zero-divisor graphs of

commutative semigroups are connected extends to commutative Moufang groupoids

with 0, and commutative medial groupoids with 0 such that a ∈ aA. Through-

out, the distance between two vertices a and b will be denoted by d(a, b), and if

a1, . . . , an ∈ A \ {0} (n is a positive integer) then the sequence (a1, . . . , an) will

be called a pseudowalk if aiai+1 = 0 for every i ∈ {1, . . . , n − 1}. Note that if

(a1, . . . , an) is a pseudowalk then d(a1, an) ≤ n− 1.

Theorem 2.2. Let A be a commutative Moufang groupoid with 0. Then Γ(A) is

connected with diameter at most four.

Proof. If a, b ∈ V (Γ(A)) then there exist x, y ∈ A \ {0} such that ax = 0 = by.

The following equalities are derived by using the Moufang property.

(1) (yx)(ay) = (y[xa])y = 0.

(2)
(
b[ay]

)
b = (ba)(yb) = 0.

(3)
(
(xy)[(ay)b]

)
(xy) =

(
(xy)(ay)

)(
b(xy)

)
=

(
(y[xa])y

)(
b(xy)

)
= 0.

(4)
(
(xy)((ay)b)

)(
b(xy)

)
=

(
(xy)

[
([ay]b)b

])
(xy) =

(
(xy)[(ba)(yb)]

)
(xy) = 0.

(5)
(
b[xy]

)
b = (bx)(yb) = 0.

(6)
(
a[xy]

)
a = (ax)(ya) = 0.

(7) If α = a[xy] then (α[ay])α = (αa)(yα) =
(
(ax)(ya)

)
(yα) = 0.

(8)
(
(ay)[a(xy)]

)
(ay) =

(
(ay)a

)(
(xy)(ay)

)
=

(
(ay)a

)(
(y[ax])y

)
= 0.

(9) (ay)(ba) =
(
a[yb]

)
a = 0.

(10) If a(ay) = 0 then (ba)
(
(ay)b

)
=

(
b[a(ay)]

)
b = 0.
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(11)
(
a(xy)

)(
(ay)a

)
=

(
a
[
(xy)(ay)

])
a =

(
a
[
(y[xa])y

])
a = 0.

(12)
(
(ay)b

)(
a(ay)

)
=

(
(ay)[ba]

)
(ay) =

(
(a[yb])a

)
(ay) = 0.

If ab = 0 then d(a, b) ≤ 1. Also, if ay = 0 then d(a, b) ≤ 2, and if xy = 0 then

d(a, b) ≤ 3. Therefore, assume that ab, ay, and xy are nonzero.

Suppose that a(xy) = 0. If b(xy) = 0 then d(a, b) ≤ 2, so assume b(xy) ̸= 0.

If (ay)b = 0 then d(a, b) ≤ 3 since (a, xy, ay, b) is a pseudowalk by (1), so assume

(ay)b ̸= 0. If (xy)
(
(ay)b

)
= 0 then (a, xy, (ay)b, b) is a pseudowalk by (2), and if

(xy)
(
(ay)b

)
̸= 0 then (a, xy, (xy)

(
(ay)b

)
, b(xy), b) is a pseudowalk by (3), (4), and

(5). Thus, d(a, b) ≤ 4. Henceforth, assume that a(xy) ̸= 0.

Suppose that (ay)b = 0. If (ay)
(
a(xy)

)
= 0 then (a, a(xy), ay, b) is a pseu-

dowalk by (6), so d(a, b) ≤ 3. On the other hand, if (ay)
(
a(xy)

)
̸= 0 then

(a, a(xy), (ay)
(
a(xy)

)
, ay, b) is a pseudowalk by (6), (7), and (8). Hence, d(a, b) ≤ 4.

Therefore, assume that (ay)b ̸= 0.

Suppose that a(ay) = 0. Then (a, ay, ab, (ay)b, b) is a pseudowalk by (9), (10),

and (2), and hence d(a, b) ≤ 4. Thus, assume that a(ay) ̸= 0.

The cases when either a(xy) = 0, (ay)b = 0, or a(ay) = 0 have been exhausted.

But if the elements a(xy), (ay)b, and a(ay) are nonzero then (a, a(xy), a(ay), (ay)b, b)

is a pseudowalk by (6), (11), (12), and (2). Therefore, d(a, b) ≤ 4, and the proof is

complete. �

Relative to the previous result on Moufang groupoids, the case when A is medial

such that a ∈ aA for every a ∈ A is proved more readily.

Theorem 2.3. Let A be a commutative medial groupoid with 0. If a ∈ aA for

every a ∈ A then Γ(A) is connected with diameter at most three.

Proof. If a, b ∈ V (Γ(A)) then there exist x, y ∈ A \ {0} such that ax = 0 = by. If

ay = 0 or bx = 0 then it is clear that d(a, b) ≤ 2. Suppose that ay, bx ̸= 0. Choose

s, t ∈ A such that as = a and bt = b. Then a(bx) = (as)(bx) = (ax)(bs) = 0 and

(bx)(ay) = (by)(ax) = 0 and b(ay) = (bt)(ay) = (by)(at) = 0, so it follows that

d(a, b) ≤ 3. �

The following example shows that the assumption “a ∈ aA for every a ∈ A”

cannot be omitted in Theorem 2.3.

Example 2.4. Let “·” be the usual multiplication on the integers and set A =

{0, 1, 2, 3, 4}. For all a, b ∈ A, define ab = 0 if either a·b ∈ {0, 1} or a·b > 5, ab = 3

if a · b = 2, and ab = 4 if a · b ∈ {3, 4}. It is clear that (xy)(zw) = 0 = (xz)(yw)

for all x, y, z, w ∈ A (e.g., since A2 = {0, 3, 4}, it follows that A2A2 = {0}).
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In particular, A is a commutative medial groupoid with zero element 0. However,

Γ(A) is not connected (it is given by the complete graph on {2, 3, 4} together with

the isolated vertex 1).

It is clear that the bound given in Theorem 2.3 is sharp (e.g., let A be the

collection of all subsets of {1, 2, 3} under the operation ∩). However, the following

question remains unanswered.

Question 2.5. Does there exist a commutative Moufang groupoid A with 0 such

that Γ(A) has diameter four?

3. Complete systems of pseudographs

Let G1 = ⟨Gi⟩i∈I and G2 = ⟨Hj⟩j∈J be C.S.P.s. A homomorphism from G1

to G2 is given by a function σ : I → J such that σ : V (Gi) → V (Hσ(i)) is a

homomorphism of pseudographs for every i ∈ I; in this case, the homomorphism

of C.S.P.s will be denoted by σ : G1 → G2. The image σ(G1) of a homomorphism

σ : G1 → G2 is defined as the |σ(I)|-tuple ⟨Hj |σ⟩j∈σ(I), where Hj |σ denotes the

subpseudograph of Hj induced by σ(I).

Example 3.1. Let G1 = ⟨Ga, Gb, Gc, Gd⟩, where Ga, Gb, Gc and Gd are the pseu-

dographs given in Figure 1(a)-(d). Let G2 = ⟨Hx,Hy,Hz,Hw⟩, where Hx, Hy, Hz,

and Hw are the pseudographs given in Figure 1(e)-(h). Define σ : {a, b, c, d} →
{x, y, z, w} by σ(a) = σ(b) = y, σ(c) = z, and σ(d) = w. Then σ is a homo-

morphism from G1 to G2. The homomorphic image of σ is σ(G1) = ⟨Hy|σ, Hz|σ,
Hw|σ⟩, where Hy|σ, Hz|σ, and Hw|σ are the pseudographs given in Figure 1(i)-(k).

Let G1 = ⟨Gi⟩i∈I , G2, and G3 = ⟨Hj⟩j∈J be C.S.P.s, and suppose that σ :

G1 → G2 and τ : G2 → G3 are homomorphisms. Then τσ : V (Gi) → V (Hτσ(i))

is a homomorphism of pseudographs for every i ∈ I. Hence, the composition

τσ : G1 → G3 of homomorphisms of C.S.P.s is well defined.

Let σ : G1 → G2 be a homomorphism of C.S.P.s G1 = ⟨Gi⟩i∈I and G2 = ⟨Hj⟩j∈J .

If σ : I → J is injective, surjective, or bijective, then σ : G1 → G2 will be called

injective, surjective, or bijective, respectively, and a bijective C.S.P.-homomorphism

will be called an isomorphism. The complete systems G1 and G2 are isomorphic,

denoted by G1
∼= G2, if there exists an isomorphism σ : G1 → G2.

Note that “∼=” is an equivalence relation on the collection of all C.S.P.s. Also,

given C.S.P.s G1 = ⟨Gi⟩i∈I and G2 = ⟨Hj⟩j∈J , if σ : V (Gi) → V (Hσ(i)) is a bijective

homomorphism of pseudographs for every i ∈ I then so is σ−1 : V (Hσ(i)) → V (Gi)

(because if x ∈ NHσ(i)
(y) but σ−1(x) ̸∈ NGi(σ

−1(y)) then σ : V (Gk) → V (Hσ(k))
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a b

cd

(a) Ga

a b

cd

(b) Gb

a b

cd

(c) Gc

a b

cd

(d) Gd

x y

zw

(e) Hx

x y

zw

(f) Hy

x y

zw

(g) Hz

x y

zw

(h) Hw

x

y

zw

(i) Hy |σ

x

y

zw

(j) Hz |σ

x

y

zw

(k) Hw|σ

Figure 1. If G1 = ⟨Ga, Gb, Gc, Gd⟩ and G2 = ⟨Hx,Hy,Hz,Hw⟩
then σ(G1) = ⟨Hy|σ,Hz|σ,Hw|σ⟩, where σ : G1 → G2 is the homo-

morphism with σ(a) = σ(b) = y, σ(c) = z, and σ(d) = w.

would fail to be a homomorphism, where k ∈ I is the unique element such that

σ−1(x) ∈ NGk
(σ−1(y)). This yields the following observation.

Proposition 3.2. Let G1 = ⟨Gi⟩i∈I and G2 = ⟨Hj⟩j∈J be C.S.P.s. If σ : G1 → G2

is a C.S.P.-isomorphism then σ : V (Gi) → V (Hσ(i)) is a pseudograph-isomorphism

for every i ∈ I.

We now begin to establish a dictionary between commutative groupoids and

C.S.P.s.

Remark 3.3. (1) Let A be a commutative groupoid. It has already been ob-

served that D(A) = ⟨Γx(A)⟩x∈A is a C.S.P. Conversely, let G = ⟨Gi⟩i∈I

be a C.S.P. Note that setting ij = k if and only if i, j, k ∈ I with i ∈ NGk
(j)

makes I into a well defined (by the uniqueness of k) commutative groupoid



THE x-DIVISOR PSEUDOGRAPHS OF A COMMUTATIVE GROUPOID 71

such that D(I) = G . Moreover, it is clear that if D(A) = D(I) for some

commutative groupoid A then I and A are equal as groupoids.

(2) Suppose that σ : A → B is a homomorphism of commutative groupoids.

Let x ∈ A. If a, b ∈ V (Γx(A)) with a ∈ NΓx(A)(b), i.e., ab = x, then

σ(a)σ(b) = σ(ab) = σ(x), i.e., σ(a) ∈ NΓσ(x)(B)(σ(b)). Hence, for every

x ∈ A, the function σ : V (Γx(A)) → V (Γσ(x)(B)) is a homomorphism

of pseudographs. Therefore, σ : D(A) → D(B) is a homomorphism of

C.S.P.s.

Conversely, suppose that σ : G1 → G2 is a homomorphism of C.S.P.s.

Then (1) implies that there exist commutative groupoids A and B such

that G1 = D(A) and G2 = D(B). In particular, the homomorphism σ is

determined by a function σ : A → B.
Let x, y ∈ A. It is evident that x ∈ NΓxy(A)(y). But σ : V (Γxy(A)) →

V (Γσ(xy)(B)) is a homomorphism of pseudographs, and therefore σ(x) ∈
NΓσ(xy)(B)(σ(y)). That is, in B, the equality σ(x)σ(y) = σ(xy) holds.

Hence, the function σ : A → B is a homomorphism of commutative groupoids.

(3) Let A and B be commutative groupoids. It follows from (2) that A ∼= B
if and only if D(A) ∼= D(B) (since an isomorphism σ : D(A) → D(B) of

C.S.P.s is, by definition, a homomorphism of C.S.P.s such that σ : A → B
is a bijective function).

The discussions in Remark 3.3 are summarized in the next theorem.

Theorem 3.4. The following statements hold.

(1) If G is a C.S.P. then there exists a unique (up to isomorphism) commutative

groupoid A such that D(A) ∼= G .

(2) The covariant functor D from the category of commutative groupoids to the

category of C.S.P.s that maps a groupoid A to its divisor pseudograph sys-

tem D(A) and maps a groupoid-homomorphism σ : A → B to the C.S.P.-

homomorphism D(σ) = σ : D(A) → D(B) gives an isomorphism of cate-

gories.

Proof. Note that (1) is immediate from Remark 3.3(1) and Remark 3.3(3). For

(2), it is straightforward to check that the class of C.S.P.s and their homomorphisms

satisfy the axioms for a category, and that D is a covariant functor. From Remark

3.3(2), it is easily verified that D is well defined on morphisms, and that it is full.

As D(σ) : D(A) → D(B) is determined uniquely (by definition) by the function
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σ : A → B, it is clear that D is faithful. But it is observed in Remark 3.3(1) that

D is bijective on objects, and it follows that D is an isomorphism. �

The next result supports the given definition of the “image” of a C.S.P.-homomorp-

hism.

Proposition 3.5. If σ : A → B is a homomorphism of commutative groupoids

then D(σ(A)) = D(σ)(D(A)). In particular, any homomorphic image of a C.S.P.

is a C.S.P.

Proof. Note that Γx(B)|σ = Γx(σ(A)) for every x ∈ σ(A). Hence, the equalities

D(σ)(D(A)) = ⟨Γx(B)|σ⟩x∈σ(A) = ⟨Γx(σ(A))⟩x∈σ(A) = D(σ(A)) hold. It follows

that D(σ)(D(A)) is the divisor pseudograph system of the groupoid σ(A) (cf.

Example 3.1). The “in particular” statement holds since D is surjective on objects

and morphisms. �

We now turn our attention to determining notions of a “quotient-C.S.P.” and a

“direct product” of C.S.P.s that are compatible with that of a quotient-groupoid

and a direct product of groupoids. Incidentally, as we shall see, such concepts

turn out to be closely related to the usual notions of a quotient-pseudograph and

a direct product of pseudographs (as defined in [16]). We begin with the concept

of quotients.

Let G be a pseudograph. Recall that every equivalence relation ∼ on V (G) is

regarded as a congruence on V (G), and the corresponding quotient-pseudograph

G/∼ is the pseudograph whose vertices are the resulting equivalence classes such

that A ∈ NG/∼(B) if and only if a ∈ NG(b) for some a ∈ A and b ∈ B (these

graph-theoretic congruences and quotients are examined in Chapter 1 of [16]). This

definition may seem in contrast to algebraic notions of congruence since relations

within G need not be respected by a given equivalence relation (e.g., adjacency

between vertices A and B in G/∼ need not reflect adjacency between given repre-

sentatives a ∈ A and b ∈ B in G). Nevertheless, it will turn out to be suitable for

determining the divisor pseudograph system of a quotient-groupoid.

Let G = ⟨Gi⟩i∈I be a C.S.P. Suppose that ∼ is an equivalence relation on I, and

let I /∼ be the resulting set of equivalence classes. For every X ∈ I /∼, let ΓX be

the pseudograph with V (ΓX) = I /∼ and A ∈ NΓX
(B) if and only if a ∈ NGi(b) for

some a ∈ A, b ∈ B, and i ∈ X (i.e., ΓX = ∪i∈X(Gi/∼)). Define the quotient-system

G /∼ of G to be the |I /∼|-tuple ⟨ΓX⟩
X∈I/∼.

Remark 3.6. Observe that G /∼ need not be a C.S.P. For example, let G = D(A)

be the C.S.P. determined by the pseudographs given in Figure 2(a)-(c). Let ∼ be the
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equivalence relation on {a, b, c} whose equivalence classes are given by a = {a} and

b = c = {b, c}. Then G /∼ is not a C.S.P. since b ∈ NΓX (b) for every X ∈ I /∼.

a b

c

(a) Γa(A)

a b

c

(b) Γb(A)

a b

c

(c) Γc(A)

Figure 2. If ∼ is the equivalence relation on {a, b, c} whose equiv-

alence classes are given by a = {a} and b = c = {b, c} then G /∼
is not a C.S.P.

Let G = ⟨Gi⟩i∈I be a C.S.P. An equivalence relation ∼ on I will be called

a congruence on G if G /∼ is a C.S.P. By Theorem 3.4, there exists a functor

D−1 from the category of C.S.P.s to the category of commutative groupoids such

that DD−1 and D−1D are the identity functors on the categories of C.S.P.s and

commutative groupoids, respectively. The next result supports the above definition

of a quotient-system.

Theorem 3.7. Given a complete system G = ⟨Gi⟩i∈I of pseudographs, let ∼ be

an equivalence relation on I. Then ∼ is a congruence on G if and only if ∼ is

a congruence on the commutative groupoid I = D−1(G ). In this case, D(I /∼) =

D(I)/∼ = G /∼.

Proof. Suppose that ∼ is a congruence on G , and let a, b, x, y ∈ I = D−1(G )

such that a ∼ x and b ∼ y. It is clear that the pseudograph Γab in G /∼ satisfies

a ∈ NΓab
(b). Similarly, a = x ∈ NΓxy (y) = NΓxy (b). However, since G /∼ is a

C.S.P., the element X ∈ I /∼ with a ∈ NΓX (b) is unique. Hence, ab = X = xy, i.e.,

ab ∼ xy. Therefore, ∼ is a congruence on the groupoid I = D−1(G ).

To prove the “if” statement, suppose that ∼ is a congruence on the commutative

groupoid I = D−1(G ). For this portion of the proof, let D(I /∼) = ⟨ΓX(I /∼)⟩
X∈I/∼

(as usual), and let D(I)/∼ = ⟨HX⟩
X∈I/∼, where HX is the pseudograph with

V (HX) = I /∼ and A ∈ NHX (B) if and only if a ∈ NGi(b) for some a ∈ A, b ∈ B,

and i ∈ X (i.e., the notation “HX” is taking the place of “ΓX” in the definition of a

quotient-system). Since D(I /∼) is the divisor pseudograph system of the groupoid

I /∼, it is sufficient to prove the second statement of the theorem.
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Note that the equality D(I)/∼ = G /∼ holds trivially since D(I) = D(D−1(G )) =

G . To show that D(I /∼) = D(I)/∼, it must be proved that ΓX(I /∼) = HX for

every X ∈ I /∼. Since V (ΓX(I /∼)) = I /∼ = V (HX), it suffices to prove that

ΓX(I /∼) and HX have the same adjacency relations for every X ∈ I /∼.

Let X ∈ I /∼. For every A,B ∈ I /∼, the containment A ∈ N
ΓX(I/∼)

(B) holds

if and only if AB = X, if and only if ab ∈ X for every a ∈ A and b ∈ B. On the

other hand, since ∼ is a congruence on the groupoid I, the containment ab ∈ X

holds for every a ∈ A and b ∈ B if and only if ab = i for some a ∈ A, b ∈ B, and

i ∈ X. Hence, A ∈ N
ΓX(I/∼)

(B) if and only if a ∈ NGi(b) for some a ∈ A, b ∈ B,

and i ∈ X; that is, A ∈ N
ΓX(I/∼)

(B) if and only if A ∈ NHX
(B). Therefore,

ΓX(I /∼) = HX . �

The following example illustrates a simple application of Theorem 3.7.

Example 3.8. Let A = {a, b, c} be the groupoid given by a2 = bc = a, ab = b2 = b,

and ac = c2 = c. Then D(A) is given by the pseudographs in Figure 2(a)-(c).

Define ∼ on A by a = {a} and b = c = {b, c}. By Remark 3.6, D(A)/∼ is not a

C.S.P. Therefore, by Theorem 3.7, ∼ is not a congruence on A.

We close this section by revealing how the functor D behaves with respect to

direct products of groupoids. Let {Gj}j∈J be a family of pseudographs. The direct

product
∏

j∈J Gj of {Gj}j∈J is the pseudograph whose vertices are the elements of

the cartesian product
∏

j∈J V (Gj) such that two vertices (aj) and (bj) are adjacent

if and only if aj and bj are adjacent in Gj for every j ∈ J (what we call a “direct

product” is referred to as a “cross product” in [16, Definition 4.2.1]). If {Gj}j∈J

is a family of C.S.P.s, say Gj = ⟨G(j)x⟩x∈Ij (j ∈ J), then define the direct product∏
j∈J Gj of {Gj}j∈J to be the |

∏
j∈J Ij |-tuple ⟨H(xj)⟩(xj)∈

∏
j∈J Ij , where H(xj) =∏

j∈J G(j)xj . In particular, if {Aj}j∈J is a family of commutative groupoids such

that Gj = D(Aj) for every j ∈ J then H(xj) =
∏

j∈J Γxj (Aj) for all (xj) ∈∏
j∈J Aj .

Let (aj), (bj) ∈
∏

j∈J Ij . For every j ∈ J , there exists a unique xj ∈ Ij such that

aj ∈ NG(j)xj
(bj). It follows that (xj) is the unique element of

∏
j∈J Ij such that

(aj) ∈ NH(xj)

(
(bj)

)
. Therefore,

∏
j∈J Gj is a C.S.P. The next result shows that the

functor D preserves direct products of C.S.P.s.

Theorem 3.9. If {Aj}j∈J is a family of commutative groupoids then the equality

D(
∏

j∈J Aj) =
∏

j∈J D(Aj) holds.
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Proof. By definition, the C.S.P.s D(
∏

j∈J Aj) and
∏

j∈J D(Aj) are both indexed

by
∏

j∈J Aj . Hence, it suffices to verify that

Γ(xj)(
∏
j∈J

Aj) =
∏
j∈J

Γxj (Aj)

for every (xj) ∈
∏

j∈J Aj . This follows immediately from the observation that

two elements (aj), (bj) ∈
∏

j∈J Aj are adjacent in Γ(xj)(
∏

j∈J Aj) if and only if

(aj)(bj) = (xj) in the groupoid
∏

j∈J Aj , if and only if ajbj = xj in Aj for every

j ∈ J , if and only if aj ∈ NΓxj
(Aj)

(bj) for every j ∈ J , if and only if the elements

(aj), (bj) ∈
∏

j∈J Aj are adjacent in
∏

j∈J Γxj (Aj). �

The following corollary emphasizes (from the standpoint of category theory)

ways in which the above results confirm the given definitions of “quotient-C.S.P.”

and “direct product” of C.S.P.s. Recall that, if ∼ is a congruence on a commutative

groupoid A, then the function mapping an element a ∈ A to the element a ∈ A/∼
is a groupoid-homomorphism.

Corollary 3.10. The following statements hold.

(1) Suppose that ∼ is a congruence on a C.S.P. G , and let ψ : G → G /∼ be

the C.S.P.-homomorphism that maps every element to its equivalence class.

Then G /∼ satisfies the following universal property: If G ′ is a C.S.P. and

σ : G → G ′ is a C.S.P.-homomorphism such that σ(a) = σ(b) whenever

a ∼ b then there exists a unique C.S.P.-homomorphism µ : G /∼ → G ′ such

that µψ = σ. Moreover, G /∼ ∼= σ(G ).

(2) If {Gj}j∈J is a family of C.S.P.s then there exists a family of C.S.P.-

homomorphisms {ρi :
∏

j∈J Gj → Gi | i ∈ J} that satisfies the following

universal property: If G is a C.S.P. and {σi : G → Gi | i ∈ J} is a family of

C.S.P.-homomorphisms then there exists a unique C.S.P.-homomorphism

σ : G →
∏

j∈J Gj such that ρiσ = σi for every i ∈ J .

Proof. Note that ψ is a C.S.P.-homomorphism by Theorem 3.7 since, by the above

comments together with Theorem 3.4, it is the image under D of a homomor-

phism of the corresponding commutative groupoids. The universal property given

in (1) holds similarly (since the corresponding statement holds for commutative

groupoids). Also, the “moreover” statement can be verified using Proposition 3.5

since the corresponding statement holds for commutative groupoids.

For (2), the corresponding universal property holds for direct products of commu-

tative groupoids (with ρi being the usual projection mapping), so the result follows
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by Theorem 3.9 together with the observation that the functor D is bijective on

objects and morphisms. �
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