ON A LIE ALGEBRA RELATED TO SOME TYPES OF DERIVATIONS AND THEIR DUALS

Atsushi Nakajima
Received: 29 November 2016; Revised: 28 June 2017

Communicated by Abdullah Harmancı

Abstract. Let A be an associative algebra over a commutative ring $R, \operatorname{BiL}(A)$ the set of R-bilinear maps from $A \times A$ to A, and arbitrarily elements x, y in A. Consider the following R-modules:

$$
\begin{aligned}
& \Omega(A)=\left\{(f, \alpha) \mid f \in \operatorname{Hom}_{R}(A, A), \alpha \in \operatorname{BiL}(A)\right\} \\
& \operatorname{TDer}(A)=\left\{\left(f, f^{\prime}, f^{\prime \prime}\right) \in \operatorname{Hom}_{R}(A, A)^{3} \mid f(x y)=f^{\prime}(x) y+x f^{\prime \prime}(y)\right\}
\end{aligned}
$$

$\operatorname{TDer}(A)$ is called the set of triple derivations of A. We define a Lie algebra structure on $\Omega(A)$ and $\operatorname{TDer}(A)$ such that $\varphi_{A}: \operatorname{TDer}(A) \rightarrow \Omega(A)$ is a Lie algebra homomorphism.

Dually, for a coassociative R-coalgebra C, we define the R-modules $\Omega(C)$ and TCoder (C) which correspond to $\Omega(A)$ and $\operatorname{TDer}(A)$, and show that the similar results to the case of algebras hold. Moreover, since $C^{*}=\operatorname{Hom}_{R}(C, R)$ is an associative R-algebra, we give that there exist anti-Lie algebra homomorphisms $\theta_{0}: \operatorname{TCoder}(C) \rightarrow \operatorname{TDer}\left(C^{*}\right)$ and $\theta_{1}: \Omega(C) \rightarrow \Omega\left(C^{*}\right)$ such that the following diagram is commutative :

Mathematics Subject Classification (2010): 16W25, 16T15
Keywords: Derivation, generalized derivation, Lie algebra, coalgebra, coderivation, generalized coderivation

1. Introduction

Throughout the following, R is a commutative ring with an identity $1, A$ an associative R-algebra and C a coassociative R-coalgebra. We do not assume that A has an identity 1_{A} and C has a counit $\varepsilon: C \rightarrow R$. For any R-modules X and Y, we denote the set of R-linear maps from X to Y by $\operatorname{Hom}(X, Y)$ and the symbol \otimes means the tensor product \otimes_{R} over R. For an A-bimodule M, an R-linear map

[^0]$d: A \rightarrow M$ is called a derivation if $d(x y)=d(x) y+x d(y)$ for any $x, y \in A$, and there are several variations on this concept. For examples, $f \in \operatorname{Hom}(A, M)$ is called a B-derivation (i.e., Bresar's derivation, cf. [1] and [8]) if there exists a derivation $d \in \operatorname{Hom}(A, M)$ such that $f(x y)=f(x) y+x d(y)$, and f is called an N -derivation if there exists an element $m \in M$ such that $f(x y)=f(x) y+x f(y)+x(m y)$ (cf.[8] and [12]). These sets of derivations, B-derivations and N -derivations from A to M are denoted by $\operatorname{Der}(A, M), \operatorname{BDer}(A, M)$ and $\operatorname{NDer}(A, M)$, respectively. The properties of these derivations were discussed in many papers.

An R-linear map $f: A \rightarrow M$ is called a generalized derivation if there exist elements $f^{\prime}, f^{\prime \prime} \in \operatorname{Hom}(A, M)$ such that $f(x) y+x f^{\prime}(y)=f^{\prime \prime}(x y)$. This concept was introduced by G. F. Leger and E. M. Luks in a non-associative algebra in [10], and many properties of the generalized derivations for Lie algebras were given. Since f^{\prime} and $f^{\prime \prime}$ are not uniquely determined by f, we define that a triple $\left(f, f^{\prime}, f^{\prime \prime}\right) \in$ $\operatorname{Hom}(A, M)^{3}$ is called a triple derivation if $f(x y)=f^{\prime}(x) y+x f^{\prime \prime}(y)$, and denote the set of triple derivations from A to M by $\operatorname{TDer}(A, M)$ (cf. [8]). It is easy to see that the derivations, B-derivations and N -derivations are represented by (d, d, d), (f, f, d) and $\left(f, f, f+m_{\ell}\right)$ as triple derivations, respectively, and $f+m_{\ell}$ is a derivation, where $m_{\ell}(x)=m x$. We have the following relations for these R modules:

$$
\operatorname{Der}(A, M) \subseteq \operatorname{NDer}(A, M) \subseteq \operatorname{BDer}(A, M) \subseteq \operatorname{TDer}(A, M) \subset \operatorname{Hom}(A, M)^{3}
$$

where $\operatorname{Hom}(A, M)^{3}=\operatorname{Hom}(A, M) \times \operatorname{Hom}(A, M) \times \operatorname{Hom}(A, M)$ is the direct product of R-module $\operatorname{Hom}(A, M)$.

Let C be an R-coalgebra with a comultiplication $\Delta: C \rightarrow C \otimes C$. An R-module N is called a C-bicomodule if there exist C-comodule structure maps $\rho^{+}: N \rightarrow N \otimes C$ and $\rho^{-}: N \rightarrow C \otimes N$ such that the following relations hold:

$$
\begin{equation*}
(I \otimes \Delta) \rho^{+}=\left(\rho^{+} \otimes I\right) \rho^{+}, \quad(\Delta \otimes I) \rho^{-}=\left(I \otimes \rho^{-}\right) \rho^{-}, \quad\left(\rho^{-} \otimes I\right) \rho^{+}=\left(I \otimes \rho^{+}\right) \rho^{-} \tag{1.0}
\end{equation*}
$$

where the letter I always stands for the identity map (here, the identity map $C \rightarrow$ $C)$. An R-linear map $d: N \rightarrow C$ is called a coderivation if

$$
\begin{equation*}
\Delta d=(d \otimes I) \rho^{+}+(I \otimes d) \rho^{-}: N \rightarrow C \otimes C \tag{1.1}
\end{equation*}
$$

(cf. [4] and [11]). The notion of a coderivation is also extended as follows. An R-linear map $f: N \rightarrow C$ is called a B-coderivation if there exists a coderivation $d: N \rightarrow C$ such that

$$
\begin{equation*}
\Delta f=(f \otimes I) \rho^{+}+(I \otimes d) \rho^{-} \tag{1.2}
\end{equation*}
$$

and f is called an N -coderivation if there exists an R-linear map $\xi: N \rightarrow R$ such that

$$
\begin{equation*}
\Delta f=(f \otimes I) \rho^{+}+(I \otimes f) \rho^{-}+(I \otimes \xi \otimes I)\left(I \otimes \rho^{+}\right) \rho^{-} \tag{1.3}
\end{equation*}
$$

A triple $\left(f, f^{\prime}, f^{\prime \prime}\right) \in \operatorname{Hom}(N, C)^{3}$ is called a triple coderivation if

$$
\begin{equation*}
\Delta f=\left(f^{\prime} \otimes I\right) \rho^{+}+\left(I \otimes f^{\prime \prime}\right) \rho^{-} \tag{1.4}
\end{equation*}
$$

These sets of coderivations, B-coderivations, N -coderivations and triple coderivations from N to C are denoted by $\operatorname{Coder}(N, C), \operatorname{BCoder}(N, C), \operatorname{NCoder}(N, C)$ and TCoder (N, C), respectively. Similarly to the case of derivations, these coderivations, B-coderivations and N-coderivations are represented by $(d, d, d),(f, f, d)$ and $\left(f, f, f+(\xi \otimes I) \rho^{+}\right)$as triple coderivations, respectively, we have the following relations for these R-modules

$$
\operatorname{Coder}(N, C) \subseteq \operatorname{NCoder}(N, C) \subseteq \operatorname{BCoder}(N, C) \subseteq \operatorname{TCoder}(N, C)
$$

The middle sign \subseteq is proven by Lemma 3.1. These R-modules are also R-submodules of the direct product $\operatorname{Hom}(N, C)^{3}=\operatorname{Hom}(N, C) \times \operatorname{Hom}(N, C) \times \operatorname{Hom}(N, C)$. The properties of these coderivations were discussed in [9] and [15]. Note that when C has a counit $\varepsilon: C \rightarrow R$, then we will show that

$$
\operatorname{NCoder}(N, C)=\operatorname{BCoder}(N, C)=\operatorname{TCoder}(N, C)
$$

in Section 3, Lemma 3.1.
In Section 2, we treat an associative R-algebra A and an A-bimodule M. Writing $\operatorname{BiL}(A, M)$ for the set of R-bilinear maps from $A \times A \rightarrow M$, we consider the following R-module as the direct product of R-modules $\operatorname{Hom}(A, M)$ and $\operatorname{BiL}(A, M)$:

$$
\Omega(A, M)=\operatorname{Hom}(A, M) \times \operatorname{BiL}(A, M)
$$

and define

$$
\varphi_{M}: \operatorname{TDer}(A, M) \rightarrow \Omega(A, M)
$$

Then we see that $\Omega(A)=\Omega(A, A)$ and $\operatorname{TDer}(A)=\operatorname{TDer}(A, A)$ have Lie algebra structures such that $\varphi_{A}: \operatorname{TDer}(A) \rightarrow \Omega(A)$ is a Lie algebra homomorphism. Moreover, we show that the set of generalized Lie (resp. Jordan) derivations GLDer (A) (resp. GJDer (A)) from A to A is also a Lie subalgebra of $\Omega(A)$. In the final of Section 2, we discuss the subset of $\operatorname{BiL}(A, M)$ consisting of the biderivations in the sense of [2] and [17].

In Section 3, for a coassociative R-coalgebra C and a C-bicomodule N, we define the direct product of R-modules $\operatorname{Hom}(N, C)$ and $\operatorname{Hom}(N, C \otimes C)$

$$
\Omega(N, C)=\operatorname{Hom}(N, C) \times \operatorname{Hom}(N, C \otimes C)
$$

Then we show that results similar to those from Section 2 hold. Moreover, since $C^{*}=\operatorname{Hom}(C, R)$ is an associative R-algebra and $N^{*}=\operatorname{Hom}(N, R)$ is a C^{*} bimodule, there exist R-module homomorphisms

$$
\theta_{0}: \operatorname{TCoder}(N, C) \rightarrow \operatorname{TDer}\left(C^{*}, N^{*}\right) \quad \text { and } \quad \theta_{1}: \Omega(N, C) \rightarrow \Omega\left(C^{*}, N^{*}\right)
$$

such that the following diagram is commutative:

where ψ_{N} is defined in Lemma 3.2. Especially, if $N=C$, then ψ_{N} and $\varphi_{N^{*}}$ are Lie algebra homomorphisms whereas θ_{0} and θ_{1} are anti-Lie algebra homomorphisms.

2. The case of algebras

In this section, A is an associative R-algebra and the letters x, y, z denote arbitrary elements in $A . M$ is an A-bimodule, that is, M is an R-module, and a left and a right A-module such that

$$
x(m y)=(x m) y, \quad r(x m)=(r x) m=x(r m)=(x m) r \text { and } r m=m r
$$

for any $m \in M$ and $r \in R$. An A-bimodule M is said to be unital if $\{m \in$ $M \mid A m A=0\}=0$. If A has an identity element 1_{A} and M is unital, then, for any $m \in M$, we have $A\left(1_{A} m-m\right) A=0$, and hence $1_{A} m=m$, similarly $m 1_{A}=m$.

An R-bilinear map $\alpha \in \operatorname{BiL}(A, M)$ is called a factor set or Hochschild 2-cocycle if

$$
x \alpha(y, z)-\alpha(x y, z)+\alpha(x, y z)-\alpha(x, y) z=0
$$

and the factor set α is called a split factor set if there exists $f \in \operatorname{Hom}(A, M)$ such that

$$
f(x y)=f(x) y+x f(y)+\alpha(x, y)
$$

(cf. $[3,(72.13)$ and (72.14)] and [14]). Although f is not uniquely determined by α, we consider the set of above pairs, and denote it by

$$
\Lambda(A, M)=\{(f, \alpha) \in \Omega(A, M) \mid f(x y)=f(x) y+x f(y)+\alpha(x, y)\}
$$

As is easily seen, $\Lambda(A, M)$ is an R-submodule of $\Omega(A, M)$, and for any $\left(f, f^{\prime}, f^{\prime \prime}\right) \in$ $\operatorname{TDer}(A, M)$, we have a bilinear map

$$
A \times A \ni(x, y) \mapsto f(x y)-f(x) y-x f(y)=\left(f^{\prime}-f\right)(x) y+x\left(f^{\prime \prime}-f\right)(y) \in M
$$

Then we have the following.

Lemma 2.1. For any $\left(f, f^{\prime}, f^{\prime \prime}\right) \in \operatorname{TDer}(A, M)$, define an R-bilinear map $\alpha(f)$ by

$$
\begin{equation*}
\alpha(f): A \times A \ni(x, y) \mapsto f(x y)-f(x) y-x f(y) \in M \tag{2.1}
\end{equation*}
$$

Then the map

$$
\begin{equation*}
\varphi_{M}: \operatorname{TDer}(A, M) \ni\left(f, f^{\prime}, f^{\prime \prime}\right) \mapsto(f, \alpha(f)) \in \Lambda(A, M) \subset \Omega(A, M) \tag{2.2}
\end{equation*}
$$

is an R-module homomorphism with
$\operatorname{Ker} \varphi_{M}=\left\{\left(0, f^{\prime}, f^{\prime \prime}\right) \in \operatorname{TDer}(A, M) \mid f^{\prime}(x) y+x f^{\prime \prime}(y)=0 \quad\right.$ for any $\left.\quad x, y \in A\right\}$.
Especially, if M is a unital A-bimodule, then φ_{M} is a monomorphism on $B \operatorname{Der}(A, M)$.
Proof. We note that for any $\left(f, f^{\prime}, f^{\prime \prime}\right) \in \operatorname{TDer}(A, M), \alpha(f)$ is a split factor set by f and thus $\varphi_{M}(\operatorname{TDer}(A, M))$ is contained in $\Lambda(A, M) . \operatorname{By}(2.1)$ and the definition of φ_{M}, it is clear that φ_{M} is an R-module homomorphism with kernel defined above. Assume that M is a unital A-bimodule. If (f, f, d) is a B-derivation, then by $\varphi_{M}(f, f, d)=(f, \alpha(f))=0$, we have $f=0$ and $\alpha(f)(x, y)=x(f-d)(y)=$ $-x d(y)=0$ for any $x, y \in A$. Since M is a unital A-bimodule, we see $d=0$, which shows that φ_{M} is a monomorphism on $\operatorname{BDer}(A, M)$.

For any triple derivations $\left(f, f^{\prime}, f^{\prime \prime}\right),\left(g, g^{\prime}, g^{\prime \prime}\right) \in \operatorname{TDer}(A)=\operatorname{TDer}(A, A)$, there holds $[f, g](x y)=(f g-g f)(x y)=\left[f^{\prime}, g^{\prime}\right](x) y+x\left[f^{\prime \prime}, g^{\prime \prime}\right](y)$ for any x, $y \in A$. This shows that the operation

$$
\left[\left(f, f^{\prime}, f^{\prime \prime}\right),\left(g, g^{\prime}, g^{\prime \prime}\right)\right]=\left([f, g],\left[f^{\prime}, g^{\prime}\right],\left[f^{\prime \prime}, g^{\prime \prime}\right]\right)
$$

gives a Lie algebra structure on $\operatorname{TDer}(A)$. It is easy to see that $\operatorname{BDer}(A)=$ $\operatorname{BDer}(A, A)$ is a Lie subalgebra of $\operatorname{TDer}(A)$ by the above operation.

Now, we define a Lie algebra structure on $\Omega(A)=\Omega(A, A)$, and show that the $\operatorname{map} \varphi_{A}$ defined by (2.2) is a non-trivial Lie algebra homomorphism.

Let (f, α) be in $\Omega(A)$ and define an R-bilinear map α_{f} by

$$
\alpha_{f}: A \times A \ni(x, y) \rightarrow \alpha(f(x), y)+\alpha(x, f(y))-f \alpha(x, y) \in A
$$

that is,

$$
\begin{equation*}
\alpha_{f}=\alpha(f \times I+I \times f)-f \alpha \tag{2.3}
\end{equation*}
$$

First, we have the following.

Lemma 2.2. For any $f, g \in \operatorname{Hom}(A, A)$ and $\alpha, \beta \in \operatorname{BiL}(A)=\operatorname{BiL}(A, A)$ and $r \in R$, the following relations hold:
(1) $\alpha_{(r f)}=(r \alpha)_{f}=r\left(\alpha_{f}\right)$,
(2) $(\alpha+\beta)_{f}=\alpha_{f}+\beta_{f}$,
(3) $\alpha_{(f+g)}=\alpha_{f}+\alpha_{g}$,
(4) $\left(\alpha_{f}\right)_{g}-\left(\alpha_{g}\right)_{f}=\alpha_{[f, g]}$.

Proof. Since (1), (2) and (3) are easily seen by definition (2.3), we only show (4). By (2.3), we have for any $x, y \in A$

$$
\begin{aligned}
& \left(\alpha_{f}\right)_{g}-\left(\alpha_{g}\right)_{f} \\
& =\alpha_{f}\left(g \times I+I \times g-g \alpha_{f}-\alpha_{g}(f \times I+I \times f)+f \alpha_{g}\right. \\
& =\{\alpha(f \times I+I \times f)-f \alpha\}(g \times I+I \times g)-g\{\alpha(f \times I+I \times f)-f \alpha\} \\
& -\{\alpha(g \times I+I \times g)-g \alpha\}(f \times I+I \times f)+f\{\alpha(g \times I+I \times g)-g \alpha\} \\
& =\alpha(f g \times I-g f \times I)+\alpha(I \times f g-I \times g f)-(f g-g f) \alpha=\alpha_{[f, g]}
\end{aligned}
$$

Theorem 2.3. For any $(f, \alpha),(g, \beta) \in \Omega(A)$, we define

$$
\begin{equation*}
[(f, \alpha),(g, \beta)]=\left([f, g], \alpha_{g}-\beta_{f}\right) \tag{2.4}
\end{equation*}
$$

Then $\Omega(A)$ is a Lie algebra with a Lie subalgebra $\Lambda(A)=\Lambda(A, A)$, and the map

$$
\varphi_{A}: \operatorname{TDer}(A) \ni\left(f, f^{\prime}, f^{\prime \prime}\right) \mapsto(f, \alpha(f)) \in \Lambda(A) \subset \Omega(A)
$$

defined by (2.2) is a Lie algebra homomorphism.
Proof. First, we show that $\Omega(A)$ is a Lie algebra. Let $u=(f, \alpha), v=(g, \beta)$ and $w=(h, \gamma)$ be in $\Omega(A)$. Then by Lemma 2.2 and the definition (2.4), the following is easily seen.

$$
[u, v]+[v, u]=0 \quad \text { and } \quad[u+v, w]=[u, w]+[v, w] .
$$

Therefore, it is enough to show that the Jacobi identity

$$
\begin{equation*}
[u,[v, w]]+[v,[w, u]]+[w,[u, v]]=0 \tag{*}
\end{equation*}
$$

holds. By the associativity of R-linear maps $f, g, h \in \operatorname{Hom}(A, A)$, the first component of the above relation $(*)$ is

$$
[f,[g, h]]+[g,[h, f]]+[h,[f, g]]=0
$$

And by (2.4), since

$$
\begin{aligned}
{[(f, \alpha),[(g, \beta),(h, \gamma)]] } & =\left[(f, \alpha),\left([g, h], \beta_{h}-\gamma_{g}\right)\right] \\
& =\left([f,[g, h]], \alpha_{[g, h]}-\left(\beta_{h}-\gamma_{g}\right)_{f}\right)
\end{aligned}
$$

then by Lemma 2.2, the second component of $(*)$ is

$$
\begin{aligned}
& \left\{\alpha_{[g, h]}-\left(\beta_{h}-\gamma_{g}\right)_{f}\right\}+\left\{\beta_{[h, f]}-\left(\gamma_{f}-\alpha_{h}\right)_{g}\right\}+\left\{\gamma_{[f, g]}-\left(\alpha_{g}-\beta_{f}\right)_{h}\right\} \\
& =\alpha_{[g, h]}-\left\{\left(\alpha_{g}\right)_{h}-\left(\alpha_{h}\right)_{g}\right\}+\beta_{[h, f]}-\left\{\left(\beta_{h}\right)_{f}-\left(\beta_{f}\right)_{h}\right\} \\
& +\gamma_{[f, g]}-\left\{\left(\gamma_{f}\right)_{g}-\left(\gamma_{g}\right)_{f}\right\}=0 .
\end{aligned}
$$

Therefore $\Omega(A)$ is a Lie algebra.
Next, we show that $\Lambda(A)$ is a Lie subalgebra of $\Omega(A)$. Let (f, α) and (g, β) be in $\Lambda(A)$. Then by (2.3), we have

$$
\begin{aligned}
{[f, g](x y) } & =f(g(x) y+x g(y)+\beta(x, y))-g(f(x) y+x f(y)+\alpha(x, y)) \\
& =(f g(x)) y+x f g(y)+\alpha(g(x), y)+\alpha(x, g(y))-g \alpha(x, y) \\
& -\{(g f(x)) y+x g f(y)+\beta(f(x), y)+\beta(x, f(y))-f \beta(x, y)\} \\
& =[f, g](x) y+x[f, g](y)+\left(\alpha_{g}-\beta_{f}\right)(x, y) .
\end{aligned}
$$

Thus $\Lambda(A)$ is a Lie subalgebra of $\Omega(A)$.
Finally, we show that φ_{A} is a Lie algebra homomorphism. Let $\left(f, f^{\prime}, f^{\prime \prime}\right)$ and $\left(g, g^{\prime}, g^{\prime \prime}\right)$ be in $\operatorname{TDer}(A)$. Then by
$\varphi_{A}\left(\left[\left(f, f^{\prime}, f^{\prime \prime}\right),\left(g, g^{\prime}, g^{\prime \prime}\right)\right]\right)=\varphi_{A}\left([f, g],\left[f^{\prime}, g^{\prime}\right],\left[f^{\prime \prime}, g^{\prime \prime}\right]\right)=([f, g], \alpha([f, g]))$ and
$\left[\varphi_{A}\left(f, f^{\prime}, f^{\prime \prime}\right), \varphi_{A}\left(g, g^{\prime}, g^{\prime \prime}\right)\right]=[(f, \alpha(f)),(g, \alpha(g))]=\left([f, g], \alpha(f)_{g}-\alpha(g)_{f}\right)$, it is enough to show that $\alpha([f, g])=\alpha(f)_{g}-\alpha(g)_{f}$. Since $\left(f, f^{\prime}, f^{\prime \prime}\right)$ and $\left(g, g^{\prime}, g^{\prime \prime}\right)$ are triple derivations, then by (2.1) and (2.4), we see

$$
\alpha(f)_{g}(x, y)=\alpha(f)\{(g(x), y)+(x, g(y))\}-g(\alpha(f)(x, y)),
$$

and so

$$
\begin{aligned}
\alpha(f)_{g}(x, y) & =\left(f^{\prime}-f\right)(g(x)) y+g(x)\left(f^{\prime \prime}-f\right)(y)+\left(f^{\prime}-f\right)(x) g(y) \\
& +x\left(f^{\prime \prime}-f\right)(g(y))-\left(g^{\prime}\left(f^{\prime}-f\right)(x)\right) y-\left(f^{\prime}-f\right)(x) g^{\prime \prime}(y) \\
& -g^{\prime}(x)\left(f^{\prime \prime}-f\right)(y)-x g^{\prime \prime}\left(\left(f^{\prime \prime}-f\right)(y)\right) \\
& =-\left\{f g(x) y+g^{\prime} f^{\prime}(x) y+x f g(y)+x g^{\prime \prime} f^{\prime \prime}(y)\right\} \\
& +f^{\prime} g(x) y+g(x) f^{\prime \prime}(y)-g(x) f(y)+f^{\prime}(x) g(y)-f(x) g(y) \\
& +x f^{\prime \prime} g(y)+g^{\prime} f(x) y-f^{\prime}(x) g^{\prime \prime}(y)+f(x) g^{\prime \prime}(y)-g^{\prime}(x) f^{\prime \prime}(y) \\
& +g^{\prime}(x) f(y)+x g^{\prime \prime} f(y) .
\end{aligned}
$$

Symmetrically, we see

$$
\begin{aligned}
\alpha(g)_{f}(x, y) & =-\left\{g f(x) y+f^{\prime} g^{\prime}(x) y+x g f(y)+x f^{\prime \prime} g^{\prime \prime}(y)\right\} \\
& +g^{\prime} f(x) y+f(x) g^{\prime \prime}(y)-f(x) g(y)+g^{\prime}(x) f(y)-g(x) f(y) \\
& +x g^{\prime \prime} f(y)+f^{\prime} g(x) y-g^{\prime}(x) f^{\prime \prime}(y)+g(x) f^{\prime \prime}(y)-f^{\prime}(x) g^{\prime \prime}(y) \\
& +f^{\prime}(x) g(y)+x f^{\prime \prime} g(y)
\end{aligned}
$$

Hence we have

$$
\begin{aligned}
\left(\alpha(f)_{g}-\alpha(g)_{f}\right)(x, y) & =\left(f^{\prime} g^{\prime}(x)-g^{\prime} f^{\prime}(x)\right) y-(f g(x)-g f(x)) y \\
& +x\left(f^{\prime \prime} g^{\prime \prime}(y)-g^{\prime \prime} f^{\prime \prime}(y)\right)-x(f g(y)-g f(y)) \\
& =\left(\left[f^{\prime}, g^{\prime}\right]-[f, g]\right)(x) y+x\left(\left[f^{\prime \prime}, g^{\prime \prime}\right]-[f, g]\right)(y) \\
& =\alpha([f, g])(x, y)
\end{aligned}
$$

Therefore φ_{A} is a Lie algebra homomorphism.

A bilinear map $\alpha \in \operatorname{BiL}(A, M)$ is called symmetric (resp. skew symmetric) if $\alpha(x, y)=\alpha(y, x)($ resp. $\alpha(x, y)=-\alpha(y, x))$ for any $x, y \in A$. We denote the set of symmetric (resp. skew symmetric) bilinear maps from $A \times A$ to M by $\operatorname{BiL}_{S y}(A, M)\left(\right.$ resp. $\left.\operatorname{BiL}_{s S y}(A, M)\right)$. Define

$$
\begin{aligned}
& \Omega_{S y}(A, M)=\left\{(f, \alpha) \in \Omega(A, M) \mid \alpha \in \operatorname{BiL}_{S y}(A, M)\right\} \\
& \Omega_{s S y}(A, M)=\left\{(f, \alpha) \in \Omega(A, M) \mid \alpha \in \operatorname{BiL}_{s S y}(A, M)\right\}
\end{aligned}
$$

These sets are R-submodules of $\Omega(A, M)$ and we have the following R-submodules of $\Lambda(A, M)$:

$$
\begin{aligned}
& \Lambda_{S y}(A, M)=\left\{(f, \alpha) \in \Lambda(A, M) \mid \alpha \in \operatorname{BiL}_{S y}(A, M)\right\} \\
& \Lambda_{s S y}(A, M)=\left\{(f, \alpha) \in \Lambda(A, M) \mid \alpha \in \operatorname{BiL}_{s S y}(A, M)\right\}
\end{aligned}
$$

Moreover, for any $(f, \alpha),(g, \beta) \in \Omega_{S y}(A, M)\left(\operatorname{resp} .(f, \alpha),(g, \beta) \in \Omega_{s S y}(A, M)\right)$, α_{g} and β_{f} are symmetric (resp. skew symmetric) by (2.3) and thus we have the following.

Corollary 2.4. $\quad \Omega_{S y}(A)=\Omega_{S y}(A, A)$ and $\Omega_{s S y}(A)=\Omega_{s S y}(A, A)$ are Lie subalgebras of $\Omega(A)$. Especially, $\Lambda_{S y}(A)=\Lambda_{S y}(A, A)$ and $\Lambda_{s S y}(A)=\Lambda_{s S y}(A, A)$ are Lie subalgebras of $\Lambda(A)$.

In [12], we showed that the set of N -derivations

$$
\operatorname{NDer}(A)=\{(f, a) \in \operatorname{Hom}(A, A) \times A \mid f(x y)=f(x) y+x f(y)+x a y\}
$$

from A to A is a Lie algebra by the following operation

$$
\begin{equation*}
[(f, a),(g, b)]=([f, g], f(b)-g(a)) \quad(a, b \in A) \tag{2.5}
\end{equation*}
$$

Since an N-derivation (f, a) is represented by $\left(f, f, f+a_{\ell}\right)$ as a triple derivation and the Lie algebra structure of $\operatorname{TDer}(A)$ is given by

$$
\left[\left(f, f, f+a_{\ell}\right),\left(g, g, g+b_{\ell}\right)\right]=\left([f, g],[f, g],\left[f+a_{\ell}, g+b_{\ell}\right]\right)
$$

then we see by (2.1)

$$
\begin{aligned}
\alpha([f, g])(x, y) & =x\left(\left[\left(f+a_{\ell}\right),\left(g+b_{\ell}\right)\right]-[f, g]\right)(y) \\
& =x\left(f b_{\ell}+a_{\ell} g+a_{\ell} b_{\ell}-g a_{\ell}-b_{\ell} f-b_{\ell} a_{\ell}\right)(y) \\
& =x(f(b)-g(a)) y
\end{aligned}
$$

as a triple derivation. Thus the Lie algebra structure of $\operatorname{NDer}(A)$ defined by (2.5) is the same as (2.1).

It is known the following types of derivations which are not triple derivations. Let G be a multiplicative subsemigroup of the set of R-algebra endomorphisms of A and $f \in \operatorname{Hom}(A, M) . f$ is called a G-derivation if $f(x y)=f(x) \sigma(y)+\tau(x) f(y)$ for some $\sigma, \tau \in G$. It is a generalization of (σ, τ)-derivation. The properties of (σ, τ)-derivations were discussed in many papers (cf. [5]). We denote the set of G-derivations by $\operatorname{Der}_{G}(A, M)$. A G-derivation is not a triple derivation. Another one is as follows. $g \in \operatorname{Hom}(A, M)$ is called a right derivation if $g(x y)=$ $g(x) y+g(y) x$. The right derivations relate to the quasi-separable or differentially separable extension A over R (cf. [7] and [16]). We denote the set of right derivations by $\operatorname{RDer}(A, M)$. As is easily seen, the above derivations are not triple derivations, but if we define $\alpha(f)(x, y)=f(x y)-f(x) y-x f(y)$ and $\beta(g)(x, y)=g(y) x-x g(y)$, the equality $\alpha(f)(x, y)=f(x)(\sigma(y)-y)+(\tau(x)-x) f(y)$ is then an easy consequence of this definition and by

$$
\begin{aligned}
& \operatorname{Der}_{G}(A, M) \ni f \mapsto(f, \alpha(f)) \in \Lambda(A, M) \\
& \operatorname{RDer}(A, M) \ni g \mapsto(g, \beta(g)) \in \Lambda(A, M)
\end{aligned}
$$

$\operatorname{Der}_{G}(A, M)$ and $\operatorname{RDer}(A, M)$ are R-submodules of $\Lambda(A, M)$. In general, $\operatorname{Der}_{G}(A)=$ $\operatorname{Der}_{G}(A, A)$ and $\operatorname{RDer}(A)=\operatorname{RDer}(A, A)$ are not Lie subalgebras of $\Lambda(A)$. If we assume that G is commutative and $\sigma d=d \sigma$ for any $\sigma \in G$ and $d \in \operatorname{Der}_{G}(A)$, then $\operatorname{Der}_{G}(A)$ is a Lie subalgebra of $\Lambda(A)$. Similarly, if $[f(x), g(y)]+[f(y), g(x)]=0$ for any $f, g \in \operatorname{RDer}(A)$ and $x, y \in A$, then $\operatorname{RDer}(A)$ is also a Lie subalgebra of $\Lambda(A)$. But we have not good examples for G-derivations and right derivations which satisfy the above relations.

A pair $(f, \alpha) \in \Omega(A, M)$ is called a generalized Jordan derivation if

$$
\begin{equation*}
f\left(x^{2}\right)=f(x) x+x f(x)+\alpha(x, x) \quad \text { for any } \quad x \in A \tag{2.6}
\end{equation*}
$$

and similarly, (f, α) is called a generalized Lie derivation if

$$
\begin{equation*}
f([x, y])=[f(x), y]+[x, f(y)]+\alpha(x, y)-\alpha(y, x) \quad \text { for any } \quad x, y \in A \tag{2.7}
\end{equation*}
$$

These notions were introduced in [13] (cf. [14]) and some properties of them were given. The sets of generalized Jordan derivations and generalized Lie derivations from A to M are denoted by $\operatorname{GJDer}(A, M)$ and $\operatorname{GLDer}(A, M)$, respectively. Then we have the following.

Theorem 2.5. $\quad G J D e r(A)=G J D e r(A, A)$ and $G L D e r(A)=G L D e r(A, A)$ are Lie subalgebras of $\Omega(A)$ by the operation (2.4).

Proof. As is easily seen, $\operatorname{GJDer}(A, M)$ and $\operatorname{GLDer}(A, M)$ are R-submodules of $\Omega(A, M)$.

First, we show that $\operatorname{GJDer}(A)$ is a Lie subalgebra of $\Omega(A)$. Let (f, α) and (g, β) be in $\operatorname{GJDer}(A)$. Since $g(x) x+x g(x)=(g(x)+x)^{2}-g(x)^{2}-x^{2}$, then by (2.6),

$$
\begin{aligned}
f g\left(x^{2}\right) & =f(g(x) x+x g(x)+\beta(x, x)) \\
& =(f g(x)) x+x f g(x)+f(x) g(x)+g(x) f(x) \\
& +\alpha(g(x), x)+\alpha(x, g(x))+f \beta(x, x)
\end{aligned}
$$

and symmetrically

$$
\begin{aligned}
g f\left(x^{2}\right) & =(g f(x)) x+x g f(x)+g(x) f(x)+f(x) g(x) \\
& +\beta(f(x), x)+\beta(x, f(x))+g \alpha(x, x)
\end{aligned}
$$

Thus by (2.3) and (2.4), we see

$$
[f, g]\left(x^{2}\right)=[f, g](x) x+x[f, g](x)+\left(\alpha_{g}-\beta_{f}\right)(x, x)
$$

which show that $\left([f, g], \alpha_{g}-\beta_{f}\right)$ is a generalized Jordan derivation in our sense.
Next, let (f, α) and (g, β) be in $\operatorname{GLDer}(A)$. Then by (2.3) and (2.7), we see

$$
\begin{aligned}
f g([x, y]) & =f([g(x), y]+[x, g(y)]+\beta(x, y)-\beta(y, x)) \\
& =[f g(x), y]+[g(x), f(y)]+\alpha(g(x), y)-\alpha(y, g(x)) \\
& +[f(x), g(y)]+[x, f g(y)]+\alpha(x, g(y))-\alpha(g(y), x) \\
& +f(\beta(x, y))-f(\beta(y, x))
\end{aligned}
$$

and symmetrically

$$
\begin{aligned}
g f([x, y]) & =[g f(x), y]+[f(x), g(y)]+\beta(f(x), y)-\beta(y, f(x)) \\
& +[g(x), f(y)]+[x, g f(y)]+\beta(x, f(y))-\beta(f(y), x) \\
& +g(\alpha(x, y))-g(\alpha(y, x))
\end{aligned}
$$

Thus we have
$[f, g]([x, y])=[[f, g](x), y]+[x,[f, g](y)]+\left(\alpha_{g}-\beta_{f}\right)(x, y)-\left(\alpha_{g}-\beta_{f}\right)(y, x)$,
which shows that $\left([f, g], \alpha_{g}-\beta_{f}\right)$ is a generalized Lie derivation. These show that $\operatorname{GJDer}(A)$ and $\operatorname{GLDer}(A)$ are Lie subalgebras of $\Omega(A)$.

In the final part of this section, we study biderivations from $A \times A$ to M. A bilinear map $B: A \times A \rightarrow M$ is called a biderivation if for any $x \in A$, the maps

$$
B(x,-): A \ni y \mapsto B(x, y) \in M \quad \text { and } \quad B(-, x): A \ni y \mapsto B(y, x) \in M
$$

are derivations. A biderivation B is called symmetric (resp. skew symmetric) if B is a symmetric (resp. skew symmetric) bilinear map. We denote the sets of biderivations, symmetric biderivations and skew symmetric biderivations from $A \times A$ to M by $\operatorname{BiDer}(A, M), \operatorname{SyBiDer}(A, M)$ and $\operatorname{sSyBiDer}(A, M)$, respectively. It is known that if A is commutative and $f, g: A \rightarrow A$ are derivations, then the map $f \cdot g$ defined by $(f \cdot g)(x, y)=f(x) g(y)$ is a biderivation, and thus $f \cdot f$ is a symmetric biderivation. Moreover, the map $[-,-]: A \times A \ni(x, y) \mapsto x y-y x \in A$ is a skew symmetric biderivation. The properties of biderivations and symmetric biderivations were discussed in [2], [6] and [17].

Now, we consider the following R-module

$$
\Lambda_{B}(A, M)=\{(f, \alpha) \in \Lambda(A, M) \mid \alpha \in \operatorname{BiDer}(A, M)\}
$$

Let (f, α) and (g, β) be in $\Lambda_{B}(A)=\Lambda_{B}(A, A)$. Then by $(2.3), \alpha_{g}(x z, y)=$ $\alpha(g(x z), y)+\alpha(x z, g(y))-g \alpha(x z, y)$, we have

$$
\begin{aligned}
\alpha_{g}(x z, y) & =x\{\alpha(g(z), y)+\alpha(z, g(y))-g \alpha(z, y)\} \\
& +\{\alpha(g(x), y)+\alpha(x, g(y))-g \alpha(x, y)\} z \\
& +\alpha(\beta(x, z), y)-\beta(x, \alpha(z, y))-\beta(\alpha(x, y), z)
\end{aligned}
$$

that is,
$\alpha_{g}(x z, y)-x \alpha_{g}(z, y)-\alpha_{g}(x, y) z=\alpha(\beta(x, z), y)-\beta(x, \alpha(z, y))-\beta(\alpha(x, y), z)$.

This means that α_{g} is not a biderivation in general. Similarly, we have
$\beta_{f}(x z, y)-x \beta_{f}(z, y)-\beta_{f}(x, y) z=\beta(\alpha(x, z), y)-\alpha(x, \beta(z, y))-\alpha(\beta(x, y), z)$
and so

$$
\begin{aligned}
& \left(\alpha_{g}-\beta_{f}\right)(x z, y)-x\left(\alpha_{g}-\beta_{f}\right)(z, y)-\left(\alpha_{g}-\beta_{f}\right)(x, y) z \\
& =\alpha(\beta(x, z), y)-\beta(x, \alpha(z, y))-\beta(\alpha(x, y), z) \\
& -\{\beta(\alpha(x, z), y)-\alpha(x, \beta(z, y))-\alpha(\beta(x, y), z)\}
\end{aligned}
$$

$\beta_{f}(x z, y)-x \beta_{f}(z, y)-\beta_{f}(x, y) z=\beta(\alpha(x, z), y)-\alpha(x, \beta(z, y))-\alpha(\beta(x, y), z)$
and so

$$
\begin{aligned}
& \left(\alpha_{g}-\beta_{f}\right)(x z, y)-x\left(\alpha_{g}-\beta_{f}\right)(z, y)-\left(\alpha_{g}-\beta_{f}\right)(x, y) z \\
& =\alpha(\beta(x, z), y)-\beta(x, \alpha(z, y))-\beta(\alpha(x, y), z) \\
& -\{\beta(\alpha(x, z), y)-\alpha(x, \beta(z, y))-\alpha(\beta(x, y), z)\}
\end{aligned}
$$

which shows that $\alpha_{g}-\beta_{f}$ is not a biderivation, too. Therefore, $\Lambda_{B}(A)$ is not a Lie subalgebra of $\Lambda(A)$. By these calculations, we have the following.

Theorem 2.6. (1) For any $(f, \alpha),(g, \beta) \in \Lambda_{S y B}(A)=\Lambda_{S y B}(A, A)$, assume that α and β satisfy the following condition:

$$
\begin{aligned}
& \alpha(x, \beta(y, z))+\alpha(y, \beta(z, x))+\alpha(z, \beta(x, y)) \\
& =\beta(x, \alpha(y, z))+\beta(y, \alpha(z, x))+\beta(z, \alpha(x, y))
\end{aligned}
$$

Then $[(f, \alpha),(g, \beta)] \in \Lambda_{S y B}(A)$.
(2) For any $(f, \alpha),(g, \beta) \in \Lambda_{s S y B}(A)=\Lambda_{s S y B}(A, A)$, assume that α and β satisfy the following condition:

$$
\begin{aligned}
& \alpha(x, \beta(y, z))-\alpha(y, \beta(z, x))+\alpha(z, \beta(x, y)) \\
& =\beta(x, \alpha(y, z))-\beta(y, \alpha(z, x))+\beta(z, \alpha(x, y))
\end{aligned}
$$

Then $[(f, \alpha),(g, \beta)] \in \Lambda_{s S y B}(A)$.

Proof. (1) Let (f, α) and (g, β) be in $\Lambda_{S y B}(A)$. Since $[(f, \alpha),(g, \beta)]=$ ($\left.[f, g], \alpha_{g}-\beta_{f}\right)$, it is enough to show that $\alpha_{g}-\beta_{f}$ is a symmetric biderivation.

By the above calculations and using that α and β are symmetric, we have

$$
\begin{aligned}
& \left(\alpha_{g}-\beta_{f}\right)(x z, y)-x\left\{\left(\alpha_{g}-\beta_{f}\right)(z, y)\right\}-\left\{\left(\alpha_{g}-\beta_{f}\right)(x, y)\right\} z \\
& =\{\alpha(\beta(x, z), y)-\beta(x, \alpha(z, y))-\beta(\alpha(x, y), z)\} \\
& -\{\beta(\alpha(x, z), y)-\alpha(x, \beta(z, y))-\alpha(\beta(x, y), z)\} \\
& =\alpha(x, \beta(y, z))+\alpha(y, \beta(z, x))+\alpha(z, \beta(x, y)) \\
& -\beta(x, \alpha(y, z))-\beta(y, \alpha(z, x))-\beta(z, \alpha(x, y))=0
\end{aligned}
$$

by our assumption. Moreover, α and β are symmetric, then α_{g} and β_{f} are also symmetric by (2.3), and thus

$$
\begin{aligned}
\left(\alpha_{g}-\beta_{f}\right)(x, z y) & =\left(\alpha_{g}-\beta_{f}\right)(z y, x)=z\left(\alpha_{g}-\beta_{f}\right)(y, x)+\left(\alpha_{g}-\beta_{f}\right)(z, x) y \\
& =z\left(\alpha_{g}-\beta_{f}\right)(x, y)+\left(\alpha_{g}-\beta_{f}\right)(x, z) y
\end{aligned}
$$

which shows that $\left(\alpha_{g}-\beta_{f}\right)$ is a biderivation.
(2) For any $(f, \alpha),(g, \beta) \in \Lambda_{s S y B}(A)$, since α_{g} and β_{f} are skew symmetric, it is similarly proved.

We can easily check the following. For a commutative algebra A and derivations $f, g: A \rightarrow A$, if $f g=g f$, then $\alpha=f \cdot f$ and $\beta=g \cdot g$ are biderivations which satisfy the assumption (2.8). And for any $c_{1}, c_{2} \in C(A)$, the center of a noncommutative algebra A, then $\alpha=c_{1}[-,-]$ and $\beta=c_{2}[-,-]$ are biderivations which satisfy the assumption (2.9). We have not more good examples of biderivations which satisfy the assumption in Theorem 2.6.

3. The case of coalgebras

Let C be a coassociative R-coalgebra with a comultiplication $\Delta: C \rightarrow C \otimes C$. We do not assume that C has a counit $\varepsilon: C \rightarrow R$. Let N be a C-bicomodule with a right C-comodule structure map $\rho^{+}: N \rightarrow N \otimes C$ and a left C-comodule structure map $\rho^{-}: N \rightarrow C \otimes N$ which satisfy the relation (1.0).

The notions of a coderivation, an N-coderivation, a B-coderivation and a triple coderivation are defined by (1.1), (1.3), (1.2) and (1.4), respectively. The set of triple coderivations

$$
\operatorname{TCoder}(N, C)=\left\{\left(f, f_{1}, f_{2}\right) \in \operatorname{Hom}(N, C)^{3} \mid \Delta f=\left(f_{1} \otimes I\right) \rho^{+}+\left(I \otimes f_{2}\right) \rho^{-}\right\}
$$

is an R-module with R-submodules $\operatorname{Coder}(N, C), \operatorname{NCoder}(N, C)$ and $\operatorname{BCoder}(N, C)$, where $I: C \rightarrow C$ is the identity map. First, we show that $\operatorname{NCoder}(N, C)$ is an R-submodule of $\operatorname{BCoder}(N, C)$.

Lemma 3.1. If $\left(f, f, f+(\xi \otimes I) \rho^{+}\right)$is an N-coderivation, then $f+(\xi \otimes I) \rho^{+}$is a coderivation for any $\xi \in \operatorname{Hom}(N, R)$. Therefore, $N \operatorname{Coder}(N, C)$ is contained in $B \operatorname{Coder}(N, C)$. Especially, if C and N have counits, then

$$
N \operatorname{Coder}(N, C)=B \operatorname{Coder}(N, C)=\operatorname{TCoder}(N, C)
$$

Proof. Since $\left(f, f, f+(\xi \otimes I) \rho^{+}\right)$is an N -coderivation, then by (1.3), we see

$$
\begin{aligned}
\Delta f & =(f \otimes I) \rho^{+}+(I \otimes f) \rho^{-}+(I \otimes \xi \otimes I)\left(I \otimes \rho^{+}\right) \rho^{-} \\
& =(f \otimes I) \rho^{+}+\left\{I \otimes\left(f+(\xi \otimes I) \rho^{+}\right)\right\} \rho^{-}
\end{aligned}
$$

Noting that $\Delta(\xi \otimes I)=\xi \otimes \Delta: N \otimes C \rightarrow R \otimes C \rightarrow C \otimes C$, we have by (1.0),

$$
\begin{aligned}
\Delta(\xi \otimes I) \rho^{+} & =(\xi \otimes \Delta) \rho^{+}=(\xi \otimes I \otimes I)(I \otimes \Delta) \rho^{+}=(\xi \otimes I \otimes I)\left(\rho^{+} \otimes I\right) \rho^{+} \\
& =\left((\xi \otimes I) \rho^{+} \otimes I\right) \rho^{+}
\end{aligned}
$$

and thus

$$
\begin{aligned}
\Delta\left(f+(\xi \otimes I) \rho^{+}\right) & =\Delta f+\Delta(\xi \otimes I) \rho^{+} \\
& =(f \otimes I) \rho^{+}+\left\{I \otimes\left(f+(\xi \otimes I) \rho^{+}\right)\right\} \rho^{-}+\Delta(\xi \otimes I) \rho^{+} \\
& =\{f \otimes I+\Delta(\xi \otimes I)\} \rho^{+}+\left\{I \otimes\left(f+(\xi \otimes I) \rho^{+}\right)\right\} \rho^{-} \\
& =\left\{\left(f+(\xi \otimes I) \rho^{+}\right) \otimes I\right\} \rho^{+}+\left\{I \otimes\left(f+(\xi \otimes I) \rho^{+}\right)\right\} \rho^{-}
\end{aligned}
$$

which shows that $f+(\xi \otimes I) \rho^{+}$is a coderivation. Therefore $\operatorname{NCoder}(N, C) \subseteq$ BCoder (N, C).

Assume that C has a counit $\varepsilon: C \rightarrow R$. It is enough to show that a triple coderivation $\left(f, f_{1}, f_{2}\right)$ is an N -coderivation. By

$$
(I \otimes \varepsilon) \Delta f=\left(f_{1} \otimes \varepsilon\right) \rho^{+}+\left(I \otimes \varepsilon f_{2}\right) \rho^{-}
$$

we see $f=f_{1}+\left(I \otimes \varepsilon f_{2}\right) \rho^{-}$, which shows that $f_{1}=f-\left(I \otimes \varepsilon f_{2}\right) \rho^{-}$. Similarly, $\left.f_{2}=f-\left(\varepsilon f_{1} \otimes I\right) \rho^{+}\right)$. Therefore,

$$
\Delta f=(f \otimes I) \rho^{+}+(I \otimes f) \rho^{-}+\left(I \otimes \varepsilon\left(-f_{1}-f_{2}\right) \otimes I\right)\left(I \otimes \rho^{+}\right) \rho^{-}
$$

This means that a triple coderivation $\left(f, f_{1}, f_{2}\right)$ is an N-coderivation.
Now, define

$$
\Omega(N, C)=\{(f, \alpha) \mid f \in \operatorname{Hom}(N, C), \alpha \in \operatorname{Hom}(N, C \otimes C)\}
$$

Then $\Omega(N, C)$ becomes an R-module as the direct product of $\operatorname{Hom}(N, C)$ with $\operatorname{Hom}(N, C \otimes C)$ and for any $\left(f, f_{1}, f_{2}\right),\left(g, g_{1}, g_{2}\right) \in \operatorname{TCoder}(C)=\operatorname{TCoder}(C, C)$, we have by (1.4)

$$
\Delta[f, g]=\left(\left[f_{1}, g_{1}\right] \otimes I+I \otimes\left[f_{2}, g_{2}\right]\right) \Delta
$$

This shows that the operation

$$
\left[\left(f, f_{1}, f_{2}\right),\left(g, g_{1}, g_{2}\right)\right]=\left([f, g],\left[f_{1}, g_{1}\right],\left[f_{2}, g_{2}\right]\right)
$$

gives a Lie algebra structure on $\operatorname{TCoder}(C)$, which contains a Lie subalgebra $\operatorname{BCoder}(C)=\mathrm{BCoder}(C, C)$. Since the several properties of an R-module TCoder (N, C) and a Lie algebra $\operatorname{TCoder}(C)$ are discussed in [9], we consider the relations of $\operatorname{TCoder}(N, C)$ and $\Omega(N, C)$.

Lemma 3.2. For any $\left(f, f_{1}, f_{2}\right) \in \operatorname{TCoder}(N, C)$, define a map $\alpha\langle f\rangle$ by

$$
\begin{equation*}
\alpha\langle f\rangle: N \ni n \mapsto\left(\Delta f-(f \otimes I) \rho^{+}-(I \otimes f) \rho^{-}\right)(n) \in C \otimes C . \tag{3.1}
\end{equation*}
$$

Then the map

$$
\begin{equation*}
\psi_{N}: \operatorname{TCoder}(N, C) \ni\left(f, f_{1}, f_{2}\right) \mapsto(f, \alpha\langle f\rangle) \in \Omega(N, C) \tag{3.2}
\end{equation*}
$$

is an R-module homomorphism with

$$
\operatorname{Ker} \psi_{N}=\left\{\left(0, f_{1}, f_{2}\right) \in \operatorname{TCoder}(N, C) \mid\left(f_{1} \otimes I\right) \rho^{+}+\left(I \otimes f_{2}\right) \rho^{-}=0\right\}
$$

Especially, if C and N have counits, then ψ_{N} is a monomorphism on $\operatorname{TCoder}(N, C)$.
Proof. For any $\left(f, f_{1}, f_{2}\right),\left(g, g_{1}, g_{2}\right) \in \operatorname{TCoder}(N, C)$ and $r \in R$, it is clear that $\alpha\langle f\rangle+\alpha\langle g\rangle=\alpha\langle f+g\rangle$ and $r \alpha\langle f\rangle=\alpha\langle r f\rangle$ by (3.1). This shows that ψ_{M} is an R-module homomorphism and by $\Delta f=\left(f_{1} \otimes I\right) \rho^{+}+\left(I \otimes f_{2}\right) \rho^{-}$,

$$
\operatorname{Ker} \psi_{N}=\left\{\left(0, f_{1}, f_{2}\right) \in \operatorname{TCoder}(N, C) \mid\left(f_{1} \otimes I\right) \rho^{+}+\left(I \otimes f_{2}\right) \rho^{-}=0\right\}
$$

is clear. By Lemma 3.1, it is enough to show that ψ_{M} is a monomorphism on $\operatorname{BCoder}(N, C)$. If (f, f, d) is a B-coderivation, then by $\psi_{M}(f, f, d)=(f, \alpha(f))=$ 0 , we have $f=0$ and $\alpha\langle f\rangle=(I \otimes d) \rho^{-}=0$. Therefore, $(\varepsilon \otimes I)(I \otimes d) \rho^{-}=d=0$, which shows that ψ_{M} is a monomorphism.

For any $f \in \operatorname{Hom}(C, C), \alpha \in \operatorname{Hom}(C, C \otimes C)$, we define

$$
\begin{equation*}
\alpha^{f}=(f \otimes I+I \otimes f) \alpha-\alpha f: C \rightarrow C \otimes C \tag{3.3}
\end{equation*}
$$

Then we have the following which corresponds to Lemma 2.2.

Lemma 3.3. For any $f, g \in \operatorname{Hom}(C, C), \alpha, \beta \in \operatorname{Hom}(C, C \otimes C)$ and $r \in R$, the following relations hold:
(1) $\alpha^{(r f)}=(r \alpha)^{f}=r\left(\alpha^{f}\right)$,
(2) $(\alpha+\beta)^{f}=\alpha^{f}+\beta^{f}$,
(3) $\alpha^{(f+g)}=\alpha^{f}+\alpha^{g}$,
(4) $\left(\alpha^{f}\right)^{g}-\left(\alpha^{g}\right)^{f}=\alpha^{[g, f]}$.

Proof. By definition (3.3), it is enough to show (4). Since

$$
\begin{aligned}
\left(\alpha^{f}\right)^{g} & =(g \otimes I+I \otimes g) \alpha^{f}-\left(\alpha^{f}\right) g \\
& =(g f \otimes I+g \otimes f+f \otimes g+I \otimes g f) \alpha-(g \otimes I+I \otimes g) \alpha f \\
& -(f \otimes I+I \otimes f) \alpha g+\alpha f g
\end{aligned}
$$

we see

$$
\left(\alpha^{f}\right)^{g}-\left(\alpha^{g}\right)^{f}=([g, f] \otimes I+I \otimes[g, f]) \alpha-\alpha[g, f]=\alpha^{[g, f]}
$$

Now, we define an R-submodule $\Lambda(N, C)$ of $\Omega(N, C)$ by

$$
\Lambda(N, C)=\left\{(f, \alpha) \in \Omega(N, C) \mid \Delta f=(f \otimes I) \rho^{+}+(I \otimes f) \rho^{-}+\alpha\right\}
$$

Then by Lemmas 3.2 and 3.3, we have the following which corresponds to Theorem 2.3.

Theorem 3.4. For any $(f, \alpha),(g, \beta) \in \Omega(C)$, we define

$$
\begin{equation*}
[(f, \alpha),(g, \beta)]=\left([f, g], \beta^{f}-\alpha^{g}\right) \tag{3.4}
\end{equation*}
$$

Then $\Omega(C)$ is a Lie algebra with a Lie subalgebra $\Lambda(C)$, and the map

$$
\psi_{C}: \operatorname{TCoder}(C) \ni\left(f, f_{1}, f_{2}\right) \mapsto(f, \alpha\langle f\rangle) \in \Lambda(C) \subset \Omega(C)
$$

defined by (3.2) is a Lie algebra homomorphism.

Proof. Let $u=(f, \alpha), v=(g, \beta)$ and $w=(h, \gamma)$ be in $\Omega(C)$. By Lemma 3.3 and (3.4), $[u, v]+[v, u]=0$ and $[u+v, w]=[u, w]+[v, w]$ are clear. Since

$$
\begin{aligned}
{[(f, \alpha),[(g, \beta),(h, \gamma)]] } & =\left[(f, \alpha),\left([g, h], \gamma^{g}-\beta^{h}\right)\right] \\
& =\left([f,[g, h]],\left(\gamma^{g}-\beta^{h}\right)^{f}-\alpha^{[g, h]}\right)
\end{aligned}
$$

then by Lemma 3.3, we have

$$
\begin{aligned}
& \left(\gamma^{g}-\beta^{h}\right)^{f}-\alpha^{[g, h]}+\left(\alpha^{h}-\gamma^{f}\right)^{g}-\beta^{[h, f]}+\left(\beta^{f}-\alpha^{g}\right)^{h}-\gamma^{[f, g]} \\
& =\left(\gamma^{g}\right)^{f}-\left(\gamma^{f}\right)^{g}-\gamma^{[f, g]}+\left(\beta^{f}\right)^{h}-\left(\beta^{h}\right)^{f}-\beta^{[h, f]}+\left(\alpha^{h}\right)^{g}-\left(\alpha^{g}\right)^{h}-\alpha^{[g, h]}=0
\end{aligned}
$$

This shows that $[u,[v, w]]+[v,[w, u]]+[w,[u, v]]=0$. Therefore $\Omega(C)$ is a Lie algebra. Especially, if $(f, \alpha),(g, \beta) \in \Lambda(C)$, then by (3.4), we see that
$[(f, \alpha),(g, \beta)]=\left([f, g], \beta^{f}-\alpha^{g}\right)$ and by (3.3),

$$
\begin{aligned}
\Delta([f, g]) & =(\Delta f) g-(\Delta g) f \\
& =\{(f \otimes I+I \otimes f) \Delta+\alpha\} g-\{(g \otimes I+I \otimes g) \Delta+\beta\} f \\
& =([f, g] \otimes I+I \otimes[f, g]) \Delta+(f \otimes I+I \otimes f) \beta+\alpha g-(g \otimes I+I \otimes g) \alpha-\beta f \\
& =([f, g] \otimes 1+I \otimes[f, g]) \Delta+\beta^{f}-\alpha^{g} .
\end{aligned}
$$

Thus $\Lambda(C)$ is a Lie subalgebra of $\Omega(C)$.
Next, we show that ψ_{C} is a Lie algebra homomorphism. Let $\left(f, f_{1}, f_{2}\right)$ and (g, g_{1}, g_{2}) be in $\operatorname{TCoder}(C)$. Then
$\psi_{C}\left(\left[\left(f, f_{1}, f_{2}\right),\left(g, g_{1}, g_{2}\right)\right]\right)=\psi_{C}\left([f, g],\left[f_{1}, g_{1}\right],\left[f_{2}, g_{2}\right]\right)=([f, g], \alpha\langle[f, g]\rangle)$ and by
$\left[\psi_{C}\left(f, f_{1}, f_{2}\right), \psi_{C}\left(g, g_{1}, g_{2}\right)\right]=[(f, \alpha\langle f\rangle),(g, \alpha\langle g\rangle])=\left([f, g],(\alpha\langle g\rangle)^{f}-(\alpha\langle f\rangle)^{g}\right)$, it is enough to show that $\alpha\langle[f, g]\rangle=(\alpha\langle g\rangle)^{f}-(\alpha\langle f\rangle)^{g}$. Since $\left(f, f_{1}, f_{2}\right)$ and (g, g_{1}, g_{2}) are triple coderivations, then by (3.1) and (3.3), we see

$$
\begin{aligned}
(\alpha\langle g\rangle)^{f} & =(f \otimes I+I \otimes f) \alpha\langle g\rangle-(\alpha\langle g\rangle) f \\
& =(f \otimes I+I \otimes f)\left\{\left(g_{1}-g\right) \otimes I+I \otimes\left(g_{2}-g\right)\right\} \Delta \\
& -\left\{\left(g_{1}-g\right) \otimes I+I \otimes\left(g_{2}-g\right)\right\}\left(f_{1} \otimes I+I \otimes f_{2}\right) \Delta
\end{aligned}
$$

and symmetrically,

$$
\begin{aligned}
(\alpha\langle f\rangle)^{g} & =(g \otimes I+I \otimes g) \alpha\langle f\rangle-(\alpha\langle f\rangle) g \\
& =(g \otimes I+I \otimes g)\left\{\left(f_{1}-f\right) \otimes I+I \otimes\left(f_{2}-f\right)\right\} \Delta \\
& -\left\{\left(f_{1}-f\right) \otimes I+I \otimes\left(f_{2}-f\right)\right\}\left(g_{1} \otimes I+I \otimes g_{2}\right) \Delta .
\end{aligned}
$$

Then we have

$$
\begin{aligned}
(\alpha\langle g\rangle)^{f}-(\alpha\langle f\rangle)^{g} & =\left\{\left(\left[f_{1}, g_{1}\right]-[f, g]\right) \otimes I+I \otimes\left(\left[f_{2}, g_{2}\right]-[f, g]\right)\right\} \Delta \\
& =\alpha\langle[f, g]\rangle,
\end{aligned}
$$

which shows that ψ_{C} is a Lie algebra homomorphism.
In [13], we showed that if $f: N \rightarrow C$ is an N -coderivation such that

$$
\Delta f=(f \otimes I) \rho^{+}+(I \otimes f) \rho^{-}+(I \otimes \xi \otimes I)\left(I \otimes \rho^{+}\right) \rho^{-}, \quad \xi \in \operatorname{Hom}(N, C)
$$

then $f^{*}: C^{*}=\operatorname{Hom}(C, R) \rightarrow N^{*}=\operatorname{Hom}(N, R)$ defined by $\left(f^{*}\left(c_{1}^{*}\right)\right)(n)=c_{1}^{*}(f(n))$ is an N -derivation, where $c_{1}^{*} \in C^{*}, n \in N$ (cf. [15, Section 4]). We finally give some
relations for coderivations and their dual derivations, which is essentially obtained [8, Section 6].

Theorem 3.5. If $\left(f, f_{1}, f_{2}\right) \in \operatorname{TCoder}(N, C)$, then $\left(f^{*}, f_{1}^{*}, f_{2}^{*}\right) \in \operatorname{TDer}\left(C^{*}, N^{*}\right)$. Especially, if (f, f, d) is a B-coderivation, then $\left(f^{*}, f^{*}, d^{*}\right)$ is a B-derivation.

Proof. Let $c_{1}^{*}, c_{2}^{*} \in C^{*}, c \in C$ and $n \in N$. The algebra structure \circ of C^{*} is given by $\left(c_{1}^{*} \circ c_{2}^{*}\right)(c)=\sum\left(c_{1}^{*} \otimes c_{2}^{*}\right) \Delta(c)$, and C^{*}-bimodule structure of N^{*} are defined by

$$
\begin{equation*}
\left(n_{1}^{*} c_{1}^{*}\right)(n)=\left(n_{1}^{*} \otimes c_{1}^{*}\right) \rho^{+}(n) \quad \text { and } \quad\left(c_{1}^{*} n_{1}^{*}\right)(n)=\left(c_{1}^{*} \otimes n_{1}^{*}\right) \rho^{-}(n) \tag{3.5}
\end{equation*}
$$

where $n_{1}^{*} \in N^{*}$. If $\left(f, f_{1}, f_{2}\right) \in \operatorname{TCoder}(N, C)$, then by $\Delta f=\left(f_{1} \otimes I\right) \rho^{+}+(I \otimes$ $\left.f_{2}\right) \rho^{-}$, we have

$$
\begin{aligned}
f^{*}\left(c_{1}^{*} \circ c_{2}^{*}\right) & =\left(c_{1}^{*} \otimes c_{2}^{*}\right) \Delta f=\left(c_{1}^{*} \otimes c_{2}^{*}\right)\left\{\left(f_{1} \otimes I\right) \rho^{+}+\left(I \otimes f_{2}\right) \rho^{-}\right\} \\
& =\left(f_{1}^{*}\left(c_{1}^{*}\right) \otimes c_{2}^{*}\right) \rho^{+}+\left(c_{1}^{*} \otimes f_{2}^{*}\left(c_{2}^{*}\right)\right) \rho^{-}=f_{1}^{*}\left(c_{1}^{*}\right) \circ c_{2}^{*}+c_{1}^{*} \circ f_{2}^{*}\left(c_{2}^{*}\right) .
\end{aligned}
$$

Therefore $\left(f^{*}, f_{1}^{*}, f_{2}^{*}\right)$ is a triple derivation from C^{*} to N^{*}.

Now, as is easily seen, the map

$$
\theta_{0}: \operatorname{TCoder}(N, C) \ni\left(f, f_{1}, f_{2}\right) \mapsto\left(f^{*}, f_{1}^{*}, f_{2}^{*}\right) \in \operatorname{TDer}\left(C^{*}, N^{*}\right)
$$

is an R-module homomorphism and if $N=C$, then by

$$
\begin{aligned}
\theta_{0}\left[\left(f, f_{1}, f_{2}\right),\left(g, g_{1}, g_{2}\right)\right] & =\theta_{0}\left([f, g],\left[f_{1}, g_{1}\right],\left[f_{2}, g_{2}\right]\right) \\
& =\left([f, g]^{*},\left[f_{1}, g_{1}\right]^{*},\left[f_{2}, g_{2}\right]^{*}\right) \\
& =\left(\left[g^{*}, f^{*}\right],\left[g_{1}^{*}, f_{1}^{*}\right],\left[g_{2}^{*}, f_{2}^{*}\right]\right) \\
& =\left[\theta_{0}\left(\left(g, g_{1}, g_{2}\right)\right), \theta_{0}\left(\left(f, f_{1}, f_{2}\right)\right)\right]
\end{aligned}
$$

$\theta_{0}: \operatorname{TCoder}(C) \rightarrow \operatorname{TDer}\left(C^{*}\right)$ is a Lie algebra anti-homomorphism. And for any $(f, \alpha) \in \Lambda(N, C)$, we have a bilinear map

$$
\alpha^{*}: C^{*} \times C^{*} \ni\left(c_{1}^{*}, c_{2}^{*}\right) \rightarrow \alpha^{*}\left(c_{1}^{*}, c_{2}^{*}\right) \in N^{*}
$$

defined by $\alpha^{*}\left(c_{1}^{*}, c_{2}^{*}\right)(n)=\left(c_{1}^{*} \otimes c_{2}^{*}\right) \alpha(n)$. Since $\Delta f=\left(f_{1} \otimes I\right) \rho^{+}+\left(I \otimes f_{2}\right) \rho^{-}+\alpha$, we have

$$
\begin{aligned}
f^{*}\left(c_{1}^{*}\right) c_{2}^{*}+c_{1}^{*} f^{*}\left(c_{2}^{*}\right)+\alpha^{*}\left(c_{1}^{*}, c_{2}^{*}\right) & =\left(c_{1}^{*} f \otimes c_{2}^{*}\right) \rho^{+}+c_{1}^{*} \otimes\left(c_{2}^{*} f\right) \rho^{-}+\left(c_{1}^{*} \otimes c_{2}^{*}\right) \alpha \\
& =\left(c_{1}^{*} \otimes c_{2}^{*}\right)\left\{(f \otimes I) \rho^{+}+(I \otimes f) \rho^{-}+\alpha\right\} \\
& =\left(c_{1}^{*} \otimes c_{2}^{*}\right) \Delta f=f^{*}\left(c_{1}^{*} \circ c_{2}^{*}\right)
\end{aligned}
$$

and thus we can define an R-module homomorphism

$$
\theta_{1}: \Lambda(N, C) \ni(f, \alpha) \mapsto\left(f^{*}, \alpha^{*}\right) \in \Lambda\left(C^{*}, N^{*}\right)
$$

Then we have the following.

Theorem 3.6. The diagram of R-modules

is commutative. Especially, if $N=C$, then the above diagram is commutative and $\theta_{i}(i=0,1)$ is a Lie algebra anti-homomorphism.

Proof. It is enough to show that the diagram is commutative, and θ_{1} is a Lie algebra anti-homomorphism in case of $N=C$.

Let $\left(f, f_{1}, f_{2}\right) \in \operatorname{TCoder}(N, C), c_{1}^{*}, c_{2}^{*} \in C^{*}$ and $n \in N$. By Theorem 3.5, since $\left(f^{*}, f_{1}^{*}, f_{2}^{*}\right) \in \operatorname{TDer}\left(C^{*}, N^{*}\right)$ is a triple derivation, then by Lemma 2.1(2.1), Lemma 3.2(3.1) and the definition of $\Lambda\left(C^{*}, N^{*}\right)$, we have

$$
\begin{aligned}
\alpha\left(f^{*}\right)\left(c_{1}^{*}, c_{2}^{*}\right)(n) & =\left\{\left(f_{1}^{*}-f^{*}\right)\left(c_{1}^{*}\right) c_{2}^{*}+c_{1}^{*}\left(f_{2}^{*}-f^{*}\right)\left(c_{2}^{*}\right)\right\}(n) \\
& =\left\{\left(f_{1}-f\right)^{*}\left(c_{1}^{*}\right) c_{2}^{*}+c_{1}^{*}\left(f_{2}-f\right)^{*}\left(c_{2}^{*}\right)\right\}(n) \\
& =\left\{\left(c_{1}^{*}\left(f_{1}-f\right) \otimes c_{2}^{*}\right) \rho^{+}+\left(c_{1}^{*} \otimes c_{2}^{*}\left(f_{2}-f\right) \rho^{-}\right\}(n)\right. \\
& =\left(c_{1}^{*} \otimes c_{2}^{*}\right)\left\{\left(\left(f_{1}-f\right) \otimes I\right) \rho^{+}+\left(I \otimes\left(f_{2}-f\right)\right) \rho^{-}\right\}(n) \\
& =(\alpha\langle f\rangle)^{*}\left(c_{1}^{*}, c_{2}^{*}\right)(n)
\end{aligned}
$$

This shows that

$$
\begin{aligned}
& \theta_{1} \psi_{N}\left(f, f_{1}, f_{2}\right)=\theta_{1}(f, \alpha\langle f\rangle)=\left(f^{*},(\alpha\langle f\rangle)^{*}\right)=\left(f^{*}, \alpha\left(f^{*}\right)\right) \\
& =\varphi_{N^{*}} \theta_{0}\left(f, f_{1}, f_{1}\right)
\end{aligned}
$$

that is, the above diagram is commutative.
Next, assume that $N=C$. Then for any $(f, \alpha),(g, \beta) \in \Lambda(C)$, we have

$$
\begin{aligned}
\left(\beta^{f}\right)^{*} & =((f \otimes I+I \otimes f) \beta-\beta f)^{*}=\beta^{*}\left(f^{*} \otimes I^{*}+I^{*} \otimes f^{*}\right)-f^{*} \beta^{*} \\
\left(\beta^{*}\right)_{f^{*}} & =\beta^{*}\left(f^{*} \times I_{C^{*}}+I_{C^{*}} \times f^{*}\right)-f^{*} \beta^{*}
\end{aligned}
$$

Since the algebra structure of C^{*} is defined by $\left(c_{1}^{*} \circ c_{2}^{*}\right)=\left(c_{1}^{*} \otimes c_{2}^{*}\right) \Delta$, we see $\left(\beta^{f}\right)^{*}=\left(\beta^{*}\right)_{f^{*}}$ and thus

$$
\begin{aligned}
\theta_{1}([(f, \alpha),(g, \beta)]) & =\theta_{1}\left([f, g], \beta^{f}-\alpha^{g}\right)=\left(\left[g^{*}, f^{*}\right],\left(\beta^{f}\right)^{*}-\left(\alpha^{g}\right)^{*}\right) \\
& =\left(\left[g^{*}, f^{*}\right],\left(\beta^{*}\right)_{f^{*}}-\left(\alpha^{*}\right)_{g^{*}}\right)=\left[\left(g^{*}, \beta^{*}\right),\left(f^{*}, \alpha^{*}\right)\right] \\
& =\left[\theta_{1}((g, \beta)), \theta_{1}((f, \alpha))\right]
\end{aligned}
$$

Therefore θ_{1} is a Lie algebra anti-homomorphism.

Finally, we show that the notion of a biderivation is dualized as follows.

Theorem 3.7. Let $B_{c}: N \rightarrow C \otimes C$ be an R-bilinear map which satisfy the following relations:

$$
\begin{aligned}
& (1) \quad(\Delta \otimes I) B_{c}=\left(I \otimes B_{c}\right) \rho^{-}+(I \otimes t)\left(B_{c} \otimes I\right) \rho^{+} \\
& (2) \quad(I \otimes \Delta) B_{c}=\left(B_{c} \otimes I\right) \rho^{+}+(t \otimes I)\left(I \otimes B_{c}\right) \rho^{-}
\end{aligned}
$$

where $t: C \otimes C \ni x \otimes y \mapsto y \otimes x \in C \otimes C$. Then the map $B_{C}^{*}: C^{*} \otimes C^{*} \rightarrow N^{*}$ defined by

$$
B_{C}^{*}\left(c_{2}^{*}, c_{3}^{*}\right)(n)=\left(c_{2}^{*} \otimes c_{3}^{*}\right) B_{c}(n) \quad \text { for any } c_{2}^{*}, c_{3}^{*} \in C^{*}, n \in N
$$

is a biderivation.
Proof. Since C^{*}-bimodule structures of N^{*} are given by (3.5), we have

$$
\begin{aligned}
c_{1}^{*} B_{c}^{*}\left(c_{2}^{*}, c_{3}^{*}\right) & \left.=c_{1}^{*} \otimes B_{c}^{*}\left(c_{2}^{*}, c_{3}^{*}\right)\right) \rho^{-}=\left(c_{1}^{*} \otimes c_{2}^{*} \otimes c_{3}^{*}\right)\left(I \otimes B_{c}\right) \rho^{-} \\
B_{c}^{*}\left(c_{1}^{*}, c_{3}^{*}\right) c_{2}^{*} & \left.=\left(B_{c}^{*}\left(c_{1}^{*}, c_{2}^{*}\right) \otimes c_{3}^{*}\right)\right) \rho^{+}=\left(c_{1}^{*} \otimes c_{3}^{*} \otimes c_{2}^{*}\right)\left(B_{c} \otimes I\right) \rho^{+} \\
& =\left(c_{1}^{*} \otimes c_{2}^{*} \otimes c_{3}^{*}\right)(I \otimes t)\left(B_{c} \otimes I\right) \rho^{+}
\end{aligned}
$$

for any $c_{1}^{*} \in C^{*}$. Then by (1)

$$
\begin{aligned}
& \left.c_{1}^{*} B_{c}^{*}\left(c_{2}^{*}, c_{3}^{*}\right)+B_{c}^{*}\left(c_{1}^{*}, c_{3}^{*}\right) c_{2}^{*}=\left(c_{1}^{*} \otimes c_{2}^{*} \otimes c_{3}^{*}\right)\left\{I \otimes B_{q}\right) \rho^{-}+(I \otimes t)\left(B_{c} \otimes I\right) \rho^{+}\right) \\
& =\left(c_{1}^{*} \otimes c_{2}^{*} \otimes c_{3}^{*}\right)(\Delta \otimes I) B_{c}=\left(\left(c_{1}^{*} \circ c_{2}^{*}\right) \otimes c_{3}^{*}\right) B_{c}=B_{c}^{*}\left(c_{1}^{*} \circ c_{2}^{*}, c_{3}^{*}\right)
\end{aligned}
$$

Similarly by (2), we have

$$
B_{c}^{*}\left(c_{1}^{*}, c_{2}^{*} \circ c_{3}^{*}\right)=c_{2}^{*} B_{c}^{*}\left(c_{1}^{*}, c_{3}\right)+B_{c}^{*}\left(c_{1}^{*}, c_{2}\right)^{*} c_{3}^{*} .
$$

These show that $B_{C}^{*}: C^{*} \otimes C^{*} \rightarrow N^{*}$ is a biderivation.
For an A-bimodule M, by the above theorem, the map $B_{c}: N \rightarrow C \otimes C$ corresponds to the notion of a biderivation $B: A \times A \rightarrow M$.

We can define some other coderivations which correspond to the G-derivations and the right derivations as follows. Let G_{c} be the set of R-coalgebra endomorphisms of C. For a C-bicomodule N, an R-linear map $f: N \rightarrow C$ is called a $G_{c^{-}}$-coderivation if

$$
\Delta f=(f \otimes \sigma) \rho^{+}+(\tau \otimes f) \rho^{-}
$$

for some $\sigma, \tau \in G_{c}$. Similarly, $g: N \rightarrow C$ is a right coderivation if

$$
\Delta g=(g \otimes I) \rho^{+}+(g \otimes I) t \rho^{-}
$$

where $t: C \otimes N \ni x \otimes m \mapsto m \otimes x \in N \otimes C$ is the twisted map. Since σ^{*} and τ^{*} are R-algebra endomorphisms of C^{*}, then we have

$$
\begin{aligned}
f^{*}\left(c_{1}^{*} \circ c_{2}^{*}\right) & =\left(c_{1}^{*} \otimes c_{2}^{*}\right) \Delta f=\left(c_{1}^{*} \otimes c_{2}^{*}\right)\left\{(f \otimes \sigma) \rho^{+}+(\tau \otimes f) \rho^{-}\right\} \\
& =c_{1}^{*} f^{*} \otimes c_{2}^{*} \sigma+c_{1}^{*} \tau \otimes c_{2}^{*} f^{*}=f^{*}\left(c_{1}^{*}\right) \sigma^{*}\left(c_{2}^{*}\right)+\tau^{*}\left(c_{1}^{*}\right) f^{*}\left(c_{2}^{*}\right)
\end{aligned}
$$

which show that $f^{*}: C^{*} \rightarrow N^{*}$ is a $\left(\sigma^{*}, \tau^{*}\right)$-derivation and by

$$
\begin{aligned}
g^{*}\left(c_{1}^{*} \circ c_{2}^{*}\right) & =\left(c_{1}^{*} \otimes c_{2}^{*}\right) \Delta g=\left(c_{1}^{*} \otimes c_{2}^{*}\right)\left\{(g \otimes I) \rho^{+}+(g \otimes I) t \rho^{-}\right\} \\
& =c_{1}^{*} f^{*} \otimes c_{2}^{*} \sigma+c_{1}^{*} \tau \otimes c_{2}^{*} f^{*}=g^{*}\left(c_{1}^{*}\right) c_{2}^{*}+g^{*}\left(c_{2}^{*}\right) c_{1}^{*},
\end{aligned}
$$

$g^{*}: C^{*} \rightarrow M^{*}$ is a right derivation. Therefore, the above G_{c}-coderivation and the right coderivation are considered as the dual notions of the G-derivation and the right derivation. We will be able to discuss the several properties of (σ, τ) coderivations and right coderivations which correspond to the properties of $\operatorname{Der}_{\sigma^{*}, \tau^{*}}(A, M)$ and $\operatorname{RDer}\left(C^{*}, M^{*}\right)$.

Acknowledgment. The authors would like to express their gratitude to the referee for his or her valuable comments.

References

[1] M. Brešar, On the distance of the composition of two derivations to the generalized derivations, Glasgow Math. J., 33(1) (1991), 89-93.
[2] M. Brešar, On generalized biderivations and related maps, J. Algebra, 172(3) (1995), 764-786.
[3] C. W. Curtis and I. Reiner, Representation Theory of Finite Groups and Associative Algebras, Pure and Applied Mathematics, Vol. XI, Interscience Publishers, a division of John Wiley \& Sons, New York-London, 1962.
[4] Y. Doi, Homological coalgebra, J. Math. Soc. Japan, 33(1) (1981), 31-50.
[5] M. Hongan and H. Komatsu, (σ, τ)-derivations with invertible values, Bull. Inst. Math. Acad. Sinica, 15(4) (1987), 411-415.
[6] M. Hongan and H. Komatsu, On the module of differentials of a noncommutative algebra and symmetric biderivations of semiprime algebra, Comm. Algebra, 28(2) (2000), 669-692.
[7] H. Komatsu, Quasi-separable extensions of noncommutative rings, Comm. Algebra, 29(3) (2001), 1011-1019.
[8] H. Komatsu and A. Nakajima, Generalized derivations of associative algebras, Quaest. Math., 26(2) (2003), 213-235.
[9] H. Komatsu and A. Nakajima, On triple coderivations of corings, Int. Electron. J. Algebra, 17 (2015), 139-153.
[10] G. F. Leger and E. M. Luks, Generalized derivations of Lie algebras, J. Algebra, 228(1) (2000), 165-203.
[11] A. Nakajima, Coseparable coalgebras and coextensions of coderivations, Math. J. Okayama Univ., 22(2) (1980), 145-149.
[12] A. Nakajima, On categorical properties of generalized derivations, Sci. Math., 2(3) (1999), 345-352.
[13] A. Nakajima, Generalized Jordan derivations, International Symposium on Ring Theory (Kyongju, 1999), Trends Math., Birkhauser, Boston, MA, (2001), 235-243.
[14] A. Nakajima, Note on generalized Jordan derivations associate with Hochschild 2-cocycles of rings, Turkish J. Math., 30(4) (2006), 403-411.
[15] A. Nakajima, On generalized coderivations, Int. Electron. J. Algebra, 12 (2012), 37-52.
[16] M. E. Sweedler, Right derivations and right differential operators, Pacific J. Math., 86(1) (1980), 327-360.
[17] J. Vukman, Symmetric bi-derivations on prime and semi-prime rings, Aequationes Math., 38(2-3) (1989), 245-254.

Atsushi Nakajima

2-4-15, Nakaku, Nakai
Okayama 703-8205, Japan
e-mail : a2017bj.naka@hi2.enjoy.ne.jp

[^0]: Dedicated to the memory of Prof. Manabu Harada.

