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Abstract. The aim of this paper is to study idempotents and units in certain

matrix rings over polynomial rings. More precisely, the conditions under which

an element in M2(Zp[x]) for any prime p, an element in M2(Z2p[x]) for any

odd prime p, and an element in M2(Z3p[x]) for any prime p greater than 3

is an idempotent are obtained and these conditions are used to give the form

of idempotents in these matrix rings. The form of elements in M2(Z2[x]) and

elements in M2(Z3[x]) that are units is also given. It is observed that unit

group of these rings behave differently from the unit groups of M2(Z2) and

M2(Z3).
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1. Introduction

Idempotents and units in rings play a critical role in the study of rings. Several

classes of elements are defined using idempotents and units, for example, clean

elements (the elements that can be expressed as a sum of an idempotent and a

unit, cf. [8], [13]), strongly clean elements (the elements that can be expressed as a

sum of an idempotent and a unit that commute, cf. [14]), unit regular elements (the

elements that can be written as eu for some idempotent e and unit u, cf. [6], [14]),

Lie regular elements (the elements that can be written as eu − ue where e is an

idempotent and u is a unit, cf. [15]), etc. Due to their importance, the idempotents

and units generated interest among several researchers and efforts have been made

to compute idempotents and unit groups of rings.

The problem of obtaining structure and presentation of unit groups of rings

have also drawn attention of several researchers. Important contributions have

been made in some special cases (for example see [1], [2], [3], [5], [9], [10], [12], [15],

[16]). These studies, however, are far from complete and a lot more needs to be

done. In the case of polynomial rings, Kanwar, Leroy and Matczuk showed that

for an abelian ring (a ring in which all idempotents are central) R, idempotents
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in the polynomial ring R[x] over R are precisely idempotents in R ([7, Lemma 1])

and that for a reduced ring R, the units in the polynomial ring R[x] over R are

precisely the units in R ([8, Corollary 1.7]). In fact, a ring R is reduced if and only

if the unit group of R[x] is same as the unit group of R. Not much, however, is

known in the case of polynomial rings over matrix rings (equivalently, matrix rings

over polynomial rings).

In this article, we study idempotents and units in certain matrix rings over

polynomial rings. We give conditions for elements in M2(Z2p[x]) (where p is an

odd prime) and M2(Z3p[x]) (where p is a prime greater than 3) to be idempotent

and use these to give form of idempotents in these rings (Theorems 3.5 and 3.7).

We also show that for any ring R, every derived subgroup of the unit group of the

matrix ring of n × n matrices over the polynomial ring R[x] has units of certain

form that are commutators of units of the same form (Proposition 4.1 and Corollary

4.2) showing, as a byproduct, that the unit group of Mn(R[x]) is not solvable. In

Theorem 4.4 and Theorem 4.5, we give conditions for elements of M2(Z2[x]) and

M2(Z3[x]) to be units and use these to give form of units in these rings. We further

observe that unit group of M2(Z2[x]) and unit group of M2(Z3[x]) behave differently

from the unit group of M2(Z2) and the unit group of M2(Z3) respectively.

2. Preliminaries and notation

Throughout, a ring will mean an associative ring with unity and for any positive

integer n, Zn will denote the ring of integers modulo n. For any ring R, E(R) will

denote the set of all idempotents in R and U(R), the unit group of R. For any

positive integer n, Mn(R) will denote the ring of n× n matrices over a ring R and

GL(n,R) will denote the general linear group (the group of all n × n invertible

matrices over a ring R). For a commutative ring R and for every positive integer

n, SL(n,R) will denote the special linear group (the group of all n × n invertible

matrices over the ring R that have determinant 1).

We will use standard definitions for determinant and trace of matrices over com-

mutative rings (cf. [11]). More precisely, for a 2× 2 matrix A =

(
a b

c d

)
over a

commutative ring R, determinant of A is ad−bc and trace of A is a+d. Recall that

the determinant of product of two matrices over a commutative ring is the product

of the determinant of two matrices.

As in the literature, for any two integers a and b with at least one of them non-

zero, gcd(a,b) will denote the greatest common divisor of a and b and for a positive
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integer n, φ(n) will denote the number of positive integers less than n and relatively

prime to n.

For any two elements g1, g2 of a group G, (g1, g2) will denote the commutator

g1
−1g2

−1g1g2 of g1 and g2. For any group G, δ(G) will denote the group of all

commutators of elements of G, called the derived subgroup of G. For any positive

integer n, δ(n)(G) will denote the derived subgroup of δ(n−1)(G), where δ(0)(G) = G

and δ(1)(G) = δ(G). δ(n)(G) is called the nth derived subgroup of G.

A group G is said to be solvable of length d if its derived series is of the form

{1} = G0 < G1 < · · · < Gd = G in which each factor Gi+1/Gi is abelian for

i = 0, 1, . . . , d − 1. A metabelian group is a group whose commutator subgroup is

abelian. In fact, they are precisely the solvable groups of derived length 2.

We now give some results that will be useful in our study. We begin with the

following proposition that may also be of independent interest.

Proposition 2.1. Let R be any ring with unity and a =
n∑
i=0

aix
i is an element in

R[x] such that a2 − a ∈ R. If any of the following conditions hold:

(1) R has no non-zero nilpotent elements,

(2) a0ai = aia0 for 1 ≤ i ≤ n and 2a0 − 1 is a unit in R,

then a ∈ R.

Proof. If R has no non-zero nilpotent elements and a2 − a ∈ R, then it is easy

to see that ai = 0 for 1 ≤ i ≤ n. The proof, in the second case, is similar to the

proof of Lemma 1 in [7]. We give a brief outline for the sake of completeness. If

a /∈ R and ai (i > 0) is the first non-zero coefficient in a, then a2 − a ∈ R gives

2a0ai − ai = 0. But then ai = 0 as 2a0 − 1 is a unit in R, a contradiction. Thus

a ∈ R. �

In particular, we have the following corollary.

Corollary 2.2. [7, Lemma 1] Let R be any ring with unity and e =
n∑
i=0

eix
i ∈ R[x]

be an idempotent element such that e0 commutes with ei for 1 ≤ i ≤ n. Then

e = e0.

Corollary 2.3. [7, Lemma 1] If R is an abelian ring, then E(R[x]) = E(R).

Corollary 2.4. If R is a ring with no non-zero nilpotent elements, then E(R[x]) =

E(R).
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We remark that the requirement of 2a0 − 1 being a unit in R in Condition (2)

of Proposition 2.1 cannot be dropped even when R is commutative. For example,

the polynomial a(x) = 2 + 3x in Z9[x] satisfies the condition a2− a ∈ Z9 but is not

in Z9.

Theorem 2.5. Let R be a commutative ring. Then the trace of every non-trivial

idempotent in M2(R) with determinant 0 is an idempotent.

Proof. Let A =

(
a b

c d

)
be a non-trivial idempotent in M2(R) and let the deter-

minant ofA is 0, that is, ad−bc = 0. SinceA is an idempotent,

(
a2 + bc ab+ bd

ac+ cd bc+ d2

)
=(

a b

c d

)
. Thus a2 +bc = a and bc+d2 = d and hence a2 +2bc+d2 = a+d. Since

ad = bc, we have (a+ d)2 = a+ d, that is, the trace of A is an idempotent. �

We remark that the trace of an idempotent in M2(R) with non-zero determinant

need not be an idempotent. For example, the matrices

(
4 3

0 1

)
and

(
3 0

0 1

)
in

M2(Z6) are both idempotents with non-zero determinant and the trace of

(
3 0

0 1

)

is an idempotent whereas that of

(
4 3

0 1

)
is not an idempotent.

Proposition 2.6. Let R be a commutative ring. Then an element of M2(R) with

trace 1 is an idempotent if and only if its determinant is 0.

Proof. The result follows once we observe that the determinant of

(
a b

c 1− a

)

is a− a2 − bc and

(
a b

c 1− a

)
is an idempotent if and only if a2 + bc = a. �

Theorem 2.7. Let R be a commutative ring with no non-trivial idempotents. Then

the trace of every non-trivial idempotent in M2(R) is 1.

Proof. Let A =

(
a b

c d

)
be a non-trivial idempotent in M2(R). Then the

determinant of A is also an idempotent. Since R has no non-trivial idempotents,

the determinant of A is either 0 or 1. If the determinant of A is 1 then A is a unit as

well as an idempotent. Thus A =

(
1 0

0 1

)
, a contradiction as A is a non-trivial



IDEMPOTENTS AND UNITS OF MATRIX RINGS OVER POLYNOMIAL RINGS 151

idempotent. If the determinant of A is 0 then, by Theorem 2.5, trace of A is an

idempotent. Since R has no non-trivial idempotents, the trace of A is either 0 or

1. If the trace of A is 0 then d = −a. Since ad− bc = 0, we have a2 + bc = 0 and

bc+ d2 = 0. Hence A2 =

(
a2 + bc ab+ bd

ac+ cd bc+ d2

)
=

(
0 0

0 0

)
. Thus A is the zero

matrix, a contradiction as A is a non-trivial idempotent. Hence the trace of A is

1. �

Note that, if R is a commutative ring with non-trivial idempotents then M2(R)

may have idempotents having non-idempotent trace. For example, the matrices(
4 3

0 1

)
and

(
4 0

0 4

)
in M2(Z6) are both idempotents with non-idempotent

trace.

Also note that the result in Theorem 2.7 does not hold for M3(R) where R is a

commutative ring with unity having no non-trivial idempotents, for example, the

matrix


1 0 0

0 1 0

0 0 0

 in M3(Z3) is a non-trivial idempotent with trace different

from 1.

Recall that, if n = pm1
1 pm2

2 . . . pmr
r then Zn ∼= Zpm1

1
× Zpm2

2
× · · · × Zpmr

r
and

for each prime p and each positive integer m, Zpm has no non-trivial idempotents.

Thus the idempotents in Zn are (e1, e2, . . . , er), where ei = 0 or 1 for each i. The

following proposition gives precise formulas for the non-trivial idempotents in the

case of 2 primes. Similar argument can be used to obtain the precise formulas for

all non-trivial idempotents in the general case.

Proposition 2.8. If p and q are distinct primes and m and n are positive integers

then idempotents in Zpmqn are 0, 1, pkq
n−1(q−1), and qlp

m−1(p−1) modulo pmqn,

where k and l are the smallest positive integers such that kqn−1(q − 1) − m and

lpm−1(p− 1)− n are positive.

Proof. Let x be an idempotent in Zpmqn . Then x2 ≡ x(mod pmqn). Thus x2 ≡
x(mod pm) and x2 ≡ x(mod qn). Now x2 ≡ x(mod pm) gives x ≡ 0(mod pm) or x ≡
1(mod pm) and x2 ≡ x(mod qn) gives x ≡ 0(mod qn) or x ≡ 1(mod qn).

If x ≡ 0(mod pm) and x ≡ 0(mod qn) then, as gcd(pm, qn) = 1, we have x ≡
0(mod pmqn) and if x ≡ 1(mod pm) and x ≡ 1(mod qn) then, as gcd(pm, qn) = 1,

we have x ≡ 1(mod pmqn). Now let x ≡ 0(mod pm) and x ≡ 1(mod qn) then, using
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Chinese Remainder Theorem (cf. [4]) and the fact that pφ(q
n) ≡ 1(mod qn) (Euler’s

Theorem, cf. [4]), we get x ≡ pkq
n−1(q−1)(mod pmqn), where k is the smallest

positive integer such that kqn−1(q − 1)−m is positive . Similarly if x ≡ 1(mod pm)

and x ≡ 0(mod qn) then x ≡ qlpm−1(p−1)(mod pmqn), where l is the smallest positive

integer such that lpm−1(p− 1)−n is positive. Thus the only idempotents in Zpmqn
are 0, 1, pkq

n−1(q−1) and qlp
m−1(p−1) modulo pmqn where k and l are the smallest

positive integers such that kqn−1(q − 1)−m and lpm−1(p− 1)−n are positive. �

As a particular case of Proposition 2.8, it follows that if p and q are distinct

primes then the idempotents in Zpq are 0, 1, pq−1, qp−1 modulo pq and if p and q are

distinct primes such that q > p then the idempotents in Zp2q are 0, 1, pq−1, qp(p−1)

modulo p2q and those in Zp3q are 0, 1, p2(q−1), qp
2(p−1) modulo p3q.

3. Idempotents in matrix rings over polynomial rings

In this section, we give conditions such that a matrix in M2(R[x]), where R

is a commutative ring, is an idempotent and use it to give the form of idempo-

tents in M2(Zp[x]), where p is a prime, M2(Z2p[x]), where p is an odd prime, and

M2(Z3p[x]), where p is a prime greater than 3. We first prove the following propo-

sition.

Proposition 3.1. If R is a reduced commutative ring then the determinant as well

as the trace of every idempotent in M2(R[x]) is in R.

Proof. Suppose R is a reduced commutative ring and let A =

(
a(x) b(x)

c(x) d(x)

)
be an idempotent in M2(R[x]). For convenience, we will write a, b, c, d for

a(x), b(x), c(x), d(x) respectively. Since A is an idempotent, determinant of A is

an idempotent in R[x]. Since R is commutative, idempotents in R[x] are precisely

the idempotents in R. Hence determinant of A is an idempotent in R, that is,

ad − bc ∈ R. Again, as A is an idempotent, we have a2 + bc = a, b(a + d) = b,

c(a+d) = c, and bc+d2 = d. Thus (a+d)2 = a+d+2(ad− bc). Since ad− bc ∈ R,

we have (a+ d)2− (a+ d) ∈ R. Hence, by Proposition 2.1, a+ d ∈ R, that is, trace

of A is in R. �

Since for a commutative ring R, the idempotents in the polynomial ring R[x] over

R are precisely the idempotents in R and for a commutative ring R with no non-

trivial idempotents, trace of every non-trivial idempotent in M2(R) is 1 (Theorem

2.7), we have the following proposition.
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Proposition 3.2. Let R be a commutative ring with no non-trivial idempotents.

Then the non-trivial idempotents of M2(R[x]) are of the form(
a(x) b(x)

c(x) 1− a(x)

)
, where a(x), b(x), c(x) ∈ R[x], not necessarily non-zero, such

that a(x)(1− a(x)) = b(x)c(x).

Since for any prime p, Zp[x] has no non-trivial idempotents, we have the

following corollary.

Corollary 3.3. For any prime p, the non-trivial idempotents of M2(Zp[x]) are

of the form

(
t(x) q(x)

r(x) 1− t(x)

)
, where q(x), r(x), t(x) ∈ Zp[x], not necessarily

non-zero, such that t(x){1− t(x)} = q(x)r(x).

We now obtain conditions under which a matrix in M2(Z2p[x]), where p is an odd

prime, is an idempotent and use this to give the form of idempotents in M2(Z2p[x]).

We first prove the following proposition.

Proposition 3.4. For any odd prime p and any non-trivial idempotent A in

M2(Z2p[x]), one of the following holds:

(1) determinant of A is 0 and trace of A is either 1 or p or p+ 1,

(2) determinant of A is p and trace of A is either 0 or p+ 1,

(3) determinant of A is p+ 1 and trace of A is either 2 or p+ 2.

In particular, the same holds for the idempotents in M2(Z2p).

Proof. First note that the idempotents in Z2p are 0, 1, p, and 2p−1 (Proposition

2.8). Since for any odd prime p, 2p−1 ≡ (p + 1)(mod 2p) and the idempotents in

Z2p[x] are precisely the idempotents in Z2p, the idempotents in Z2p[x] are 0, 1, p,

and p+1. Now let A =

(
a(x) b(x)

c(x) d(x)

)
be a non-trivial idempotent of M2(Z2p[x]).

For convenience, we will write a, b, c, d for a(x), b(x), c(x), d(x) respectively.

Since A is an idempotent, we have a2 + bc = a, b(a + d) = b, c(a + d) = c, and

bc+ d2 = d and determinant of A is an idempotent in Z2p (Proposition 3.1). Thus,

determinant of A is 0 or 1 or p or p+1. If determinant of A is 1 then A =

(
1 0

0 1

)
,

a trivial idempotent in M2(Z2p[x]). Hence, the determinant of A is 0 or p or p+ 1.

Also, trace of A is in Z2p (Proposition 3.1), that is, a+ d ∈ Z2p.

Case 1: Determinant of A is 0. In this case, by Theorem 2.5 and Proposition 3.1,

trace of A is an idempotent in Z2p. Thus a+d is either 0 or 1 or p or p+1. If a+d = 0
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then, as in Theorem 2.7, A is the zero matrix in M2(Z2p[x]), a contradiction as A

is a non-trivial idempotent.

Note that the matrices

(
1 0

0 0

)
,

(
p 0

0 0

)
,

(
p+ 1 0

0 0

)
inM2(Z2p[x]) have

determinant 0 and trace 1, p, p+ 1 respectively.

Case 2: Determinant of A is p. In this case, ad−bc = p, a2+bc = a, and bc+d2 = d

give (a + d)2 = a + d, that is, a + d is an idempotent. Since a + d ∈ Z2p, a + d is

either 0 or 1 or p or p+ 1. We claim that a+ d is 0 or p+ 1.

If a+ d = 1 then ad− bc = p gives a2 + bc = −p+ a(mod 2p) and hence

A2 =

(
−p+ a b

c 1 + p− a

)
. Since A is an idempotent, we get −p + a = a, a

contradiction.

If a+ d = p then ad− bc = p gives a2 + bc = pa− p and hence

A2 =

(
pa− p pb

pc p2 + p− pa

)
. Since A is an idempotent, we get (p − 1)a = p.

Thus (p − 1)a0 = p(mod 2p) where a0 is the term without x in a. This is not

possible as gcd(p− 1, 2p) = 2 and 2 does not divide p.

Note that the matrices

(
p 0

0 p

)
,

(
p 0

0 1

)
in M2(Z2p[x]) have determinant

p and trace 0, p+ 1 respectively.

Case 3: Determinant of A is p+ 1. In this case, ad− bc = p+ 1, a2 + bc = a, and

bc+ d2 = d give (a+ d)2 = a+ d+ 2. Since a+ d ∈ Z2p, we get a+ d is either 2 or

−1 or p− 1 or p+ 2.

We claim that the cases a+ d = −1 and a+ d = p− 1 are not possible if p 6= 3.

Note that the cases a+d = −1 and a+d = p−1 coincides with the cases a+d = p+2

and a+ d = 2 respectively when p = 3. Let p 6= 3.

If a + d = p − 1, then d = p − 1 − a and hence ad − bc = p + 1 gives a2 +

bc = pa − a − p − 1. Thus A2 =

(
pa− 1− a− p (p− 1)b

(p− 1)c (p+ 1)a

)
. Since A is an

idempotent, we have (p− 2)b = 0 and (p− 2)c = 0. Since gcd(p− 2, 2p) = 1, we get

b = c = 0 and hence A =

(
a 0

0 p− 1− a

)
. Since A is an idempotent, both a and

p− 1− a must be idempotents in Z2p[x] and hence in Z2p. Thus, using a2 = a and

(p − 1 − a)2 = p − 1 − a, we get 4a ≡ −2(mod 2p). Since a, being an idempotent

in Z2p, is either 0 or 1 or p or p + 1, it is easy to see that none of the values of a

satisfy 4a ≡ −2(mod 2p).
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If a+ d = −1, then A2 =

(
a2 + bc −b
−c bc+ d2

)
. Since A is an idempotent, we

get a2 + bc = a, 2b = 0, and 2c = 0. Hence 4a2 = 4a. Also, as ad− bc = p+ 1, we

have a(−1− a)− bc = p+ 1 and hence 2a = p+ 1 as a2 + bc = a. Now 4a2− 4a = 0

gives (p− 1)2 − 2(p− 1) = 0. Thus, p+ 3 ≡ 0(mod 2p), which is not possible as p

does not divide 3.

Note that the matrices

(
p+ 1 0

0 p+ 1

)
and

(
p+ 1 0

0 1

)
in M2(Z2p[x]) have

determinant p+ 1 and trace 2 and p+ 2, respectively. �

Theorem 3.5. For any odd prime p, any non-trivial idempotent in M2(Z2p[x]) is

of one of the following forms:

(1)

(
p 0

0 p

)
,

(
p+ 1 0

0 p+ 1

)

(2)

(
a(x) b(x)

c(x) 1− a(x)

)
, where a(x){1− a(x)} − b(x)c(x) = 0

(3)

(
pa(x) pb(x)

pc(x) p(1− a(x))

)
, where a(x){1− a(x)} − b(x)c(x) = 2f(x)

(4)

(
2a(x) 2b(x)

2c(x) p+ 1− 2a(x)

)
, where a(x){1− 2a(x)} − 2b(x)c(x) = pg(x)

(5)

(
p+ 2a(x) 2b(x)

2c(x) 1− 2a(x)

)
, where a(x){1− 2a(x)} − 2b(x)c(x) = ph(x)

(6)

(
1 + pa(x) pb(x)

pc(x) p+ 1− pa(x)

)
, where a(x){1− a(x)} − b(x)c(x) = 2φ(x),

where a(x), b(x), c(x), f(x), g(x), h(x), and φ(x) are polynomials in Z2p[x], not

necessarily non-zero.

Proof. It is easy to check that the matrices in (1)–(6) with the given conditions are

idempotents in M2(Z2p[x]), so we are only left to prove that every idempotent in

M2(Z2p[x]) has one of the stated forms. Let A =

(
a(x) b(x)

c(x) d(x)

)
be an idempotent

in M2(Z2p[x]). Then, by Proposition 3.4, one of the following holds:

(1) determinant of A is 0 and trace of A is either 1 or p or p+ 1,

(2) determinant of A is p and trace of A is either 0 or p+ 1,

(3) determinant of A is p+ 1 and trace of A is either 2 or p+ 2.

We first consider the case when determinant of A is 0. In this case, trace of A is

either 1 or p or p+ 1, that is, a+ d is either 1 or p or p+ 1.
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If a + d = 1, then d = 1 − a and hence ad − bc = 0 gives a2 + bc = a. Also

(a+ d)b = b, (a+ d)c = c, and bc+ d2 = 1− a. Thus, A2 =

(
a b

c 1− a

)
. Thus,

in this case, A =

(
a(x) b(x)

c(x) 1− a(x)

)
, where a(x), b(x), c(x) ∈ Z2p[x] such that

a(x){1− a(x)} = b(x)c(x).

If a + d = p, then d = p − a and hence ad − bc = 0 gives a2 + bc = pa. Thus

A2 =

(
pa pb

pc p− pa

)
. Since A is an idempotent, (p − 1)a = 0, (p − 1)b = 0,

and (p − 1)c = 0. Therefore, a = pa′(x), b = pb′(x), and c = pc′(x), where

a′(x), b′(x) and c′(x) are polynomials in Z2p[x]. Now since ad − bc = 0, we get

pa′(x){1−a′(x)} = pb′(x)c′(x), which is equivalent to a′(x){1−a′(x)}−b′(x)c′(x) =

2f(x) for some polynomial f(x) ∈ Z2p[x]. Hence, A =

(
pa(x) pb(x)

pc(x) p(1− a(x))

)
,

where a(x), b(x), c(x) ∈ Z2p[x] such that a(x){1 − a(x)} − b(x)c(x) = 2f(x) for

some f(x) ∈ Z2p[x].

If a+d = p+1, then d = p+1−a and hence ad−bc = 0 gives a2 +bc = (p+1)a.

Thus, A2 =

(
(p+ 1)a (p+ 1)b

(p+ 1)c pa+ p− a+ 1

)
. Since A is an idempotent, pa = 0,

pb = 0, and pc = 0. Hence, as in the previous case, A =

(
2a(x) 2b(x)

2c(x) p+ 1− 2a(x)

)
,

where a(x), b(x), c(x) ∈ Z2p[x] such that a(x){1− 2a(x)} − 2b(x)c(x) = pg(x) for

some g(x) ∈ Z2p[x].

Next, we consider the case where determinant of A is p. In this case trace of A

is either 0 or p+ 1, that is, a+ d is either 0 or p+ 1.

It is easy to see that the determinant of (A + pI) is 0 and the trace of (A +

pI) is trace of A. Therefore, by the previous case, A + pI is either the zero

matrix in M2(Z2p[x]) or

(
2a(x) 2b(x)

2c(x) p+ 1− 2a(x)

)
, where a(x), b(x), c(x) ∈

Z2p[x] such that a(x){1 − 2a(x)} − 2b(x)c(x) = pg(x). Hence A is

(
p 0

0 p

)

or

(
p+ 2a(x) 2b(x)

2c(x) 1− 2a(x)

)
, where a(x), b(x), c(x) ∈ Z2p[x] such that a(x){1−

2a(x)} − 2b(x)c(x) = ph(x) for some h(x) ∈ Z2p[x].

Finally, we consider the case where determinant of A is p+ 1. In this case, trace

of A is either 2 or p+ 2, that is, a+ d is either 2 or p+ 2.
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If a+d = 2, then d = 2−a and hence ad−bc = p+1 gives a2+bc = 2a−p−1. Thus

A2 =

(
2a− p− 1 2b

2c 3 + p− 2a

)
. Since A is an idempotent, we get a = p + 1,

b = c = 0. Thus A =

(
p+ 1 0

0 p+ 1

)
.

If a + d = p + 2, then d = p + 2 − a and hence ad − bc = p + 1 gives a2 + bc =

2a + pa − p − 1. Thus A2 =

(
2a+ pa− p− 1 (p+ 2)b

(p+ 2)c 3 + pa− 2a

)
. Since A is an

idempotent, we have (p + 1)a = p + 1, (p + 1)b = 0, and (p + 1)c = 0. Hence, as

earlier, A =

(
1 + pa(x) pb(x)

pc(x) p+ 1− pa(x)

)
, where a(x), b(x), c(x) ∈ Z2p[x] such

that a(x){1− a(x)} − b(x)c(x) = 2φ(x) for some φ(x) ∈ Z2p[x]. �

Note that all computations in Proposition 3.4 and Theorem 3.5 are modulo 2p,

even if it is not explicitly stated. We also observe that every idempotent of form 3

in Theorem 3.5 is orthogonal to every idempotent of form 4.

Proposition 3.6. For any prime p greater than 3 and any non-trivial idempotent

A in M2(Z3p[x]), one of the following holds:

(1) determinant of A is 0 and trace of A is either 1 or p2 or 3p−1,

(2) determinant of A is 3p−1 and trace of A is either 3p−1 + 1 or 2 · 3p−1,

(3) determinant of A is p2 and trace of A is either 2p2 or p2 + 1.

In particular, the same holds for the idempotents in M2(Z3p).

Proof. First note that the idempotents in Z3p are 0, 1, p2, and 3p−1 modulo 3p

(Proposition 2.8). Thus the idempotents in Z3p[x], being same as the idempotents

in Z3p, are 0, 1, p2, and 3p−1 modulo 3p. Now let A =

(
a(x) b(x)

c(x) d(x)

)
be a

non-trivial idempotent of M2(Z3p[x]). For convenience, we will write a, b, c, d for

a(x), b(x), c(x), d(x) respectively. Since A is an idempotent, we have a2 + bc = a,

b(a + d) = b, c(a + d) = c, and bc + d2 = d. Also, as determinant of A is an

idempotent in Z3p (Proposition 3.1), determinant of A is 0 or 1 or p2 or 3p−1

modulo 3p. If determinant of A is 1, then A =

(
1 0

0 1

)
, a trivial idempotent

in M2(Z3p[x]). Hence determinant of A is 0 or p2 or 3p−1 modulo 3p. Also, by

Proposition 3.1, trace of A is in Z3p, that is, a+ d ∈ Z3p.

Case 1: Determinant of A is 0. In this case, by Theorem 2.5, trace of A is

an idempotent in Z3p[x] and hence in Z3p. Thus a + d is either 0 or 1 or p2 or
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3p−1. If a + d = 0 then, as in Theorem 2.7, A is the zero matrix in M2(Z3p[x]), a

contradiction as A is a non-trivial idempotent.

Note that the matrices

(
1 0

0 0

)
,

(
p2 0

0 0

)
,

(
3p−1 0

0 0

)
in M2(Z3p[x])

have determinant 0 and trace 1, p2, 3p−1 respectively.

Case 2: Determinant of A is 3p−1. In this case, ad− bc = 3p−1, a2 + bc = a, and

bc + d2 = d give (a + d)2 = a + d + 2 · 3p−1(mod 3p). Since a + d ∈ Z3p, we get

a+ d is either 3p−1 + 1 or 2 · 3p−1 or −3p−1 or 1− 2 · 3p−1. We claim that the cases

a+ d = −3p−1 and a+ d = 1− 2 · 3p−1 are not possible.

If a + d = −3p−1, then d = −3p−1 − a and hence ad − bc = 3p−1 gives a2 +

bc = −3p−1a − 3p−1. Thus A2 =

(
−3p−1a− 3p−1 −3p−1b

−3p−1c 3p−1a

)
. Since A is an

idempotent, we have (3p−1+1)b = 0 and (3p−1+1)c = 0. Since gcd(3p−1+1, 3p)=1

we get b = c = 0. Thus A =

(
a 0

0 −3p−1 − a

)
. Since A is an idempotent, both

a and −3p−1 − a must be idempotents in Z3p[x] and hence in Z3p. Hence this case

is not possible, as −3p−1 − a is not an idempotent for a = 0, 1, p2, and 3p−1.

If a + d = 1 − 2 · 3p−1, then A2 =

(
a2 + bc (1− 2 · 3p−1)b

(1− 2 · 3p−1)c bc+ d2

)
. Since

A is an idempotent, we get a2 + bc = a, 2 · 3p−1b = 0, and 2 · 3p−1c = 0. Thus

(2·3p−1a)2−2(2·3p−1a) = 0. Also, as ad−bc = 3p−1, we have a(1−2·3p−1−a)−bc =

3p−1 and hence 2 ·3p−1a = −3p−1 as a2 +bc = a. Now (2 ·3p−1a)2−2(2 ·3p−1a) = 0

gives (−3p−1)2 − 2(−3p−1) = 0. Thus 3p ≡ 0 (mod 3p), which is not possible as

3p ≡ 3 (mod 3p).

Note that the matrices

(
3p−1 0

0 3p−1

)
and

(
3p−1 0

0 1

)
in M2(Z3p[x]) have

determinant 3p−1 and trace 2 · 3p−1 and 3p−1 + 1, respectively.

Case 3: Determinant of A is p2. In this case, ad − bc = p2, a2 + bc = a, and

bc+ d2 = d give (a+ d)2 = a+ d+ 2p2(mod 3p).

If p ≡ 1(mod 3), then p2 ≡ p(mod 3p). Therefore, (a+d)2 = a+d+2p(mod 3p).

Since a+ d ∈ Z3p, a+ d is either 2p or p+ 1.

Note that the matrices

(
p 0

0 p

)
,

(
p 0

0 1

)
in M2(Z3p[x]) have determinant

p2 ≡ p(mod 3p) and trace 2p ≡ p2(mod 3p), p+ 1 ≡ p2 + 1(mod 3p), respectively.

If p ≡ 2(mod 3), then p2 ≡ 2p(mod 3p) and hence 2p2 ≡ p(mod 3p). Therefore,

(a+ d)2 = a+ d+ p(mod 3p). Since a+ d ∈ Z3p, a+ d is either p or 2p+ 1.
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Note that the matrices

(
2p 0

0 2p

)
,

(
2p 0

0 1

)
have determinant p2 ≡ 2p(mod 3p)

and trace p ≡ 2p2(mod 3p), 2p+ 1 ≡ p2 + 1(mod 3p), respectively. �

Theorem 3.7. For any odd prime p greater than 3, any non-trivial idempotent in

M2(Z3p[x]) is of one of the following forms:

(1)

(
3p−1 0

0 3p−1

)
,

(
p2 0

0 p2

)

(2)

(
a(x) b(x)

c(x) 1− a(x)

)
, where a(x){1− a(x)} − b(x)c(x) = 0

(3)

(
p2a(x) p2b(x)

p2c(x) p2(1− a(x))

)
, where a(x){1− a(x)} − b(x)c(x) = 3f(x)

(4)

(
3p−1a(x) 3p−1b(x)

3p−1c(x) 3p−1(1− a(x))

)
, where a(x){1− a(x)} − b(x)c(x) = pg(x)

(5)

(
1 + pa(x) pb(x)

pc(x) 3p−1 − pa(x)

)
, where a(x){1 + pa(x)}+ pb(x)c(x) = 3h(x)

(6)

(
p2 + 3a(x) 3b(x)

3c(x) 1− 3a(x)

)
, where a(x){1− 3a(x)} − 3b(x)c(x) = pφ(x),

where a(x), b(x), c(x), f(x), g(x), h(x), and φ(x) are polynomials in Z3p[x], not

necessarily non-zero.

Proof. It is easy to check that the matrices in (1)-(6) with the given conditions are

idempotents in M2(Z3p[x]), so we are now left to prove that every idempotent in

M2(Z3p[x]) has one of the stated forms. Let A =

(
a(x) b(x)

c(x) d(x)

)
be an idempotent

in M2(Z3p[x]).

Then, by Proposition 3.6, one of the following holds:

(1) determinant of A is 0 and trace of A is either 1 or p2 or 3p−1,

(2) determinant of A is 3p−1 and trace of A is either 3p−1 + 1 or 2 · 3p−1,

(3) determinant of A is p2 and trace of A is either 2p2 or p2 + 1.

We first consider the case when determinant of A is 0. In this case, trace of A is

either 1 or p2 or 3p−1, that is, a+ d is either 1 or p2 or 3p−1.

If a + d = 1, then d = 1 − a and hence ad − bc = 0 gives a2 + bc = a. Also,

(a+ d)b = b, (a+ d)c = c, and bc+ d2 = 1− a. Thus, A2 =

(
a b

c 1− a

)
. Hence,

in this case, A =

(
a(x) b(x)

c(x) 1− a(x)

)
, where a(x), b(x), c(x) ∈ Z3p[x] such that

a(x){1− a(x)} = b(x)c(x).
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If a+d = p2, then d = p2−a and hence ad−bc = 0 gives a2+bc = p2a. Thus, A2 =(
p2a p2b

p2c p2(1− a)

)
. Since A is an idempotent, we get (p2−1)a = 0, (p2−1)b = 0,

and (p2 − 1)c = 0, that is, a, b, c belong to the annihilator of p2 − 1 in Z3p[x].

Therefore, as p2 is an idempotent in Z3p, a = p2a′(x), b = p2b′(x), and c = p2c′(x),

where a′(x), b′(x), and c′(x) are polynomials in Z3p[x]. Now, since ad − bc = 0,

we get p2a′(x){1− a′(x)} = p2b′(x)c′(x), which is equivalent to a′(x){1− a′(x)} −

b′(x)c′(x) = 3f(x) for some f(x) ∈ Z3p[x]. Hence A =

(
p2a(x) p2b(x)

p2c(x) p2(1− a(x))

)
,

where a(x), b(x), c(x) ∈ Z3p[x] such that a(x){1−a(x)}−b(x)c(x) = 3f(x) for some

f(x) ∈ Z3p[x].

If a + d = 3p−1, then d = 3p−1 − a and hence ad − bc = 0 gives a2 + bc =

3p−1a. Thus A2 =

(
3p−1a 3p−1b

3p−1c 3p−1(1− a)

)
. Since A is an idempotent, we get

(3p−1 − 1)a = 0, (3p−1 − 1)b = 0 and (3p−1 − 1)c = 0 . Hence, as in the previous

case, A =

(
3p−1a(x) 3p−1b(x)

3p−1c(x) 3p−1(1− a(x))

)
, where a(x), b(x), c(x) ∈ Z3p[x] such

that a(x){1− a(x)} − b(x)c(x) = pg(x) for some g(x) ∈ Z3p[x].

Next, we consider the case, where determinant of A is 3p−1. In this case, trace

of A is 2 · 3p−1 or 1 + 3p−1 modulo 3p, that is, a+ d is 2 · 3p−1 or 1 + 3p−1 modulo

3p.

If a + d = 2 · 3p−1, then d = 2 · 3p−1 − a and hence ad − bc = 3p−1 gives

a2 + bc = 2 · 3p−1a − 3p−1. Thus A2 =

(
2 · 3p−1a− 3p−1 2 · 3p−1b

2 · 3p−1c 3p − 2 · 3p−1a

)
.

Since A is an idempotent, we get (2 · 3p−1 − 1)b = 0 and (2 · 3p−1 − 1)c = 0.

Since 3p−1 is an idempotent, 2 · 3p−1 − 1 is a unit. Thus b = c = 0. Therefore,

A =

(
a 0

0 2 · 3p−1 − a

)
. Since A is an idempotent, both a and 2 · 3p−1 − a must

be idempotents in Z3p[x] and hence in Z3p. Thus a = 3p−1 as 2 · 3p−1 − a is not an

idempotent for a = 0, 1 and p2. Hence A =

(
3p−1 0

0 3p−1

)
.

If a+d = 1+3p−1, then d = 3p−1+1−a and hence ad−bc = 3p−1 gives a2+bc =

3p−1a+ a− 3p−1. Thus, A2 =

(
3p−1a+ a− 3p−1 (3p−1 + 1)b

(3p−1 + 1)c 1 + 2 · 3p−1 − (3p−1 + 1)a

)
.

Since A is an idempotent, we get 3p−1a = 3p−1, 3p−1b = 0, and 3p−1c = 0. Thus,

A =

(
1 + pa(x) pb(x)

pc(x) 3p−1 − pa(x)

)
, where a(x), b(x), c(x) ∈ Z3p[x] such that

a(x){1 + a(x)}+ pb(x)c(x) = 3h(x) for some h(x) ∈ Z3p[x].
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Finally, we consider the case where determinant of A is p2. In this case, trace of

A is either 2p2 or p2 + 1 modulo 3p, that is, a+ d is either 2p2 or p2 + 1 modulo 3p.

If p ≡ 1(mod 3) then, as p2 ≡ p(mod 3p), a+ d is either 2p or p+ 1.

If a + d = 2p, then d = 2p − a and hence ad − bc = p2 ≡ p(mod 3p) gives

a2 + bc ≡ (2a − 1)p(mod 3p). Thus A2 =

(
(2a− 1)p 2pb

2pc −2pa

)
. Since A is an

idempotent, we get (2p − 1)b = 0 and (2p − 1)c = 0. Now, as p is an idempotent,

2p − 1 is a unit. Thus b = c = 0. Therefore, A =

(
a 0

0 2p− a

)
. Since A is

an idempotent, both a and 2p − a must be idempotents in Z3p[x] and hence in

Z3p. Thus, a = p, as 2p − a is not an idempotent for a = 0, 1, and 3p−1. Hence

A =

(
p 0

0 p

)
.

If a + d = p + 1, then d = p + 1 − a and hence ad − bc = p2 ≡ p(mod 3p) gives

a2 + bc = pa + a − p(mod 3p). Thus, A2 =

(
pa+ a− p (p+ 1)b

(p+ 1)c 1 + 2p− (p+ 1)a

)
.

Since A is an idempotent, we get pa = p, pb = 0, and pc = 0. Thus, A =(
p+ 3a(x) 3b(x)

3c(x) 1− 3a(x)

)
, where a(x), b(x), c(x) ∈ Z3p[x] such that a(x){1 −

3a(x)} − 3b(x)c(x) = pφ(x) for some φ(x) ∈ Z3p[x].

If p ≡ 2(mod 3) then, as p2 ≡ 2p(mod 3p), a+ d is either p or 2p+ 1.

If a + d = p, then d = p − a and hence ad − bc = p2 ≡ 2p(mod 3p) gives

a2 +bc ≡ pa+p(mod 3p). Thus A2 =

(
pa+ p pb

pc 2pa

)
. Since A is an idempotent,

we get (p−1)b = 0 and (p−1)c = 0. Now, as 2p is an idempotent, p−1 = 2(2p)−1 is

a unit. Thus b = c = 0. Therefore, A =

(
a 0

0 p− a

)
. Since A is an idempotent,

both a and p − a must be idempotents in Z3p[x] and hence in Z3p. Thus, a =

p2 ≡ 2p(mod 3p), as p − a is not an idempotent for a = 0, 1, and 3p−1. Hence

A =

(
2p 0

0 2p

)
.

If a+d = 2p+ 1, then d = 2p+ 1−a and hence ad− bc = p2 ≡ 2p(mod 3p) gives

a2 +bc = 2pa+a−2p(mod 3p). Thus, A2 =

(
2pa+ a− 2p (2p+ 1)b

(2p+ 1)c 1 + p− (2p+ 1)a

)
.

Since A is an idempotent, we get 2pa = 2p, 2pb = 0 and 2pc = 0. Thus, A =(
2p+ 3a(x) 3b(x)

3c(x) 1− 3a(x)

)
, where a(x), b(x), c(x) ∈ Z3p[x] such that a(x){1 −

3a(x)} − 3b(x)c(x) = pζ(x) for some ζ(x) ∈ Z3p[x].
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Hence, in this case, any idempotent is either

(
p2 0

0 p2

)
or have the form(

p2 + 3a(x) 3b(x)

3c(x) 1− 3a(x)

)
, where a(x){1− 3a(x)} − 3b(x)c(x) = pφ(x). �

Note that all computations in Proposition 3.6 and Theorem 3.7 are modulo 3p,

even if it is not explicitly stated. We also observe that every idempotent of form 3

in Theorem 3.7 is orthogonal to every idempotent of form 4.

4. Units in matrix rings over polynomial rings

In this section, we consider the unit groups of M2(Z2[x]) and M2(Z3[x]). We first

show that for any ring R, the unit group of the n × n matrix ring, Mn(R[x]) over

R[x] is not solvable. Since every non-trivial polynomial ring R[x] can be mapped

onto a large finite field and except for a few exceptions of finite fields F, the group

SL(n,F) is a nonabelian simple group for n ≥ 2, one may deduce that GL(n,R[x])

is not solvable. We, however, give a direct proof. For the sake of simplicity we give

proof in the case n = 2. The argument can be extended to any value of n ≥ 2

by replacing each element A in the set L in Proposition 4.1 with the block matrix(
A 0

0 0

)
and each polynomial p(x) in the proof of the proposition with the block

matrix

(
p(x) 0

0 I

)
where each 0 is a zero matrix of the appropriate size and I is

the identity matrix of the appropriate size. We begin with the following proposition.

Proposition 4.1. Let R be any ring and let

L =

{(
1 0

0 0

)
,

(
1 1

1 1

)
,

(
0 1

0 0

)
,

(
1 0

1 0

)
,

(
1 1

0 0

)
,

(
0 1

0 1

)}
.

Then, for each A ∈ L there exist units p = p(x), q = q(x) ∈ M2(R[x]) such that

either the leading coefficient of p or that of p−1 and the leading coefficient of q or

that of q−1 is in the set L; the leading coefficient of the commutator (p, q) of p and

q is A and the degree of (p, q) is equal to the sum of degrees of p, q, p−1, q−1.

Proof. Recall that if the product of leading coefficients of two polynomials f and g

in a polynomial ring is non-zero then the degree of the product of the polynomials

is the sum of the degrees of f , g and the leading coefficient of the product fg is the

product of the leading coefficients of f and g in that order. Thus, for each A ∈ L,

it is enough to give polynomials p, q such that the leading coefficient of p or that

of p−1 is in L, the leading coefficient of q or that of q−1 is in L and the product of
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leading coefficient of p−1, q−1, p, q (in that order) is A. For the sake of simplicity

we give polynomials of degree 1. Let

a = a(x) =

(
x 1

1 0

)
, b = b(x) =

(
x −1 + x

1 + x x

)
,

c = c(x) =

(
1 x

0 1

)
, d = d(x) =

(
x 1

−1 + x 1

)
,

e = e(x) =

(
1 −1

−x 1 + x

)
, f = f(x) =

(
x 1 + x

−1 −1

)
,

g = g(x) =

(
0 1

1 x

)
, h = h(x) =

(
1 x

1 1 + x

)
.

Observe that each of these matrices is a unit in M2(R[x]) such that either its leading

coefficient or that of its inverse is in the set L. Also, one can see that

(g, h) =

(
x3 −1− x2 + x3 + x4

1− x2 1 + 2x− x2 − x3

)
,

(c−1, d) =

(
1 + x− 2x3 + x4 x3 − x2

x3 − 2x2 + x 1− x+ x2

)
,

(a−1, b) =

(
−1− 2x− x3 + x4 −3x+ 2x2 − 2x3 + x4

x+ x3 −1 + 2x− x2 + x3

)
,

(e, f) =

(
1 + x+ 2x2 + 2x3 + x4 1 + x+ 3x2 + 3x3 + x4

1 + x3 + x4 2− x+ 2x3 + x4

)
,

(b−1, a) =

(
−1 + 2x− 2x2 − x3 + x4 −3x+ x3

x− 2x2 + x4 −1− 2x+ x2 + x3

)
,

(b−1, a−1) =

(
−1 + 2x+ x2 − x3 −x− 2x2 + x4

3x− x3 −1− 2x− 2x2 + x3 + x4

)
.

Note that the degree of each of these commutators is 4, the sum of the degrees of

the polynomials involved and for each A ∈ L, there is a commutator with leading

coefficient A. �

With the notations of Proposition 4.1, write L−1 ={(
0 0

0 1

)
,

(
0 0

−1 1

)
,

(
1 −1

0 0

)
,

(
1 −1

−1 1

)
,

(
0 −1

0 0

)
,

(
0 −1

0 1

)}
.

Observe that u is a unit in M2(R[x]) with leading coefficient in the set L if and only

if u−1 is a unit in M2(R[x]) with leading coefficient in L−1. Also note that if (a, b) is

a commutator, then (a, b)−1 is also a commutator. Indeed, (a, b)−1 = (b, a). Thus,

by Proposition 4.1, for each A ∈ L ∪ L−1, the first derived subgroup of M2(R[x]),

has unit of degree 4 with leading coefficient A.
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Corollary 4.2. For any ring R and for any positive integer n, the nth derived

subgroup of the unit group of M2(R[x]) has a unit with leading coefficient A for

each A in the set L defined in Proposition 4.1.

Proof. By Proposition 4.1, the first derived subgroup of M2(R[x]) has units with

degree 4 and the leading coefficient A for each A ∈ L∪L−1. Thus, the first derived

subgroup of M2(R[x]) has units, each of degree 4, having leading coefficients same as

those of a, b, c, d, e, f, g, h in the proof of Proposition 4.1. Thus, as in Proposition

4.1, we see that the second derived subgroup of M2(R[x]) has units with degree 16

and leading coefficient A for each A ∈ L∪L−1. Repeated application of Proposition

4.1, now, gives the result. �

It follows from Corollary 4.2 that for every positive integer n, δ(n)(U(M2(R[x]))) 6=
I. Hence we have the following corollary.

Corollary 4.3. For any ring R, the unit group of M2(R[x]) is not solvable.

We now obtain conditions such that an element in M2(Z2[x]) is a unit and use

these conditions to give the form of units in M2(Z2[x]). Note that units in Z2[x]

are precisely the units in Z2.

Theorem 4.4. Any unit in M2(Z2[x]) is of the form

(
1 + xip(x) xjf(x)

xkg(x) 1 + xlq(x)

)
where p(x), q(x), f(x), g(x) ∈ Z2[x], not necessarily non-zero, such that p(x) +

xl−iq(x) + xlp(x)q(x) is the product of f(x), g(x) and i, j, k, l are non-negative

integers such that j + k = i and 1 ≤ i ≤ l or a matrix obtained from this form

by a mere interchange of rows or columns or by an interchange of rows (columns)

followed by an interchange of columns (rows).

Proof. First observe that every matrix of the stated form is a unit under the stated

condition. Now let a = a(x), b = b(x), c = c(x), and d = d(x) be polynomials in

Z2[x] such that A =

(
a b

c d

)
is a unit in M2(Z2[x]). Then the determinant of

A is invertible in Z2[x] and hence in Z2. Thus, the determinant of A is 1, that

is, ad − bc = 1. Let a =
m1∑
i=0

aix
i, b =

m2∑
j=0

bjx
j , c =

l1∑
k=0

ckx
k and d =

l2∑
l=0

dlx
l.

Since ad − bc = 1, we have a0d0 − b0c0 = 1. Thus, either {a0d0 = 1, b0c0 = 0} or

{a0d0 = 0, b0c0 = 1}. We will only consider the case when a0d0 = 1, b0c0 = 0, as

units in the other case can be obtained by a mere interchange of rows/columns of

units in the case a0d0 = 1, b0c0 = 0.
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Since a0d0 = 1, we have a0 = d0 = 1. Thus, a = 1 + xip(x) for some positive

integer i and some polynomial p(x) ∈ Z2[x], not necessarily non-zero, and d = 1 +

xlq(x) for some positive integer l and some polynomial q(x) ∈ Z2[x], not necessarily

non-zero. Since bc = ad− 1, we have bc = xip(x) + xlq(x) + xi+lp(x)q(x). Without

any loss of generality, we can assume that i ≤ l, for if i > l then we can interchange

the roles of a and d. Also then b = xjf(x), c = xkg(x) where j + k = i and some

polynomials f(x), g(x) ∈ Z2[x] such that p(x) + xl−iq(x) + xlp(x)q(x) = f(x)g(x).

Hence A =

(
1 + xip(x) xjf(x)

xkg(x) 1 + xlq(x)

)
where p(x), q(x), f(x), g(x) ∈ Z2[x] such

that p(x) + xl−iq(x) + xlp(x)q(x) = f(x)g(x) and j, k are non-negative integers

such that j + k = i.

Hence any unit in M2(Z2[x]) is of the form

(
1 + xip(x) xjf(x)

xkg(x) 1 + xlq(x)

)
where

p(x), q(x), f(x), g(x) ∈ Z2[x], not necessarily non-zero, such that p(x) + xl−iq(x) +

xlp(x)q(x) is the product of f(x), g(x), 1 ≤ i ≤ l, and j, k are non-negative integers

such that j + k = i or a matrix obtained from this form by a mere interchange of

rows or columns or by an interchange of rows (columns) followed by interchange of

columns (rows). �

We remark that the unit groups of M2(Z2[x]) and M2(Z2) do not behave alike

and have very different properties. Note that the unit group U(M2(Z2)), being

isomorphic to S3, is metabelian. The unit group U(M2(Z2[x])) of M2(Z2[x]) is,

however, not even solvable (Corollary 4.3).

We now obtain conditions such that an element in M2(Z3[x]) is a unit and use

these conditions to give the form of units in M2(Z3[x]). Once again we note that

the units in Z3[x] are precisely the units in Z3.

Theorem 4.5. A unit in M2(Z3[x]) is of one of the following forms:

(1)

(
1 + xip(x) xjf(x)

xkg(x) 1 + xlq(x)

)
where p(x), q(x), f(x), g(x) ∈ Z3[x], not

necessarily non-zero, such that p(x) + xl−iq(x) + xlp(x)q(x) is the product

of f(x), g(x) and i, j, k, l are non-negative integers such that j + k = i,

1 ≤ i ≤ l,

(2)

(
1 + xip(x) xjf(x)

xkg(x) −1 + xlq(x)

)
where p(x), q(x), f(x), g(x) ∈ Z3[x], not

necessarily non-zero, such that −p(x)+xl−iq(x)+xlp(x)q(x) is the product
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of f(x), g(x) and i, j, k, l are non-negative integers such that j + k = i,

1 ≤ i ≤ l,

(3)

(
1 + xip(x) 1 + xjm(x)

1 + xkn(x) −1 + xlq(x)

)
where p(x), q(x), m(x), n(x) ∈ Z3[x], not

necessarily non-zero, such that 1 − xip(x) + xlq(x) + xi+lp(x)q(x) is the

product of 1 + xjm(x), 1 + xkn(x) and i, j, k, l are positive integers,

or a matrix obtained from these forms by a mere interchange of rows or columns or

by interchange of rows (columns) followed by interchange of columns (rows) or by

taking their negatives or by interchanging rows (columns) followed by interchange

of columns (rows) along with taking negatives.

Proof. Note that every matrix in any of the three stated forms is a unit under

the stated condition. Now let a = a(x), b = b(x), c = c(x), and d = d(x) be

polynomials in Z3[x] such that A =

(
a b

c d

)
is a unit in M2(Z3[x]). Then the

determinant of A is invertible in Z3[x] and hence in Z3. Thus, the determinant of A

is either 1 or −1. It is enough to consider only the case when determinant of A is 1,

as units in the other case can be obtained by a mere interchange of rows or columns

of the units in the case when determinant of A is 1. Let a =
m1∑
i=0

aix
i, b =

m2∑
j=0

bjx
j ,

c =
l1∑
k=0

ckx
k and d =

l2∑
l=0

dlx
l. Since ad − bc = 1, we have a0d0 − b0c0 = 1. Thus

either {a0d0 = 1, b0c0 = 0} or {a0d0 = 0, b0c0 = −1} or {a0d0 = −1, b0c0 = 1}.
Case 1: a0d0 = 1 and b0c0 = 0. In this case, either {a0 = d0 = 1} or {a0 = d0 =

−1}.
If a0 = d0 = 1, then a = 1 + xip(x) for some positive integer i and some

polynomial p(x) ∈ Z3[x], not necessarily non-zero, and d = 1 + xlq(x) for some

positive integer l and some polynomial q(x) ∈ Z3[x], not necessarily non-zero.

Since bc = ad − 1, we have bc = xip(x) + xlq(x) + xi+lp(x)q(x). Without any

loss of generality, we can assume that i ≤ l, for if i > l then we can interchange

the roles of a and d. Also then b = xjf(x), c = xkg(x) where j + k = i and

p(x) + xl−iq(x) + xlp(x)q(x) = f(x)g(x). Hence A =

(
1 + xip(x) xjf(x)

xkg(x) 1 + xlq(x)

)
where p(x), q(x), f(x), g(x) ∈ Z3[x], not necessarily non-zero, such that p(x) +

xl−iq(x) + xlp(x)q(x) is the product of f(x), g(x), j + k = i, 1 ≤ i ≤ l.
If a0 = d0 = −1, then a = −1 + xip(x) for some positive integer i and some

polynomial p(x) ∈ Z3[x], not necessarily non-zero, and d = −1 + xlq(x) for some

positive integer l and some polynomial q(x) ∈ Z3[x], not necessarily non-zero. Since

bc = ad − 1, we have bc = −xip(x) − xlq(x) + xi+lp(x)q(x). Without any loss of
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generality, we can assume that i ≤ l, for if i > l then we can interchange the

roles of a and d. Also then b = xjf(x), c = xkg(x) where j + k = i −p(x) −

xl−iq(x) + xlp(x)q(x) = f(x)g(x). Hence A =

(
−1 + xip(x) xjf(x)

xkg(x) −1 + xlq(x)

)
where p(x), q(x), f(x), g(x) ∈ Z3[x], not necessarily non-zero, such that −p(x)−
xl−iq(x) + xlp(x)q(x) is the product of f(x), g(x), j + k = i, 1 ≤ i ≤ l. Observe

that this matrix is of the same form as the negative of the matrix in the case

a0 = d0 = 1.

Case 2: a0d0 = 0 and b0c0 = −1. In this case, either {b0 = 1, c0 = −1} or

{b0 = −1, c0 = 1}. If b0 = 1 and c0 = −1, then b = 1 + xjp(x) for some

positive integer j and some polynomial p(x) ∈ Z3[x], not necessarily non-zero,

and c = −1 + xkq(x) for some positive integer k and some polynomial q(x) ∈
Z3[x], not necessarily non-zero. Since ad = 1 + bc, we have ad = −xjp(x) +

xkq(x) + xj+kp(x)q(x). Without any loss of generality, we can assume that j ≤ k,

for if j > k then we can interchange the roles of b and c. Hence, as earlier,

A =

(
xif(x) 1 + xjp(x)

−1 + xkq(x) xlg(x)

)
where p(x), q(x), f(x), g(x) ∈ Z3[x], not

necessarily non-zero, such that −p(x) + xk−jq(x) + xkp(x)q(x) is the product of

f(x), g(x), i+ l = j, 1 ≤ j ≤ k. Note that units of this form can be obtained from

the form (2) by the interchange of columns.

If b0 = −1 and c0 = 1, then, as in Case 1, units in this subcase have the form

that can be obtained from the forms in the subcase b0 = 1, c0 = −1 by simply

taking the negative of the matrix.

Case 3: a0d0 = −1 and b0c0 = 1. In this case, either {a0 = 1, d0 = −1, b0 =

1, c0 = 1} or {a0 = 1, d0 = −1, b0 = −1, c0 = −1} or {a0 = −1, d0 =

1, b0 = 1, c0 = 1} or {a0 = −1, d0 = 1, b0 = −1, c0 = −1}. If {a0 =

1, d0 = −1, b0 = 1, c0 = 1}, then a = 1 + xip(x) for some positive integer i

and some polynomial p(x) ∈ Z3[x], not necessarily non-zero, d = −1 + xlq(x) for

some positive integer l and some polynomial q(x) ∈ Z3[x], not necessarily non-zero,

b = 1 + xjm(x) for some positive integer j and some polynomial m(x) ∈ Z3[x],

not necessarily non-zero, and c = 1 + xkn(x) for some positive integer k and

some polynomial n(x) ∈ Z3[x], not necessarily non-zero. Since bc = ad − 1, we

have 1 − xip(x) + xlq(x) + xi+lp(x)q(x) = (1 + xjm(x))(1 + xkn(x)). Hence

A =

(
1 + xip(x) 1 + xjm(x)

1 + xkn(x) −1 + xlq(x)

)
where p(x), q(x), m(x), n(x) ∈ Z3[x], not

necessarily non-zero, such that 1− xip(x) + xlq(x) + xi+lp(x)q(x) is the product of

1 + xjm(x), 1 + xkn(x) and i, j, k, l are positive integers.
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It can be seen that the form of units in the remaining subcases can be obtained

from the units in the subcase {a0 = 1, d0 = −1, b0 = 1, c0 = 1} by inter-

changing rows (columns) followed by columns (rows) or by taking their negatives

or by interchanging rows (columns) followed by columns (rows) along with taking

negatives. �

In this case also we remark that the unit group of M2(Z3[x]) and that of M2(Z3)

do not behave alike and have different properties. In fact, if V = U(M2(Z3)) =

GL(2,Z3), then V is solvable of length 4 as V ∼= GL(2,Z3), δ1(V ) ∼= SL(2,Z3),

δ3(V ) ∼= C2, therefore δ4(V ) = (1). However, the unit group U(M2(Z3[x])) is not

solvable by Corollary 4.3.
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