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Abstract. Block decomposition for rings has been introduced and shown to

be unique in the literature (see [T. Y. Lam, Graduate Texts in Mathematics,

131, Springer-Verlag, New York, 1991]). Applying annihilator submodules, we

extend this definition to modules and show that every module M has a unique

block decomposition M =
⊕n

i=1 Mi where each Mi is an annihilator submod-

ule. We also show that the block decomposition for any ring R and the block

decomposition for the module RR, are identical. Block decomposition provides

us with a decomposition for End(M) because End(M) ∼=
∏n

i=1 End(Mi).
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1. Introduction

Any ring with unit satisfying some finiteness conditions on ideals, is isomorphic

to the direct product of a finite family of indecomposable rings and this repre-

sentation is unique [4, 2.22], in the following sense. Let each Ri and each Sj be

an indecomposable ring. If there is an isomorphism ∆ :
∏n

i=1Ri −→
∏k

j=1 Sj ,

then k = n, and, after a re indexing, there is isomorphisms ∆i : Ri −→ Si for

1 ≤ i ≤ n such that ∆ =
∏n

i=1 ∆i. But the decomposition structure for modules

is not unique. Even if decomposition structure is unique for certain modules [4,

19.22, Krull-Schmidt Theorem], it is not unique in the above sense. The reason is

that viewing a ring as a module on itself, the class of submodules is not similar to

the class of ideals.

Applying annihilator submodules and adjusted techniques, we will be able to

introduce a ring type decomposition for modules. Also, with the same techniques,

we show that any left or right faithful ring, not necessary having unit and satisfying

even weaker finiteness conditions in [4, 2.22], is decomposable.

In Section 1, we outline a general theory in additive group format so that a

large part of the proofs of some theorems would become special case of a theory

that is useful in this context and is of intrinsic interest by itself. In Section 2,
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we introduce annihilator submodules, then standard facts are collected, some basic

properties are developed and we apply Proposition 2.16 to derive the existence of

the block decomposition for rings and modules. In Section 3, we show that the

block decomposition for a ring R and block decomposition for RR are identical.

In this paper, for any set S of subgroups of an additive group, we set Σ(S) =∑
I∈S I and S is said to be independent if

∑
I∈S I is a direct sum. Also, we use the

notation
⊕

(S) instead of Σ(S) to indicate that S is independent.

For any class C of subgroups, a C-subgroup means a subgroup from the class

C, the class of minimal C-subgroups is denoted by Cmn and the class of maximal

C-subgroups is denoted by Cmx.

For classes C and F of subgroups, the class of subgroups which are a C-subgroup

and an F-subgroup is denoted by C ∩ F .

For an additive group M , the set of C-subgroups of M is denoted by 〈C : M〉,
M is called C-semisimple if M = Σ〈Cmn:M〉, M is called C-sum if the sum of any

two C-subgroups is a C-subgroup, M is called generalized C-sum if the sum of any

set of C-subgroups is a C-subgroup, M is called C-d.sum if the direct sum of any

two C-subgroups is a C-subgroup, M is called generalized C-d.sum if the sum of

any independent set of C-subgroups is a C-subgroup, M is called C-intersection if

the intersection of any two C-subgroups is a C-subgroup, M is called generalized

C-intersection if the intersection of any set of C-subgroups is a C-subgroup, M is

called C-Artinian if M satisfies the descending chain condition on C-subgroups, in

other words, if its C-subgroups satisfy DCC, M is called C-Noetherian if M satisfies

the ascending chain condition on C-subgroups, in other words, if its C-subgroups

satisfy ACC, M is called C-mini if every nonzero C-subgroup contains a minimal

C-subgroup of M , M is called C-maxi if every proper C-subgroup is contained in

a maximal C-subgroup of M , M is called C-ind.finite if every independent set of

C-subgroups is finite.

For an additive group M and K ⊆ M , the set of C-subgroups of M containing

K is denoted by 〈C ⊇K〉, the set of C-subgroups of M contained in K is denoted

by 〈C ⊆K〉, and the set of C-subgroups of M not contained in K is denoted by

〈C 6⊆K〉.
For any additive groups U , V and W , any X ⊆ U , Z ⊆ W and multiplication

U × V −→ W , we set (Z :X) = {v ∈ V | Xv ⊆ Z}, annV (X) = {v ∈ V | Xv = 0}
and we say that X is V -faithful if annV (X) = 0. For the case V × V −→ W , we

set (Z :X)r = {v ∈ V | Xv ⊆ Z}, annr(X) = {v ∈ V | Xv = 0} and we say X is

right faithful if annr(X) = 0.
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For any family S of subsets of a set, we set Int(S) =
⋂

I∈S I and Un(S) =
⋃

I∈S I.

In the context, C and G designate arbitrary classes of subgroups.

2. Preliminaries

Definition 2.1. Let M be an additive group and K be a subgroup.

(1) We say that K is C-summand if there is a C-subgroup J such that M =

K ⊕ J .

(2) We say that K is C-indecomposable if for any C-subgroups I and J , K =

I ⊕ J implies I = 0 or J = 0.

(3) We say that K is C-uniform if K 6= 0 and for any C-subgroups I, J ⊆ K,

I ∩ J = 0 implies I = 0 or J = 0.

Also, the class of C-summand subgroups is denoted by C⊕. Recall that according to

the above notifications, C ∩ C⊕ is the class of C-summand C-subgroups, (C ∩ C⊕)mn

is the class of minimal C-summand C-subgroups, and Σ〈(C ∩ C⊕)mn:M〉 is the sum

of the minimal C-summand C-subgroups of M .

Definition 2.2. Let M be an additive group. A map ? : 〈G :M〉 −→ 〈G :M〉 is

called G-organizer if

(1) For any G-subgroup K, K ∩K? = 0 and K?? = K.

(2) For any G-subgroups J and K, K ∩ J = 0 implies J ⊆ K?.

Also, M is called G-organized if it has a G-organizer map.

If ? is a G-organizer map, then for any G-subgroups J and K, K ⊆ J implies

J? ⊆ K? because we have K ∩ J? = 0.

Lemma 2.3. Let M be an additive group and K be a nonzero subgroup. If every in-

dependent set of C-subgroups contained in K is finite, then K contains a C-uniform

C-subgroup.

Proof. Temporarily suppose that it is not so. There exist nonzero C-subgroups

K1, J1 ⊆ K with K1 ∩ J1 = 0, then there exist nonzero C-subgroups K2, J2 ⊆ K1

with K2 ∩ J2 = 0, and . . . so on. Now {Ji | i ≥ 1} is an infinite independent set of

nonzero C-subgroups contained in K which is a contradiction. �

Lemma 2.4. Let M be a G-intersection G-semisimple additive group. If ? is a map

such that

(1) For any G-subgroup K, K ∩K? = 0.

(2) For any G-subgroups J and K, K ∩ J = 0 implies J ⊆ K?.
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Then, for every G-subgroup K we have Σ〈Gmn 6⊆ K〉 = K?, Σ〈Gmn ⊆ K〉 = K,

M = K ⊕K? and K?? = K. Also ? is a G-organizer map.

Proof. For each J ∈ 〈Gmn : M〉, if J 6⊆ K, then J ∩ K = 0, implying J ⊆ K?.

Thus, Σ〈Gmn 6⊆ K〉 ⊆ K?. On the other hand, Σ〈Gmn ⊆ K〉 ⊆ K. Therefore,

Σ〈Gmn 6⊆K〉 = K?, Σ〈Gmn⊆K〉 = K and M = K ⊕K?. It is clear that K ⊆ K??.

On the other hand, K? ∩K?? = 0. Thus, K?? = K. �

Lemma 2.5. Let M be an additive group and ? be a G-organizer map.

(1) For any G-subgroup K, K is G-summand if and only if M = K ⊕K?.

(2) If M ∈ 〈G:M〉, then K ∈ 〈Gmn:M〉 if and only if K? ∈ 〈Gmx:M〉.

Proof. (1⇒) There exists a G-subgroup J with M = K⊕J , then J ⊆ K?, implying

J = K?.

(2) Straightforward. �

Lemma 2.6. Let M be a G-intersection (generalized G-intersection) additive group

and ? be a G-organizer map. For any finite set (any set) A of G-subgroups,

(1) If Σ(A) is a G-subgroup, then (Σ(A))? = Int{ I? | I ∈ A}.
(2) A = 〈Gmn⊆(Int{I? | I ∈ A})?〉.

Proof. (1) Set L = Int{I? | I ∈ A}. For any I ∈ A, have I ⊆ Σ(A), so (Σ(A))? ⊆
I?. Thus (Σ(A))? ⊆ L. On the other hand, for any J ∈ A, J ∩ L = 0, implying

J ⊆ L?. Thus, Σ(A) ⊆ L?, implying L ⊆ (Σ(A))?.

(2) For each J ∈ A, L ∩ J = 0, implying J ⊆ L?. Thus, A ⊆ 〈Gmn ⊆ L?〉. Also

for each I ∈ A and J ∈ 〈Gmn :M〉 with J 6∈ A, I ∩ J = 0, implying J ⊆ I?. So,

for each J ∈ 〈Gmn : M〉 with J 6∈ A, J ⊆ L, implying J 6∈ 〈Gmn ⊆ L?〉. Thus,

A = 〈Gmn⊆L?〉. �

Lemma 2.7. Let M be a G-intersection additive group and ? be a G-organizer map.

If I is a G-summand G-subgroup, then for any G-subgroup J we have

(1) (I ∩ J)? = I? + J?.

(2) I + J is a G-subgroup.

(3) (I + J)? = I? ∩ J?.

(4) J = (I ∩ J)⊕ (I? ∩ J).

Proof. (1)M = I⊕I? by Lemma 2.5. Since I? ⊆ (I∩J)?, (I∩J)? = I?⊕I∩(I∩J)?.

On the other hand, (I ∩ J) ∩ (I ∩ J)? = 0, implying I ∩ (I ∩ J)? ⊆ J?. Thus

(I ∩ J)? ⊆ I? + J?. Finally we have I?, J? ⊆ (I ∩ J)?, implying I? + J? ⊆ (I ∩ J)?.

(2) and (3) I? is also a G-summand by Lemma 2.5. So, (I?∩J?)? = I??+J?? = I+J
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by (1). Thus, I + J is a G-subgroup, also (I + J)? = (I? ∩ J?)?? = I? ∩ J?.

(4) As we showed in proof of (1), I ∩ (I ∩ J)? ⊆ J?, so

J = J?? ⊆ (I ∩ (I ∩ J)?)? = I? + (I ∩ J)?? = I? + I ∩ J

implying J = (I? + I ∩ J) ∩ J = I? ∩ J + I ∩ J . �

Lemma 2.8. Let M be a G-intersection and G-organized additive group.

(1) 〈Gmn:M〉 is an independent set.

(2) If M ∈ 〈G:M〉 and Int〈Gmx:M〉 = 0, then M is G-mini.

(3) For any nonzero G-subgroup K, K is G-indecomposable and G-summand if

and only if K ∈ 〈(G ∩ G⊕)mn:M〉.
(4) If M ∈ 〈G:M〉, then for any set A and B of maximal G-subgroups, A ⊆ B

if and only if Int(B) ⊆ Int(A).

(5) A G-subgroup is G-uniform if and only if it is a minimal G-subgroup.

Proof. (1) There exists a G-organizer map ?. Let J ∈ 〈Gmn : M〉. For each

J 6= I ∈ 〈Gmn:M〉, I ∩ J = 0, implying I ⊆ J?. Thus J ∩ Σ(〈Gmn:M〉 − {J}) = 0.

(2) Let K be a G-subgroup containing no minimal G-subgroup. For each maximal

G-subgroup J , we have K ∩ J? = 0 by Lemma 2.5, implying K ⊆ J . Thus K ⊆
Int〈Gmx:M〉, implying K = 0.

(3⇒) Let L be a nonzero G-summand G-subgroup contained in K. We have M =

L⊕ L? by Lemma 2.5, so K = L⊕ (L? ∩K), thus L? ∩K = 0, implying L = K.

(3⇐) Let L and N be G-subgroups with K = L ⊕ N and N 6= 0. Then, M =

L ⊕ N ⊕ K? by Lemma 2.5. On the other hand, K?, L ⊆ N?, which implies

M = N ⊕N?. Thus, N is a G-summand G-subgroup, so L = 0, implying N = K.

(4⇐) Temporarily suppose that A 6⊆ B. Consider J ∈ A such that J 6∈ B. For

every I ∈ B we have J?∩I? = 0, implying J? ⊆ I. Thus, J? ⊆ Int(B) ⊆ Int(A) ⊆ J
which is a contradiction.

(5⇒) Let K be a G-uniform G-subgroup. Now let I be a nonzero G-subgroup

contained in K. I? ∩K is a G-subgroup contained in K and I ∩ (I? ∩K) = 0, so

I? ∩K = 0, implying K ⊆ I?? = I. Thus I = K. �

Lemma 2.9. Let M be a G-intersection, G-organized and G-semisimple additive

group.

(1) Every G-subgroup K is G-summand and M = K ⊕K?.

(2) Every G-subgroup is a sum of minimal G-subgroups.

(3) M ∈ 〈G:M〉 and M is G-mini.

(4) The sum of any finite set of minimal G-subgroups is a G-subgroup.
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(5) 〈(G ∩ G⊕)mn:M〉 is the set of nonzero G-indecomposable G-subgroups.

Proof. (1) and (2) There exists a G-organizer map ?. Applying Lemma 2.4 com-

pletes the proof.

(3) Let K be a G-subgroup containing no minimal G-subgroup. For each minimal

G-subgroup J we have K ∩ J = 0, implying J ⊆ K?. Thus Σ〈Gmx:M〉 ⊆ K?, so

K? = M , implying K = 0. Also we have M = Σ〈Gmn:M〉 = 0? by (1).

(4) Let A be a finite set of minimal G-subgroups. Set L = Int{I? | I ∈ A}.
A = 〈Gmn⊆L?〉 by Lemma 2.6, implying Σ(A) = L? by (1).

(5) Follows from Lemma 2.8 and (1). �

Lemma 2.10. Let M be a generalized G-intersection (or G-intersection and 〈Gmx:

M〉 is finite), G-mini and G-organized additive group with M ∈ 〈G:M〉.

(1) For every G-subgroup K, Int〈Gmx⊇K〉 = K.

(2) Int〈Gmx:M〉 = 0.

Proof. (1) There exists a G-organizer map ?. Set L = Int{I? | I ∈ 〈Gmx 6⊆K〉}.
For each I ∈ 〈Gmx 6⊆K〉 we have I ∩K = 0, implying K ⊆ I?. Thus, K ⊆ L. It is

enough to show that K? ∩ L = 0. Temporarily suppose that it is not so. K? ∩ L
contains a minimal G-subgroup J . Then, I 6⊆ K, implying J ⊆ L ⊆ J? which is a

contradiction.

(2) We have M? = 0, so 0 is a G-subgroup. Applying (1) completes the proof . �

Lemma 2.11. Let M be a generalized G-intersection and G-organized additive

group. If M is G-semisimple, then M is a generalized G-sum.

Proof. It is enough to show that for every A ⊆ 〈Gmn:M〉, Σ(A) is a G-subgroup

by Lemma 2.9. Set L = Int{I? | I ∈ A}. A = 〈Gmn⊆L?〉 by Lemma 2.6, implying

Σ(A) = L? by Lemma 2.9. �

Lemma 2.12. Let M be a G-intersection and G-organized additive group. If every

G-subgroup is G-summand, then M is G-sum.

Proof. Follows from Lemma 2.7. �

Proposition 2.13. Let M be a G-intersection and G-organized additive group with

M ∈ 〈G:M〉. Then the following are equivalent.

(1) 〈G:M〉 is finite.

(2) 〈Gmn:M〉 is finite and M is G-mini.

(3) M is G-ind.finite.

(4) M is G-Artinian.



BLOCK DECOMPOSITION FOR MODULES 193

(5) M is G-Noetherian.

(6) 〈Gmx:M〉 is finite and Int〈Gmx:M〉 = 0.

(7) Every G-subgroup is the intersection of a finite set of maximal G-subgroups.

In this case, M is generalized G-intersection, and if every G-subgroup is a G-

summand, then M is G-semisimple.

Proof. (2) ⇒ (7) Follows from Lemma 2.10.

(7)⇒ (6) There exists a finite set A of maximal G-subgroups such that Int(A) = 0.

Thus Int(A) = Int〈Gmx:M〉, implying A = 〈Gmx:M〉 by Lemma 2.8. Consequently,

〈Gmx:M〉 is finite, also Int〈Gmx:M〉 = 0.

(6) ⇒ (2) Follows from Lemma 2.8.

(6) and (7) ⇒ (1) It is obvious.

(1) ⇒ (3) It is obvious.

(3) ⇒ (2) Follows from Lemma 2.3 and Lemma 2.8.

(5) ⇒ (3) Temporarily suppose that there exists an infinite independent set of

nonzero G-subgroups. Then there exists an infinite independent set {Ji | i ≥ 1}
of nonzero G-subgroups. Set Kn = (∩ni=1(Ji)

?)?. Kn is a G-subgroups. Also,

Jn+1 ∩Kn = 0 and Jn+1 ⊆ Kn+1. Thus Kn ⊂ Kn+1, which is a contradiction.

(4) ⇔ (5) It is obvious.

(1) ⇒ (5) It is obvious.

Finally M is generalized G-intersection by (1).

Now suppose that every G-subgroup is a G-summand. If M 6= Σ〈Gmn :M〉, then

(Σ〈Gmn:M〉)? contains a minimal G-subgroup by (2) which is a contradiction. �

Lemma 2.14. Let M be a G-intersection additive group and ? be a G-organizer

map. Consider P as the class of G-summand G-subgroups. Then ? is a P-organizer

map.

Proof. Let K be a P-subgroup. It follows from Lemma 2.5 that K? is also a

P-subgroup. �

Proposition 2.15. Let M be a G-intersection and G-organized additive group.

Consider P as the class of G-summand G-subgroups. Then

(1) M is P-organized.

(2) M is P-intersection.

(3) M is G-sum.

(4) Every P-subgroup is a P-summand.

(5) 〈Pmn:M〉 is an independent set.
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Proof. (1) There exists a G-organizer map ?. Then, ? is a P-organizer map by

Lemma 2.14.

(2) Let I and J be P-subgroups. By Lemma 2.7,

M = J ⊕ J? = (I ∩ J) + (I? ∩ J) + J? ⊆ (I ∩ J) + I? + J? = (I ∩ J) + (I ∩ J)?.

(3) Follows from Lemma 2.12 and (4).

(4) Let K be a P-subgroup. M = K ⊕K? by Lemma 2.5. On the other hand, K?

is a P-subgroup by (1).

(5) Follows from Lemma 2.8. �

Proposition 2.16. Let M be a G-intersection and G-organized additive group with

M ∈ 〈G:M〉. Consider P as the class of G-summand G-subgroups. If M is either

G-ind.finite, or G-Artinian or G-Noetherian, then M is generalized P-intersection,

P-semisimple and P-organized, also 〈P:M〉 is finite.

Proof. M is respectively either, P-ind.finite or P-Artinian or P-Noetherian. Also

it is clear that M ∈ 〈P:M〉. Applying Proposition 2.13 completes the proof. �

Lemma 2.17. Let M be a G-organized additive group with M ∈ 〈G:M〉. If M is

G-d.sum, then any G-subgroup is G-summand.

Proof. Let K be a G-subgroup. Set L = (K ⊕K?)?. Then, (K ⊕K?) ∩ L = 0, so

K ∩ L = 0, thus L ⊆ K?, implying L = 0. Thus, M = L? = K ⊕K?. �

Proposition 2.18. Let M be a generalized G-intersection, G-semisimple and G-

organized additive group.

(1) M is generalized G-sum.

(2) Every G-subgroup is an intersection of maximal G-subgroups.

Proof. (1) It is enough to show that the sum of any set A of minimal G-subgroups

is a G-subgroups by Lemma 2.9. Set L = Int{I? | I ∈ A}. A = 〈Gmn ⊆ L?〉 by

Lemma 2.6, implying Σ(A) = L? by Lemma 2.9.

(2) Let K be an G-subgroup. Set A = 〈Gmn⊆K?〉. Then, K? = Σ(A) by Lemma

2.9, so K = Int{I? | I ∈ A} by Lemma 2.6 and (1). On the other hand, I? is a

maximal G-subgroup for each I ∈ A by Lemma 2.5. �

Lemma 2.19. Let M be a generalized G-intersection, generalized G-d.sum and G-

organized additive group. If M ∈ 〈G:M〉 and M is G-mini, then M is G-semisimple

and generalized G-sum.
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Proof. Set A = 〈Gmn:M〉 and L = Int{I? | I ∈ A}. Then, (Σ(A))? = L by Lemma

2.6 and Lemma 2.8. On the other hand, L = 0 by Lemma 2.5 and Lemma 2.10.

Thus, Σ(A) = M . �

3. Block decomposition for modules

Definition 3.1. Let R be a ring. Two R-modules M and N are said to be block

orthogonal if annN (annR(M)) = 0 and annM (annR(N)) = 0.

Definition 3.2. Let R be a ring and M be an R-module.

(1) For every P ⊆M , annM (annR(M/P )) is denoted by P ◦.

(2) P ⊆M is called an annihilator if annM (annR(P )) = P .

(3) M is said to be cofaithful if R is M -faithful. It should be noted that the

use of the term “cofaithful” hear is not the same as the usage in [1].

(4) M is said to be block indecomposable if for any block orthogonal R-modules

N and P , M ∼= N × P implies either N = 0 or P = 0.

(5) If there exist pairwise block orthogonal block indecomposable modules M1,

M2, . . . , Mn such that M ∼=
∏n

i=1Mi, then we say that M is block decom-

posable.

Also, in the category of modules, the class of annihilators is denoted by A, the class

of submodules is denoted by M, the class of annihilator submodules is denoted by

AM, and the class of submodules P for which P ∩ P ◦ = 0 and P ◦◦ = P is denoted

by C.

It is obvious that for any P ⊆M , P ◦ is an annihilator submodule, so P ◦◦ is also

an annihilator submodule.

Lemma 3.3. Let R be a ring and M be an R-module.

(1) For any subgroup K ⊆M and any submodule J , K∩J = 0 implies J ⊆ K◦.
(2) For any submodules I and J , I ∩ I◦ = 0 and J ∩ J◦ = 0 implies (I ∩ J) ∩

(I ∩ J)◦ = 0.

(3) For any submodules I and J with I ∩ I◦ = 0 and J ∩ J◦ = 0, I ∩ J = 0

implies that I and J are block orthogonal.

Proof. (1) Just for the calculations, we may assume that M is a right R-module.

We have JannR(M/K) ⊆ K ∩ J = 0, so J ⊆ annM (annR(M/K)) = K◦.

(2) Set K = (I ∩ J) ∩ (I ∩ J)◦. We have K(I ∩ J :M) = 0. On the other hand,

(I :M)(J :M) ⊆ (I :M) ∩ (J :M) = (I ∩ J :M).
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So K(I :M)(J :M) = 0, thus K(J :M) ⊆ I◦ ∩ I = 0, implying K ⊆ J◦ ∩ J = 0.

(3) We have annR(M/I) ⊆ annR(J), so annM (annR(J)) ⊆ annM (annR(M/I)) =

I◦, implying annI(annR(J)) ⊆ I ∩ I◦ = 0. Similarly, annJ(annR(I)) = 0. �

Lemma 3.4. Let R be a ring and M be an R-module.

(1) Any two annihilator submodules with zero intersection are block orthogonal.

(2) For any block orthogonal submodules K and J with K ∩ J = 0, if K ⊕ J is

an annihilator, then K and J are annihilators.

(3) Any submodule which is a block indecomposable module, is AM-indecomposable.

(4) Any AM-indecomposable annihilator submodule is a block indecomposable

module.

Proof. (1) Let K and J be annihilator submodules with K ∩ J = 0. Then

annJ(annR(K)) = J ∩ annM (annR(K)) = J ∩K = 0.

Similarly, annK(annR(J)) = 0.

(2) Set N = K ⊕ J . We have K ⊆ annM (annR(K)) ⊆ annM (annR(N)) = N

and J ∩ annM (annR(K)) = annJ(annR(K)) = 0. Thus, annM (annR(K)) = K.

Similarly, annM (annR(J)) = J .

(3) Let N be a submodule which is a block indecomposable module. Let K and J

be annihilator submodules with N = K⊕J . K and J are block orthogonal modules

by (1), also N ∼= K × J . Thus either K = 0 or J = 0.

(4) Let N be an AM-indecomposable annihilator submodule. Now let A and B

be block orthogonal modules and N ∼= A × B. There exist submodules K and J

that are block orthogonal modules, K ∼= A, J ∼= B and N = K ⊕ J . K and J are

annihilator submodules by (2). Thus K = 0 or J = 0 implying A = 0 or B = 0. �

Lemma 3.5. Let R be a ring and M be an R-module. For any submodules K and

J with M = K ⊕ J , K and J are annihilators if and only if K and J are block

orthogonal. In this case

(1) K◦ = J and J◦ = K.

(2) K and J are C-summand C-submodules.

Proof. The first statement follows from Lemma 3.4.

(1) annR(K) + annR(J) is M -faithful because

annM (annR(K) + annR(J)) = annM (annR(K)) ∩ annM (annR(J)) = K ∩ J = 0.
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On the other hand, (K :M) = annR(J) and (K ∩ K◦)(annR(K) + (K :M)) = 0.

So, K ∩K◦ = 0. Furthermore J ⊆ K◦ by Lemma 3.3. Thus, K◦ = J .

(2) Follows from (1). �

Lemma 3.6. Let R be a ring and M1, M2, . . . , Mn and N be R-modules. If the

pairs, N , Mj, are block orthogonal for each 1 ≤ j ≤ n, then N and
∏n

i=1Mi are

block orthogonal.

Proof. Set I = annR(N) and M =
∏n

i=1Mi. Let m ∈M and mI = 0. There exist

mi ∈ Mi such that m = (m1,m2, · · · ,mn). For each 1 ≤ j ≤ n, we have mjI = 0,

implying mj = 0. So m = 0. Thus annM (annR(N)) = 0. Now set Ij = annR(Mj)

for each 1 ≤ j ≤ n. Ij is N -faithful for each 1 ≤ j ≤ n, so I1I2 · · · In is N -faithful,

thus ∩ni=1Ii is N -faithful. Therefore annN (annR(M)) = 0. �

Proposition 3.7. Let R be a ring and M be an R-module. Every AM-summand

annihilator submodule K is a C-summand C-submodule, M = K ⊕K◦ and K and

K◦ are block orthogonal modules. Also the following conditions are equivalent.

(1) K is a block indecomposable module.

(2) K is C-indecomposable.

(3) K is AM-indecomposable.

Proof. There exists an annihilator submodule J with M = K ⊕ J . Now applying

Lemma 3.5 completes the proof.

(2) ⇒ (3) Let I and N be annihilator submodules with K = I ⊕N . I and N are

block orthogonal by Lemma 3.4. Also, K and J are block orthogonal by Lemma

3.4, so I and J are block orthogonal, thus I and N ⊕ J are block orthogonal by

Lemma 3.6. Thus I is a C-summand C-submodules by Lemma 3.5. Similarly, N is

a C-summand C-submodules. Hence, I = 0 or N = 0.

(3) ⇒ (2) It is obvious.

(1) ⇔ (3) Follows from Lemma 3.4. �

Notice that Proposition 3.7 shows that the classes AM ∩ AM⊕ and C ∩ C⊕ are

identical. This means that 〈(C ∩ C⊕)mn : M〉 = 〈(AM ∩ AM⊕)mn : M〉 for every

module M .

Proposition 3.8. Every module is C-intersection and the map given by I −→ I◦

is a C-organizer map.

Proof. LetR be a ring andM be anR-module. First, let I and J be C-submodules.

(I ∩ J) ∩ (I ∩ J)◦ = 0 by Lemma 3.3, so (I ∩ J) ⊆ (I ∩ J)◦◦ = 0 by Lemma 3.3.
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On the other hand, (I ∩ J)◦◦ ⊆ I◦◦ = I and similarly, (I ∩ J)◦◦ ⊆ J . Thus,

(I ∩ J)◦◦ ⊆ I ∩ J , implying (I ∩ J)◦◦ = I ∩ J .

Now let I be a C-submodule. We have (I◦)◦◦ = (I◦◦)◦ = I◦, also (I◦)◦ ∩ I◦ =

I ∩ I◦ = 0. So I◦ is also a C-submodule. Thus, the map is well defined. The rest

is obvious. �

Lemma 3.9. Let R be a ring and M1, M2, . . . , Mn be pairwise block orthogonal

R-modules. Set M =
∏n

i=1Mi.

(1) ιj(Mj) is a C-summand C-submodules for each 1 ≤ j ≤ n.

(2) If Mj is a block indecomposable module for some 1 ≤ j ≤ n, then ιj(Mj) is

a minimal C-summand C-submodule.

Proof. (1) Σ{ιi(Mi) | 1 ≤ i ≤ n, i 6= j} and ιj(Mj) are block orthogonal by Lemma

3.6 so they are C-summand C-submodules by Lemma 3.5.

(2) ιj(Mj) is C-indecomposable by Proposition 3.7. Thus, ιj(Mj) ∈ 〈(C ∩ C⊕)mn:

M〉 by Lemma 2.8. �

Proposition 3.10. Let R be a ring and M1, M2, . . . , Mn be pairwise block or-

thogonal block indecomposable R-modules. Set M =
∏n

i=1Mi. Then,

〈(AM ∩ AM⊕)mn:M〉 = {ιj(Mj) | 1 ≤ j ≤ n}, M = Σ〈(AM ∩ AM⊕)mn:M〉 and

〈(AM ∩ AM⊕)mn:M〉 is finite.

Proof. Lemma 3.9 implies that {ιj(Mj) | 1 ≤ j ≤ n} ⊆ 〈(C ∩ C⊕)mn:M〉. On the

other hand, M = Σ{ιj(Mj) | 1 ≤ j ≤ n} and 〈(C ∩ C⊕)mn:M〉 is an independent

set by Proposition 2.15. �

Theorem 3.11. A module M is block decomposable if and only if M is AM∩AM⊕-

semisimple and 〈(AM∩AM⊕)mn:M〉 is finite. In this case
⊕
〈(AM∩AM⊕)mn:M〉

is the block decomposition of M .

Proof. (⇒) There exist pairwise block orthogonal block indecomposable modules

M1, M2, . . . , Mn such that M ∼=
∏n

i=1Mi. We can assume M =
∏n

i=1Mi. Apply-

ing Proposition 3.10 completes the proof.

(⇐) Each K ∈ 〈(AM ∩ AM⊕)mn : M〉 is C-indecomposable by Lemma 2.8, so is

a block indecomposable module by Proposition 3.7 and Proposition 2.15. On the

other hand, 〈(AM ∩ AM⊕)mn : M〉 = {K1,K2, · · · ,Kn} is an independent set by

Lemma 2.5, so M ∼=
∏n

i=1Ki. �

Theorem 3.12. Any AM-ind.finite, or AM-Artinian or AM-Noetherian cofaithful

module is block decomposable.
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Proof. Let M be an AM-ind.finite, or AM-Artinian or AM-Noetherian cofaithful

module. Then M is respectively, C-ind.finite, or C-Artinian or C-Noetherian and

M ∈ 〈C:M〉. Applying Proposition 2.16 and Theorem 3.11 completes the proof. �

The following theorem shows that the block decomposition is unique.

Theorem 3.13. Let R be a ring, M1, M2, . . . , Mn be pairwise block orthogonal

block indecomposable R-modules, and N1, N2, . . . , Nk be also pairwise block orthog-

onal block indecomposable R-modules. If ∆ :
∏n

i=1Mi −→
∏k

j=1Nj is an isomor-

phism, then k = n, and after a re indexing, there exist isomorphisms ∆i : Mi −→ Ni

for 1 ≤ i ≤ n such that ∆ =
∏n

i=1 ∆i.

Proof. Set M =
∏n

i=1Mi and M =
∏k

j=1Nj . 〈(AM ∩ AM⊕)mn:M〉 = {ιi(Mi) |
1 ≤ i ≤ n} and 〈(AM ∩ AM⊕)mn : N〉 = {ιj(Nj) | 1 ≤ j ≤ k} by Proposition

3.10. So k = n and after a re indexing, ∆(ιi(Mi)) = ιi(Ni) for all 1 ≤ i ≤ n. Set

∆i : Mi −→ Ni given by ∆i(x) = πi(∆(ι(x)). �

4. Decomposition for rings

Recall that the class of ideals I for which I∩annl(I) = 0 and annl(annl(I)) = I is

denoted by lC in [3], and for every left faithful ring R, the map ? : 〈lC:R〉 −→ 〈lC:R〉
given by I? = annl(I) is a lC-organizer map, and R is lC-intersection and lC-

organized by [3, Lemma 1.6].

Lemma 4.1. Let R be a left faithful ring. If K and J are ideals with R = K ⊕ J ,

then J = annl(K).

Proof. (K ∩ annl(K))R = (K ∩ annl(K))(K ⊕ J) = 0, so K ∩ annl(K) = 0. On

the other hand, J ⊆ annl(K). Thus J = annl(K). �

Lemma 4.2. Let R be a left faithful ring.

(1) Any I-summand ideal is a lC-summand lC-ideal.

(2) Any I-summand ideal is lC-indecomposable if and only if it is I-indecomposable.

(3) Any I-summand I-indecomposable ideal is a minimal lC-summand lC-ideal.

(4) An I-summand ideal is indecomposable as a ring if and only if it is I-
indecomposable.

Proof. (1) Let K be an I-summand ideal. There is an ideal J with R = K ⊕
J . Then J = annl(K) and similarly, annl(J) = K. So K ∩ annl(K) = 0 and

annl(annl(K)) = K. Thus, K is a lC-summand lC-ideal.

(2⇒) Let K be an I-summand lC-indecomposable ideal. Now let I and J be ideals
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with K = I ⊕ J , then I and J are I-summand ideals, so they are lC-ideals by (1),

thus I = 0 or J = 0.

(3) Let K be an I-summand I-indecomposable ideal. K is a lC-summand lC-ideal

by (1). Thus K ∈ 〈(lC ∩ lC⊕)mn:R〉 by Lemma 2.8. �

Notice that according to Lemma 4.2, in the category of left faithful rings, the

classes I ∩ I⊕, lAI ∩ lAI⊕ and lC ∩ lC⊕ are identical.

Theorem 4.3. A left faithful ring R is decomposable if and only if R is I ∩ I⊕-

semisimple and 〈(I ∩ I⊕)mn : R〉 is finite. In this case
⊕
〈(I ∩ I⊕)mn : R〉 is the

decomposition of R.

Proof. A ring R is decomposable if and only if there exists a finite independent set

A of ideals which are indecomposable as a ring such that R = Σ(A) and this is called

a block decomposition of R, [4, page 337] and [2, page 214]. So, R is decomposable

if and only if there exists a finite independent set A of I-summand I-indecomposable

ideals such that R = Σ(A) by Lemma 4.2. Thus, R is decomposable if and only if

there exists a finite set A ⊆ 〈(I∩ I⊕)mn:R〉 such that R = Σ(A) by Lemma 4.2 and

Proposition 2.16. But the only choice for A is A = 〈(I ∩ I⊕)mn:R〉. �

Theorem 4.4. Any lAI-ind.finite, or lAI-Artinian or lAI-Noetherian left faithful

ring is decomposable.

Proof. The same as the proof of Theorem 3.12. �

The following theorem gives us the uniqueness of the the block decomposition.

Theorem 4.5. Let R1, R2, . . . , Rn and S1, S2, . . . , Sk be indecomposable rings.

If ∆ :
∏n

i=1Ri −→
∏k

j=1 Sj is an isomorphism, then k = n, and after a re indexing,

there exist isomorphisms ∆i : Ri −→ Si for 1 ≤ i ≤ n such that ∆ =
∏n

i=1 ∆i.

Proof. The same as the proof of Theorem 3.13. �

Theorem 4.6. A left faithful ring R is decomposable if and only if RR is block de-

composable. In this case, the block decomposition for R and the block decomposition

for RR are identical.

Proof. We have 〈lAI ∩ lAI⊕:R〉 = 〈AM ∩AM⊕:RR〉. Applying Theorem 3.11 and

Theorem 4.3 completes the proof. �
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