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ABSTRACT Chaos, which is found in many dynamical systems, due to the presence of chaos, systems behave
erratically. Due to its erratic behaviour, the chaotic behaviour of the system needs to be controlled. Severe
acute respiratory syndrome Coronavirus 2 (Covid-19), which has spread all over the world as a pandemic.
Many dynamical systems have been proposed to understand the spreading behaviour of the disease. This
paper investigates the chaos in the outbreak of COVID-19 via an epidemic model. Chaos is observed in
the proposed SIR model. The controller is designed based on the fractional-order Routh Hurwitz criteria for
fractional-order derivatives. The chaotic behaviour of the model is controlled by feedback control techniques,
and the stability of the system is discussed.
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INTRODUCTION

Mathematical modelling is one of the best ways to understand
the dynamics of physical phenomena. Some dynamical systems,
whether they are linear or nonlinear, show unpredictable be-
haviour which is termed "chaos." Chaos is a very active area of
research for researchers who are working particularly in the non-
linear dynamical system. Chaos does not have a unified definition,
yet this phenomenon is observed and studied in different branches
of science and technology, whether it is science, population dy-
namics, telecommunication engineering, etc.

The COVID-19 epidemic first broke out in December 2019,
when its danger and impact were not known. The conditions
under which this disease will propagate are also unknown to the
world. It is necessary to control the spread of any disease. To con-
trol the spread of the disease, we must understand its behaviour
particularly the virus’s speed of infection and the duration of its
symptoms. All the governments and world health organisations
are trying to control and prevent the spread of COVID-19. One
of the important steps to controlling the spread of COVID-19 is
the mathematical modelling of this disease and its analysis. Vari-
ous techniques have been developed to model infectious diseases.
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One of the popular methods is the compartmental method. In
this method, the entire population is segregated into different
compartments, and the interplay between these compartments is
represented in the form of equations to represent the model. (Ker-
mack and McKendrick 1927) have proposed for the first time the
mathematical model of an epidemic where they have separated
the entire population into three compartments: (i) people who are
prone to the disease; (ii) people who are already infected and can
spread the infection; (iii) people who are already recovered and
have developed the immune system; or (iv) people who have left
the study area. Many mathematical models (Alsadat et al. 2023;
Debbouche et al. 2021; Giordano et al. 2020; Haq et al. 2022; Javeed
et al. 2021; Babu et al. 2021; Mandal et al. 2020) are proposed for
the study of COVID-19. (Xie 2020; Maltezos and Georgakopoulou
2021; Farshi 2020) have used Monte Carlo simulation models to
determine the development of COVID spread.

Chaos in the dynamical system of COVID-19 was analysed by
(Mangiarotti et al. 2020) in 2020, where he worked on the data
of the national health commission of the People’s Republic of
China. In this work, (Mangiarotti et al. 2020) have proposed a
model based on three variables: (i) the cumulated number of daily
confirmed cases; (ii) the daily number of serious cases and those
who are under intensive care at present; (iii) the daily cumulated
number of deaths. From these parameters, the daily number of
new cases, the daily number of additional severe cases, and the
daily number of new deaths are derived. The chaos in this model
has been observed with 11 parameters. (Debbouche et al. 2021)have
conceived the dynamical system model proposed by (Mangiarotti
et al. 2020) of COVID-19 with fractional order differentiation in the
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Caputo sense. The fractional order derivative with commensurate
and incommensurate order has been analyzed, and the chaotic
behaviour of it has been observed. (Postavaru et al. 2021) in 2021
studied the Covid-19 pandemic and chaos.

The fractional order derivative is considered for the consider-
ation of memory concepts in the dynamical system. Although
it is quite difficult to formulate a complete model of any novel
epidemic, many parameters may still not be known. (Higazy 2020)
has used the fractional-order SIDARTHE model and proposed the
control strategy. (Ahmad et al. 2022) proposed the fractional order
model considering five classes of the population. (Borah et al. 2022)
have investigated the memory effect by introducing the fractional
derivative and chaos. They used different methods for controlling
the chaos. (Xu and Tang 2021) proposed an integrated epidemic
modelling framework for the real time forecast of COVID-19.(Xu
et al. 2020) proposed a generalised fractional order SEIR model for
forecast analysis of the epidemic trends in the USA.(Chandra and
Bajpai 2022) have proposed the fractional order model with the
consideration of social distancing as one parameter to make the
model mimic real-time data.

These proposed COVID-19 models do not address how to con-
trol the chaos present in the dynamical system. There are numer-
ous methods to achieve chaos control. Due to their ease of design,
the first two primary methods for managing chaos are feedback
control and non-feedback control, which are particularly appeal-
ing and have been widely used in actual implementation. (Bai
and Lonngren 2000) put forth the Active Control Method, which,
due to its ease of use and simplicity in applications, has drawn
the attention of many researchers working in the field of nonlin-
ear dynamics. (Srivastava et al. 2014) have controlled the chaos
of the fractional-order Rabinovich-Fabrikant system. (Borah et al.
2021) have controlled and anti-controlled fractional order models
of diabetes, HIV, dengue, migraine, Parkinson’s, and Ebola-virous
diseases.

The present article is further divided in the following sections:
(i) Section 2 explains the preliminary concepts of fractional dif-
ferentiations and the stability of fractional order Routh-Hurwitz
criterion, it has the basic information about the proposed model (ii).
Section 3 contains the stability analysis of the system (iii). Section
4 contains the analysis of the chaos controls, and the parameters
required for the control are presented in this section. (iv) Section 5
talks about the results (v). Section 6 is the conclusion. It is to the
author’s knowledge that no author has tried to control the chaos
of a dynamical system of the kind proposed in the current article.

PRELIMINARIES

Definition: The Riemann-Liouville (Podlubnv 1999) type fractional
derivative of order α≥0 of function f(0,∞) 7→ R. is defined by

Dα f (t) =
dn

dtn
1

Γ (n − α)

∫ t

0
(t − τ)n−α−1 f (τ) dτ (1)

where n=[α]+1 and [α] is the integer part of α.

Definition: The Caputo type (Podlubnv 1999) fractional derivative
of order α>0 of the function f (0,∞)→ R is defined by

Dα f (t) =
1

Γ (n − α)

∫ t

0
(t − τ)α−1 f (n) (τ) dτ (2)

where n= [α]+1 and [α] is the integer part of α.

Theorem: (Matignon 1996) an autonomous system of type (3)

Dα
t x (t) = f1 (x, y, z)

Dα
t y (t) = f2 (x, y, z)

Dα
t z (t) = f3 (x, y, z)

(3)

is said to be asymptotically stable by if and only if all its eigenval-
ues of the Jacobian matrix.

J =


∂ f1
∂x

∂ f1
∂y

∂ f1
∂z

∂ f2
∂x

∂ f2
∂y

∂ f2
∂z

∂ f3
∂x

∂ f3
∂y

∂ f3
∂z

 (4)

at its equilibrium point meets specific requirements
of.|arg(λ)| > απ

2 .This result is derived by (Matignon 1996)
for a linear dynamical system. Since local linearization is a
technique used to test the local stability of equilibrium points
in nonlinear systems, the theorem can be used in this context
(Srivastava et al. 2014).
The characteristic equation of the Jacobian matrix at the equilib-
rium is

TP (λ) = λ3 + a1λ2 + a2λ + a3 (5)

The discriminant is
D(P) = 18a1a2a3 + (a1a2)

2 − 4a3a1
3 − 4a3

2 − 27a2
3

The fractional order Routh-Hurwitz criterion (Ahmed et al. 2006;
Srivastava et al. 2014) is as follows for the system to be stable.:
(i) The equilibrium point meets the necessary and sufficient condi-
tions in order to be locally asymptotically stable, and if D(P) > 0,
these conditions are a1 > 0, a3 > 0, a1a2 − a3 > 0.
(ii)If D(P) < 0, a1 ≥ 0, a2 ≥ 0, a3 > 0 then the equilibrium
point is locally asymptotically stable for α < 2

3 . However, if
D(P) < 0, a1 < 0, a2 < 0, α > 2

3 ,then all the roots of the char-
acteristic equation satisfy the condition
(iii)If D(P) < 0, a1 > 0, a2 > 0, a1a2 − a3 = 0then all individuals
0 ≤ α < 1 are locally asymptotically stable at the equilibrium
point.
(iv) A need for equilibrium points to be locally stable asymptoti-
cally is a3 > 0.

Proposed Model: The considered model in this article is. As pro-
posed in (Mangiarotti et al. 2020) The three decision variable x
(Number of daily cases) ,y ( Number of daily serious cases re-
ported) and Z( Number of daily deaths) along with 11 parameters
α1,α2, α3, α4, α5, α6, α7, α8, α9, α10,α11 .

dαx
dtα = α1z2 + α2x2 + α3y (z + α4x)

dαy
dtα = α5x + α6y + α7 z2

dαz
dtα = α8xz + α9xy + α10z + α11x2

(6)

Values of the parameters are considered as The above model
shows the chaotic behaviour with initial values x=180, y=30, z=8
for the time variation of t=100, for order of derivatives α=0.97.
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■ Table 1 Values of the parameter in the model (6)

α1 = −0.10530723 α2 = 2.343X10−5 α3=0.15204 α4=−0.01451520 .

α5=−0.20517824 α6=0.44040714 α7=0.16060376 α8=−0.00011493.

α9=−1.215X10−5 α10=0.2844499 α11=2.38X10−6 .

Figure 1 Chaotic behaviour of the system in (6) with initial values x=180, y=30, z=8 for the time variation of t=100, for order of derivatives
α = 0.97

STABILITY OF THE SYSTEM

To analyse the stability of the system we have

α1z2 + α2x2 + α3y (z + α4x) = 0

α5x + α6y + α7 z2 = 0

α8xz + α9xy + α10z + α11x2 = 0

(7)

On solving this nonlinear system of equations with the given pa-
rameters as in proposed model is given, we have. The Jacobian

matrix ( J) of the above system is

J =


2α2x + α3α4y α3z 2α1z + α3y

α5 α6 2α7z

α8z + α9y + 2α11x α9x α8x + α10

 (8)

The equilibrium point is calculated on solving the
equations in (7) and we get 4 equilibrium points
which are E1(0, 0, 0),E2(−1149.44,−590.097, 12.2352)
,E3(−619.232,−6075.71, 125.975) , E4(25638.5, 6103.77,−126.557).
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The eigen values of the Jacobian matrix at these points are
0.2202 + 18.7956i, 0.2202 − 18.7956i, 0.2844 + 0.000i, on E1, on E2
the eigen values are 0.0007 + 9.4981i, 0.0007 − 9.4981i, 0.0004 +
0.000i .The eigen vales of the Jacobian matric on E3 is 0.0007 +
2.0519i, 0.0007 − 2.0519i, 0.001 + 0.000i on the last point E4 the
eigen values are −3.9423, 3.9415,−0.0001 which shows that all the
equilibrium points are unstable.

CHAOS CONTROL

To control the chaos of the covid dynamical system as proposed in
(6) let us construct the feedback controller such as

dαx
dtα = α1z2 + α2x2 + α3y (z + α4x)− k1 (x − x̄)

dαy
dtα = α5x + α6y + α7 z2 − k2 (y − ȳ)

dαz
dtα = α8xz + α9xy + α10z + α11x2 − k3 (z − z̄)

(9)

Where k1, k2, k3 are control parameters and x̄ , ȳ , z̄ are Equilib-
rium points of the system. At equilibrium point the Jacobian of
this system is

2α2 x̄ + α3α4ȳ − k1 α3 (z̄ + α4 x̄) 2α1 z̄ + α3ȳ

α5 α6 − k2 2α7 z̄

α8 z̄ + α9ȳ + 2α11 x̄ α9 x̄ α8 x̄ + α10 − k3

 (10)

characteristic polynomial of the above Jacobian matrix with the
parameters as in Table 1 is

P(t) =t3 + (k1 + k2 + k3 − 0.72485704 + 0.00007x̄ + 0.00221ȳ) t2

+ (−0.44040714 k3 + 0.125273767 − 0.72485704k1+

0.2844499k2 + k1k2 + k1k3 + k2k3 − 0.00047 x̄ + 0.00012 k1 x̄
+ 0.00006806999999999999 k2 x̄ − 0.00004686 k3 x̄−
5.3856198 × 10−9 x̄2 − 0.00158 ȳ + 0.00221 k2 ȳ + 0.00221

− 4.700724164505601 × 10−7 x̄ ȳ + 0.031171093689712204 z̄−
0.000002558965689 ȳ z̄ + 0.0000049 x̄ z̄ + 0.00000185 ȳ2) t
− 0.2844499 k1 k2 + 0.12527376693228598 k1 − 0.44040714 k1k3

+ k1k2k3 + 0.00012293029636844125x̄ − 0.00005 k1 x̄
+ 0.000013329322313999999 k2 x̄ + 0.00011493 k1 k2 x̄−
0.0004321685343128659 k3 x̄ − 0.00004686 k2 k3 x̄ + 0.00027ȳ
− 0.0006102759693364992 k2 ȳ − 0.000971930557124997 k3 ȳ+

0.002206891008 k2 k3 ȳ − 1.719996417347599 × 10−7 x̄ ȳ

− 4.700724164505601 × 10−7 k2 x̄ ȳ − 0.008862839394471904 z̄
− 0.0000242059198878 k2 z̄ + 0.03119529961 k3 z̄+

0.000003587 x̄ z̄ − 4.966912964857768 × 10−8 x̄2−
5.3856198 × 10−9 k2 x̄2 − 8.13557944 × 10−7ȳ2 + 0.00000185 k2 ȳ2

+ 0.000003902671368 k1 x̄ z̄ + 0.0000010025248296 k2 x̄ z̄+

3.191341960623825 × 10−9 x̄2 z̄ + 0.000001126986760450619 ȳ z̄

− 0.000002558965689 k2 ȳ z̄ + 0.0000056128 z̄2−
− 0.00000255897 k2 ȳ z̄ + 0.000005618 z̄2−
2.32461222782208 × 10−7 x̄ z̄2 + 5.933621547907201 × 10−7ȳz̄2

(11)

For Routh Hurwitz criteria for fractional order, we have

a1 = k1 + k2 + k3 − 0.72485704 + 0.00006807x̄ + 0.00220689101ȳ
(12)

a2 =− 0.44040714 k3 + 0.1252737669 − 0.72485704 k1 + 0.2844499k2

+ k1k2 + k1k3 + k2k3 − 0.0004694552045990659 x̄ + 0.00011493 k1 x̄
+ 0.00006806999999999999 k2 x̄ − 0.00004686 k3 x̄ + 0.00011493 k1 x̄

+ 0.00006807 k2 x̄ − 0.00004686 k3 x̄ − 5.3856198 × 10−9 x̄2

− 0.0015822065264615 ȳ + 0.002206891008 k2 ȳ + 0.0022069 k3 ȳ

− 4.700724164505601 × 10−7 x̄ ȳ + 0.031171094 z̄ − 0.00000256 ȳ z̄

+ 0.0000049051962 x̄ z̄ + 0.0000018473 ȳ2,
(13)

a3 =− 0.2844499 k1 k2 + 0.12527376693228598 k1 − 0.44040714 k1k3

+ k1k2k3 + 0.0001229303x̄ − 0.000050615992600199994 k1 x̄
+ 0.00001333 k2 x̄ + 0.000115 k1 k2 x̄ − 0.0004322 k3 x̄
− 0.0000479 k2 k3 x̄ + 0.00027 ȳ − 0.0006103 k2 ȳ − 0.00097 k3 ȳ

+ 0.0022069 k2 k3 ȳ − 1.71999642 × 10−7 x̄ ȳ

− 4.700724165 × 10−7 k2 x̄ ȳ − 0.00886284 z̄ − 0.00002421 k2 z̄
+ 0.0311953 k3 z̄ + 0.000003587330339763896 x̄ z̄

− 4.966912964857768 × 10−8 x̄2 − 5.3856198 × 10−9 k2 x̄2

− 8.1355794402204 × 10−7ȳ2 + 0.00000185 k2 ȳ2

+ 0.00000390267 k1 x̄ z̄ + 0.0000010025248296 k2 x̄ z̄

+ 3.191341960624 × 10−9 x̄2 z̄ + 0.000001126986760451 ȳ z̄

− 0.00000255897 k2 ȳ z̄ + 0.0000056127665 z̄2

− 2.32461222782208 × 10−7 x̄ z̄2 + 5.93362154791 × 10−7ȳz̄2

(14)

D(P) = 18a1a2a3 + (a1a2)
2 − 4a3a3

1 − 4a3
2 − 27a2

3 (15)

RESULTS AND DISCUSSION

In the control analysis of the above problem, we observe that
the system is getting controlled at every equilibrium point with
the feedback controller. At first equilibrium point E1(0, 0, 0) the
stability is achieved at k1 = 1, k2 = 2, k3 = 5 for the values of
α = 0.97. when we increase the values of k3, the first eigenvalue of
the Jacobian matrix increases in negative direction very fast so that
system goes towards the equilibrium point with fast rate.

It shows that if we subtract from the first equation in the model
(6) the daily cases one time, from the second equation twice the
rate of change of the daily number of critical cases, and from the
third equation five times the daily deaths, then the system is under
control. The other case that is possible is that instead of controlling
too many death cases, we could reduce the 6 times daily critical
cases and control the chaos in the system. If we could control the
3 times daily critical cases, then the system would also be under
control.

The second equilibrium point E2 shoes the stability with k1 = 8,
which means that at this juncture the system will not be chaotic if
8 times we could reduce the daily cases or 5 times we reduce the
daily critical cases, or if the daily cases are reduced by 10 times
and daily deaths are reduced by 12 times or more, the system is
under control.
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■ Table 2 : Stability using Routh Hurwitz criteria at the first equilibrium point E1(0, 0, 0) after putting these points in the equation
12, 13, 14, 15 is as follows.

Sr. No k1 k2 k3 a1 a3 a1a2 − a3 D(P) Eigen val-
ues of Ja-
cobian Ma-
trix of Con-
trolled sys-
tem

Stable / Un-
stable

1 1 2 5 7.2751 7.3543 100.08 94.97 -4.7156,
-1.5596,
-1.0000

Stable for
0 < α < 1
.

2 1 2 10 12.2751 15.1523 323.2150 4.6960x103 -9.7156
-1.5596
-1.0000

Stable for
0 < α < 1

3 1 2 ≥ 5 +ive +ive +ive +ive -ive Stable for
0 < α < 1.

4 1 6 1 7.2751 3.9782 95.4491 240.2804 -0.7156,
-5.5596,
-1.0000

Stable for
0 < α <
1..

5 1 ≥ 6 1 +ive +ive +ive +ive -ive Stable for
0 < α < 1.

6 3 1 1 4.2751 1.2013 19.2970 8.0779 -0.7156,
-0.5596,
-3.0000

Stable for
0 < α < 1.

7 ≥ 3 1 1 +ive +ive +ive +ive −ive Stable for
0 < α < 1
.

Figure 2 Plot x,y,z at (a) k1 = 1, k2 = 2, k3 = 5 at α=0.97 at E1 (b) Plot at k1 = 3, k2 = 1, k3 = 1 at α=0.97 at E1

The third equilibrium point, E3 is such that we need to reduce
the critical cases by 12 − 15 times and the daily deaths by 21 times
to control the system. we need to reduce the daily critical cases

by 3 times, or more than system is under control. Similarly, at the
fourth equilibrium point E4 the system is under control if 9 times
daily cases are reduced and 3 times daily critical cases are reduced,
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■ Table 3 : Stability using Routh Hurwitz criteria at the second equilibrium point E2(1149.44, 590.097, 12.2352) after putting these
points in the equation 12, 13, 14, 15 is as follows.

Sr. No k1 k2 k3 a1 a3 a1a2 − a3 D(P) Eigen val-
ues of Ja-
cobian Ma-
trix of Con-
trolled sys-
tem

Stable / Un-
stable

1 8 1 1 7.8946 0.0762 75.7604 2.1594x103 -6.5686,
-0.9980,
-0.3280

Stable for
0 <α< 1.

2 ≥ 8 1 1 +ive +ive +ive +ive -ive Stable for
0 <α< 1

3 1 5 1 4.8946 0.4466 25.1061 74.3602 -4.3634
-0.1542
-0.3770

Stable for
0 < α < 1

4 1 ≥ 5 1 +ive +ive +ive +ive -ive Stable for
0 <α< 1

5 10 1 12 20.8946 54.6713 2.3339x103 4.7597x103 -0.6626,
-8.7041,
-11.5279

Stable for
0 <α< 1

6 10 1 ≥ 12 +ive +ive +ive +ive -ive Stable for
0 <α< 1

■ Table 4 : Stability using Routh Hurwitz criteria at the Third equilibrium point E3(−619.232,−6075.71, 125.975) after putting these
points in the equation 12, 13, 14, 15 is as follows.

Sr. No k1 k2 k3 a1 a3 a1a2 − a3 D(P) Eigen val-
ues of Ja-
cobian Ma-
trix of Con-
trolled sys-
tem

Stable / Un-
stable

1 12 3 21 21.8246 24.3566 2.0203x103 7.5909x105 -16.7962
+ 0.0000i,
-2.5142 +
1.0957i,
-2.5142 -
1.0957i

Stable for
0<α<1

2 12 ≥ 3 21 +ive +ive +ive +ive -ive Stable for
0<α<1

3 12 3 21-27 +ive +ive +ive +ive -ive Stable for
0<α<1

4 12-15 3 21 +ive +ive +ive +ive -ive Stable for
0 <α< 1

whereas 13 times daily deaths are reduced. The system is under
control, and it will not generate chaos.

On observing all the cases at the equilibrium points we observe

that system is under control if we could reduce the daily cases by
12 times and daily critical cases by 3 times and daily deaths by 21
times then system is under control. These changes in the system
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■ Table 5 : Stability Using Routh Hurwitz criteria at the first equilibrium point E4(25638.5, 6103.77,−126.557) after putting these
points in the equation 12, 13, 14, 15 is as follows.

Sr. No k1 k2 k3 a1 a3 a1a2 − a3 D(P) Eigen val-
ues of Ja-
cobian Ma-
trix of Con-
trolled sys-
tem

Stable / Un-
stable

1 9 3 13 39.4907 211.1828 1.3829x104 1.7508x107 -0.0417, -
25.7969, -
13.6521

Stable for
0<α<1

2 ≥ 9 3 13 +ive +ive +ive +ive -ive Stable for
0<α<1

3 9 ≥ 3 13 +ive +ive +ive +ive -ive Stable for
0<α<1

4 9 3 ≥ 13 +ive +ive +ive +ive -ive Stable for
0 <α< 1

■ Table 6 : Stability analysis with the control parameters values as k1 = 12, k2 = 3, k3 = 21

Equilibrium Point a1 a3 a1a2 − a3 D(P) Eigen values of
Jacobian Matrix
of Controlled sys-
tem

Stable / Unstable

E1 35.2751 636.2805 1.1147x104 2.0627x106 -20.7156, -
2.5596, -12.0000

stable

E2 33.8946 565.7037 9.7454x103 1.9480x106 -2.6660, -
10.6586, -
20.5700

stable

E3 21.8246 24.3566 2.0203x103 7.5909x105 -16.7962 +
0.0000i, -2.5142
+ 1.0957i, -
2.5142 - 1.0957i

stable

E4 50.4907 788.8388 3.0759x104 4.4526x107 -0.8051, -
30.6777, -
19.0079

stable
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Figure 3 Plot x,y,z at (a) k1 = 8, k2 = 1, k3 = 1 at α=0.97 at E2 (b) k1 = 10, k2 = 1, k3 = 12 at α= 0.97 at E2

Figure 4 Plot x,y,z at (a) k1 = 12, k2 = 3, k3 = 21 at α=0.97 at E3 (b) k1 = 15, k2 = 31, k3 = 21 at α= 0.97 at E3

Figure 5 Plot x,y,z at (a) k1 = 9, k2 = 3, k3 = 13 at α=0.97 at E4 (b) k1 = 9, k2 = 3, k3 = 20 at α= 0.97 at E4
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can be achieved by the social distancing which could reduce the
daily cases and daily critical cases and preventing deaths by proper
treatment on time.

CONCLUSION

In the present article, the feedback control method has been applied
to control the chaos in the dynamical system of COVID-19, as
proposed by (Mangiarotti et al. 2020) , which has been studied
by (Debbouche et al. 2021). In the present article, the fractional
order Routh- Hurwitz stability criteria have been utilized, and
to solve the fractional-order system, Adams-Bashforth-Molton
methods are used. The control of chaos is obtained under different
equilibrium points and parameters. In this article, chaos is studied
in the dynamical system that is proposed for representing the
spread of COVID-19. In the present article, it is shown under what
conditions the control parameters of daily infected cases, daily
critical cases, and daily deaths should be controlled so that chaos
can be controlled in the dynamical system.
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