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Abstract: This review focuses on nanostructures-based systems and aims to provide a comprehensive 
overview of recent advancements in energy storage technologies and modified energy storage materials. The 
transition towards a sustainable and carbon-free energy system hinges on the progress of efficient and safe 
energy storage technologies. Supercapacitors have garnered significant interest in diverse energy storage 
applications due to their rapid charge/discharge rates, high power density, and extended cycle life. 
Nanostructures have conclusively demonstrated their capability to significantly enhance supercapacitor 
electrodes' performance. MXene, an innovative category of 2D materials, has emerged as a promising 
candidate for energy storage applications due to its substantial surface area, exceptional electrical 

conductivity, and versatile characteristics. Supercapacitors, nanostructures, and MXene are the main topics 
of the research articles and reviews in this special issue, highlighting recent developments in the design, 
synthesis, and characterization of advanced energy storage materials and devices. Additionally, this study 
presents an in-depth investigation of various carbon-based nanomaterials, their synthesis techniques, and 

their performance in supercapacitors. It also emphasizes the potential of recycling waste materials for 
developing high-performance nanomaterials for energy storage applications. Finally, this review encourages 
further research and development of advanced energy storage technologies by giving readers a thorough 

overview of the current state-of-the-art and future directions in this rapidly expanding sector. 
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1. INTRODUCTION 
 
In recent years, the global population growth rate 

has surged, paralleled by a corresponding expansion 
in the size of industries. As these industries 
proliferate and extend their reach across broader 
geographical regions, the demand for energy 
experiences a steep and substantial rise. Due to 
reasons such as global warming and the limited 
availability of fossil fuels, the significance of 

equipment necessary for efficient energy storage, 
transmission, and alternative fuels becomes 
increasingly prominent. The storage of energy derived 
from renewable resources and its efficient conversion 
into power necessitate a more sophisticated 

infrastructure. This requirement fosters equipment 
production, such as new battery types and 

supercapacitors, driven by advancements in 

materials science (1–3). 
 
Enhancing energy efficiency through the 

development of capacitors and batteries is a focal 
point of research driven by the need to address 
various drawbacks. These drawbacks include limited 
energy storage capacity, a short operational lifespan 
characterized by a small number of cycles, as well as 
restricted charge and discharge rates. While certain 
studies focus on refining existing devices, a 

significant portion of research strives to create 
energy storage and transmission devices using 
innovative techniques and novel materials. 
Consequently, the goal is to fabricate equipment 
characterized by remarkable attributes such as high 

energy storage capacity, rapid charging/discharging 
capabilities, lightweight design, resistance to 

corrosion and external influences, cost-effectiveness, 
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and ease of production. One of the foremost concerns 
is the realization of equipment boasting elevated 

charge/discharge speeds, commonly referred to as 
high energy density, while preserving their initial 
stability over numerous charging/discharging cycles. 
In the contemporary landscape, there is a prevalent 
shift towards adopting wireless, portable, and 

compact devices that demand substantial energy due 
to their technological functionalities. This contrasts 
with the traditional use of stationary devices tethered 
to networks via cables. Consequently, the imperative 
to harness novel materials and technologies to 
advance sophisticated batteries and capacitors 

becomes exceedingly significant. These 
developments cater to devices designed for everyday 
and specialized applications, including biomedical 
devices (4–6). 
 

In this context, a multitude of novel products have 
emerged as a direct outcome of conscientious 

research endeavors focused on ecologically friendly 
and sustainable advancements in capacitors and 
batteries. Among this array of products, several stand 
out prominently owing to their diverse advantages. 
 
Solid-state battery: Solid-state battery 
manufacturing is an intriguing study area for 

enhanced energy storage materials (7). Due to the 
solid electrolytes used instead of liquid ones, these 
batteries' cycle life, safety, and energy density can 
all be improved. Solid-state batteries. They are a 
desirable alternative for electric car applications 
because they can produce better energy densities 

than lithium-ion batteries. These battery systems 
replace conventional liquid electrolytes, enhancing 
security, power density, and cycle stability. 
 
Redox flow battery: Redox flow batteries are 
another cutting-edge energy storage method that is 
gaining popularity since they are simple to scale up 

and down (8). The energy reservoir in these batteries 
is derived from the liquid electrolyte, which can be 
physically isolated from the electrodes. With 
enhanced adaptability and customization, energy 
storage technologies are more suitable for large-scale 
energy applications. As a result, storage technology 
options are becoming increasingly scalable and 

flexible. 

 
Lithium-ion battery: One of the most widely 
acclaimed intricate energy storage devices is the 
lithium-ion battery. Lithium batteries have emerged 
as the best choice for many applications, including 

stationary energy storage, portable devices, and 
electric vehicles. Lithium-ion batteries are an 
excellent solution for several applications due to their 
high energy capacity and prolonged cycle stability. 
They rely on the electrochemical properties of 
electrolytes to produce and store electricity. 
Furthermore, due to their size, weight, and 

suboptimal performance, conventional lithium-ion 
batteries (LiB), characterized by an energy density of 
less than 500 watt-hours per kilogram, are not 
advisable for application in portable or wearable 

electronic devices (9–11). 
 
Supercapacitors: A supercapacitor, also known as 

an energy storage device or an electrochemical 
capacitor, is a high-tech energy storage device that 

generates electricity by separating negative and 
positive charges on opposite sides of a membrane. 
Unlike batteries, which store energy through 
chemical reactions, supercapacitors do so through 
electrostatic interactions. They are perfect for 

applications demanding a high power density 
because of their quick charging and discharging 
characteristics. Due to their ability to quickly charge 
(i.e., short discharge times of 1–10 seconds 
compared to 10–60 minutes for Li–ion batteries) and 
maintain performance over an extended period (over 

30,000 hours compared to 500 hours for batteries), 
supercapacitors have grown in popularity (12). 
 
Compared to traditional batteries, supercapacitors 
have several benefits. Because they have a higher 

power density, they can deliver more power in less 
time. They may also be charged and discharged more 

often than batteries before their performance starts to 
decline. Supercapacitors can be more dependable in 
challenging circumstances since they are more 
resistant to temperature changes than batteries. 
Advanced energy storage materials play a crucial role 
in facilitating the transition to a future dominated by 
renewable and sustainable energy sources, as they 

have the capability to enhance the efficiency, 
dependability, and availability of energy storage 
systems. 
 
Supercapacitors can be categorized into several 
types based on how they store their charge. These 

types include pseudocapacitors, hybrid 
supercapacitors, and electric double-layer capacitors 
(EDLCs). Among these, pseudocapacitors utilize 
redox reactions occurring at the electrode surface to 
store energy. At the same time, EDLCs achieve 
energy storage by forming an electric double layer at 
the interface between the electrolyte and electrode 

surface. Combining the EDLC and pseudocapacitive 
mechanisms to enhance charge storage, hybrid 
supercapacitors demonstrate significantly higher 
energy and power densities than EDLCs or 
pseudocapacitive mechanisms used separately. 
EDLCs are a specific type of supercapacitor that 
stores electrical charge by creating an electric double 

layer at the interface between the electrode and the 

electrolyte. This double layer enables EDLCs to have 
high capacitance, allowing for storing large amounts 
of energy through electrostatic means. Carbon-
based materials such as carbon nanowires, carbon 
nanotubes, activated carbon, graphene, and 

graphene oxide are commonly used as electrodes in 
EDLCs due to their extensive surface area, facilitating 
efficient charge storage. 
 
On the other hand, pseudocapacitors store charge by 
utilizing electrochemical Faradaic redox reactions 
that take place at the electrode surface. This 

mechanism allows pseudocapacitors to store more 
energy than EDLCs, giving them a higher power 
density. Pseudocapacitive materials, including metal 
oxides like ruthenium oxide and manganese oxide, as 

well as conducting polymers like polyaniline (PANI) 
and polypyrrole (PPy), are commonly employed as 
electrodes in pseudocapacitors. It is worth noting 
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that while pseudocapacitors offer higher energy 
storage capabilities, the long-term stability of these 

devices can be limited by changes in the electrolyte 
and modifications to the electrode surface over time. 
These factors can lead to performance degradation in 
pseudocapacitors, highlighting the need to consider 
the materials and design used in their construction 

carefully. 
 
2. CLASSIFICATIONS OF SUPERCAPACITORS 
 
Supercapacitors can be divided into three categories: 
thin film, flexible, and planar. Thin film 

supercapacitors, frequently used in small electronic 
devices, comprise thin layers of materials like metal 
oxides and carbon. Flexible supercapacitors, on the 
other hand, are more common and can continue to 
perform even when bent, twisted, or stretched. 

Because of their great power density, planar 
supercapacitors, which have a rectangular, level 

architecture, are frequently utilized in bigger 
electronic equipment. Depending on the special 
needs of the device, each of these three types of 
supercapacitors offers a different set of advantages 
and can be applied to various applications. 
Supercapacitors can be categorized based on their 
construction, which includes electrochemical 

capacitors, pseudocapacitors, and hybrid capacitors. 
Electrochemical capacitors are composed of two 
conductive plates separated by an electrolyte, 
having a high capacitance but lower energy density 
compared to other supercapacitor types. On the 
other hand, pseudocapacitors employ electrode 

materials such as metal oxides or conducting 
polymers, leading to higher energy density but lower 
capacitance. 
 
By striking a balance between high energy density 
and high capacitance, hybrid capacitors amalgamate 
the benefits of electrochemical and 

pseudocapacitors. High power density, energy 
density, low internal resistance, and quick charge-
discharge periods are just a few of the characteristics 
of supercapacitors. High energy density refers to 
storing a significant quantity of energy in a compact 
device, whereas high power density allows for great 
power delivery in a short time. Effective energy 

transfer between the powered device and the 

supercapacitor is facilitated by low internal 
resistance, thus enhancing overall performance. 
Quick charge-discharge times are essential for 
applications requiring an immediate power boost, like 
electric automobiles or regenerative braking 

systems. Due to their categorization and physical 
characteristics, supercapacitors present an intriguing 
solution for a wide range of applications requiring 
high power and rapid energy transfer. 
 
The materials utilized for the electrodes in 
supercapacitors are classified due to their charge 

storage mechanism. Additionally, electric double-
layer capacitors (EDLCs), pseudocapacitors, and 
hybrid capacitors are the three main varieties 
(13,14). Activated carbon serves as the electrode 

material in EDLCs, also known as electrostatic 
capacitors, which exploit the electric double layer 
they produce at the electrode-electrolyte interface to 

store energy. In a non-Faradaic process, where the 
concentration of electrons at the electrode is 

electrostatic, EDLCs use the electrical double-layer 
between the electrode and electrolyte to store 
energy. This procedure has no chemical mechanism 
or charge transfer between the electrode and 
electrolyte. Because no chemical connections are 

formed or broken, charges are therefore dispersed 
evenly across surfaces by physical processes, leading 
to great reversibility and cycle stability. Moreover, 
electrode polarization can distort the solvation shell 
around ions, potentially leading to partial 
desolvation. EDLCs feature a rapid energy storage 

system that enables swift charging, discharging, and 
high-power output. 
 
3. SUPERCAPACITORS: HIGH-POWER ENERGY 
STORAGE DEVICES 

 
Supercapacitors are divided into three according to 

the material class they are made from, apart from 
these classifications. All of them are nano-sized, but 
chemically and morphologically, they can be formed 
from classical nanomaterials, structures occurring 
with innovative MXenes, and various carbon-based 
structures. Material-based classification of 
supercapacitors is given in Figure 1. 

 
3.1. Nanostructure-Enhanced Supercapacitor 
Electrodes 
The electrodes of supercapacitors can benefit 
specifically from nanostructures. Nanostructures 
have significantly improved the functionality of 

supercapacitor electrodes thanks to their enormous 
surface area, better electrical conductivity, and 
adjustable properties. Nanostructured materials 
have improved charge transfer kinetics, better 
electrochemical stability, and energy storage 
capabilities. This section thoroughly analyzes several 
nanostructures used in supercapacitor electrode 

design, emphasizing the synthesis methods used and 
the resulting performance gains. 
 
Metal oxide-based nanostructures have gained 
significant popularity in various energy applications 
due to their exceptional characteristics, such as a high 
surface area-to-volume ratio and small particle sizes. 

These qualities make them highly desirable for 

energy-related applications, including energy 
storage, catalysis, and sensors. The large surface 
area facilitates enhanced interactions with reactants 
and electrolytes, promoting efficient charge transfer 
and overall performance improvement. Furthermore, 

the smaller particle sizes allow for greater 
accessibility to active sites, improving functionality 
and responsiveness. Utilizing metal oxide-based 
nanostructures holds great promise in advancing 
energy technologies by enhancing their effectiveness 
and performance. In line with this approach, Haldorai 
et al. conducted a study focused on synthesizing a 

novel composite material (15). The study involved 
decorating reduced graphene oxide (rGO) with zinc 
oxide nanoparticles (ZnO NPs) using a one-pot 
method in a supercritical carbon dioxide medium. The 

primary objective of this study was to enhance the 
performance of supercapacitors by leveraging ZnO 
NPs as nanostructures, thereby achieving improved 
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energy storage capabilities. In another study, 
Sivakumar et al. presented a study on the synthesis 

of novel copper-doped zinc oxide nanoparticles (Cu-
doped ZnO NPs) with an average crystallite size 
ranging from 25 to 22 nm (16). These nanoparticles 
demonstrated remarkable electrochemical 
performance, exhibiting an outstanding specific 

capacitance of 539.87 F/g at a scan rate of 10 mV/s. 
The primary objective of this research was to 
enhance both the photocatalytic activities and 
electrochemical performance of the Cu-doped ZnO 
NPs, with potential applications in wastewater 
treatment and supercapacitors. Integrating 

nanostructures, particularly metal oxide-based 
nanomaterials, holds immense potential for 
advancing energy storage technologies. Research 
findings suggest that thorough exploration and 
optimization of ZnO nanostructured materials can 

significantly enhance the efficiency and performance 
of supercapacitors. This progress contributes to 

developing more efficient and sustainable energy 
storage techniques. To further improve energy 
storage technologies, it is crucial to fully unlock the 
potential of nanostructures and continuously 

evaluate the benefits derived from their utilization. 
By doing so, we can drive innovation, foster 

continuous improvement, and achieve remarkable 
advancements in the field of energy storage. In 
2023, Kambale et al. used spray pyrolysis to produce 
copper oxide (CuO) nanorods (17). The obtained CuO 
electrode was extremely appropriate for 

supercapacitor applications since it had a maximum 
specific energy of 108.18 Wh/kg and had outstanding 
cycling stability by maintaining 87.78% of its 
capacitance after 5000 cycles. For the advancement 
of energy storage systems, the incorporation of 
nanostructures, in particular metal oxide-based 

nanomaterials, offers great promise. Exploring and 
utilizing the potential of metal oxide nanostructured 
materials has improved supercapacitor performance 
and efficiency, opening the door for more efficient 
and long-lasting energy storage options. Enhancing 

energy storage systems requires employing 
nanostructures to their maximum capacity and 

continually assessing the benefits received from doing 
so. These continual research and development efforts 
are crucial for stimulating innovation and attaining 
more improvements in the sector. 

 

 
Figure 1: Material-based classification of supercapacitors. 

 
Metal-organic frameworks (MOFs) consist of porous, 
crystalline compounds formed by metal ions or 
clusters bonded to organic ligands. Their properties 

can be highlighted for various purposes based on the 
utilized metal, the valency of metal ions in the 
structure, and the type of organic molecule. 
Concerning supercapacitors, MOFs with a smooth 
crystal structure, substantial surface area, and easy 
adjustability are preferred for producing high-
capacity electrodes. One significant drawback of 

these materials lies in their inherent low electrical 
conductivity and weak stability in their pristine state, 
especially when compared to their diverse composite 

structures. Nevertheless, MOFs remain extensively 
employed in this field due to their adaptability to 
alternative structures and compatibility with 

additives. Discovered by Yaghi et al. in 1995, MOFs 
have continued to undergo development and 
customization since then (18). In the realm of energy, 

MOFs and their derivatives find application in various 
areas, including hydrogen production and storage, 
fuel cells, lithium-ion batteries, superconductors, and 
solar cells. Three alternatives exist for employing 
MOFs in superconductor fabrication: a) Pristine MOFs 
can be utilized due to electrolyte ions adsorbed on 
their inner surfaces or due to reversible redox 

reactions occurring at their metallic centers. b) Metal 
oxides obtained by the transformation of MOFs are 
employed, with charge transfer between the 

electrolyte and the electrode safeguarding electrons. 
c) The MOFs are subjected to pyrolysis, resulting in 
a porous carbonaceous structure that enhances 
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conductivity and capacitance (19). 
 

The notable advantages of MOFs over traditional 
supercapacitors include their expansive design 
possibilities and the capability to fine-tune 
composition, adjust porosity, and control surface 
area width. Furthermore, their distinctive structures 

enable a harmonious fusion of organic molecule 
flexibility with the inherent rigidity of inorganic 
molecules. Nonetheless, challenges such as low 
conductivity, potential particle aggregation, and 
structural degradation during cycling must be 
addressed. Consequently, research on MOFs has 

reached advanced stages, with the integration of 
newly discovered materials into these frameworks 
being actively explored. MOF-derived composites 
harness the favorable attributes of MOFs and other 
materials. The metallic content within MOFs furnishes 

redox sites that exhibit Faraday pseudocapacitive 
behavior, while the organic components contribute a 

conjugated π electron cloud and a porous structure 
that elicits EDLC behavior. The resultant structure 
can exhibit hybrid capacitive behavior when both 
behaviors are sufficiently developed. The high 
stability of the structures can reach extraordinary 
degrees when compared to batteries. Ni-MOF sample 

structures produced by electrophoretic deposition, 

Ni3(HAB)2 showed 81% stability after 50.000 cycles 
(20), Ni3(HITP)2 showed 84% capacitance stability 
after 100.000 cycles (21). It has been shown that 
crystallization in the desired direction can be achieved 

by adjusting the concentrations of organic ligands in 
Ni(Tdc)(Bpy) based 3D MOF nanocrystals (22). 

Considering this, it has been asserted that a diverse 
range of shapes can be synthesized, including 
nanorods, nanosheets, and 3D structures. 
 
Using Co as the metal is a common practice. The 

widespread utilization of Co-MOFs can be attributed 
to factors such as low cost, straightforward 
synthesis, excellent structural stability, and 
environmentally friendly attributes. An exemplary 
illustration is the Co(II)-TMU-63 MOF structure, 
wherein both µ4-tpa2 and µ-dapz ligands are 

simultaneously employed. This structure showcases 
the incorporation of multiple organic compounds and 
has demonstrated remarkable performance 
concerning capacitance, energy density, and cyclic 

life (23). The investigation of polymetallic MOFs 
featuring multiple metallic constituents has also 
garnered attention. Comparative to structures 

comprising solely Ni or Co, Ni/Co-MOF nanoflakes 
exhibited heightened efficiency (24). While the 
solvothermal method was employed in this study for 
material fabrication, an alternative investigation 
utilizing ultrasound treatment yielded greater 
capacitance due to the creation of more electroactive 
sites (25). Furthermore, the advancement of 

solvothermal synthesis, achieved via metal ion 
exchange, has increased capacitance. This is 
attributed to the facilitated diffusion of the 
electrolyte, achieved by augmenting the gap 
between layers within the multilayer structure 
alongside the augmentation of the count of 

electroactive sites (26). In conjunction with Ni and 
Co, the incorporation of Mn into the MOF structure 
has also demonstrated an elevation in capacitance 

(27). Mn-based MOFs offer electrochemical 
advantages such as a hierarchical configuration and 

shortened ion diffusion pathways (28). The profound 
impact of morphologies on capacitive behavior has 
been explored from various vantage points. For 
instance, the amorphous form of UiO-66 MOF 
outperformed its crystalline counterpart (29). Ni-MOF 

and Cu-MOF stand as instances where different MOFs 
have been combined to augment dimensions (30). 
 
Additionally, introducing diverse compounds into the 
structure is recommended to bolster capacity (31). 
Employing MOFs as composite constituents 

represents a strategy for enhancing their 

electrochemical or physical attributes. For instance, 

incorporating Cu-MOF onto δ-MnO2 resulted in 
nanosheets that amplified the original structure's 

capacitance and extended its cyclic lifespan (32). 

While integrating metal oxides into the materials 
leads to composite formation, an additional boost in 
capacitance can be achieved by grafting them with 
metallic compounds (33). 
 
Certain polymers, recognized for their remarkable 

electrical conductivity, are often favored in 
supercapacitor fabrication. Due to their adaptable 
attributes, diverse functional groups, isomeric 
variety, flexibility, ease of production, and cost-
effectiveness, polymers emerge as preferred choices 
in this field and various other domains. The presence 
of conjugated bonds between monomers imparts 

these exceptional characteristics to conducting 
polymers. Moreover, non-inherently conductive 

polymers can acquire conductive attributes by 
incorporating dopants during monomer bonding. 

These dopants may also confer additional functional 

properties. Neutral (Br2, I2), ionic (FeClO4, LiClO4), 

organic (CH3COOH, CF3SO3Na), polymeric (PVA, 
PVS), metal oxide (SnO2, TiO2) dopants can be 
selected based on the material and the desired trait 
(34). Polyaniline (PANI), polypyrrole (PPy), 
polythiophene (PTh), and their derivatives rank 

among the most frequently utilized conductive 
polymers. The rate of dopant incorporation hinges on 
the proximity of positive charges along the polymeric 
chain. For instance, while this ratio stands at 0.5 for 
polyaniline, it is 0.33 for the polymers listed above 
(35). 

 

The initial high capacitance observed in stand-alone 
conductive polymers typically experiences a 
significant reduction after a short cyclic life (36). 
Naturally, exceptional cases exist, and performance 
varies based on factors such as synthesis method, 
dopant, nanostructure morphology, and more. For 
instance, the practical performance of PANI was 

found to lag its theoretical potential (37,38). In 
investigations where PPy and PTh were utilized in 
their pure forms, incorporating a surfactant (39) or 
dopant (40,41) substantially elevated capacitance 
and cyclic stability. However, the advantageous 
attributes of polymeric materials, even if not 

exhibiting exceedingly high performance on their 

own, find utility when integrated into composite 
structures within supercapacitors. For instance, 
carbon materials exhibit relatively low capacitance 
despite their notable electrical conductivity, physical 
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resilience, and adaptable surface properties. 
Numerous studies have been undertaken to 

surmount this limitation by employing polymers. 
Graphite (42), graphene (43), graphene oxide (44), 
and carbon nanoparticles of diverse configurations 
(45–49) have been combined with conductive 
polymers, yielding performance surpassing that of 

pure constituents. Moreover, the range of synthesis 
methods employed is considerably extensive (50–
54). A recent study presents specific capacitance 
values for various polymers and polymeric 
composites alongside their respective synthesis 
methods (55). For example, producing a 

PPy/graphene composite featuring a uniform 
nanosheet morphology, in contrast to a cauliflower-
like structure, bolstered electrochemical properties 
by creating ion diffusion pathways (56). In examining 
a PANI/graphene composite, an increase in the 

graphene ratio led to a more orderly placement of 
PANI monomers and heightened conductivity due to 

robust structural bonding (57). Alongside the 
research conducted by scholars who established a 
similar correlation within the PPy/MWCNT blend (54), 
another study revealed that the performance of the 
composite material exhibited enhancement up to a 
15% MWCNT ratio, after which it declined at higher 
proportions (58). The utilization of PANI with 

graphene oxide yielded a more than twofold increase 
in capacitance, accompanied by elevated material 
conductivity (59). When subjected to a current 
density of 0.3 A/g, among PANI, PEDOT, and PPy 
combined with reduced graphene oxide, PEDOT 
displayed the highest stability (88%) after 1000 

cycles despite possessing the lowest specific 
capacitance (108 F/g). PANI, boasting a higher 
specific capacitance (361 F/g) compared to PPy (248 
F/g), also exhibited superior stability (82% vs. 81%) 
(60). Furthermore, when coated onto a pencil 
graphite electrode, PTh exhibited the lowest specific 
capacitance but demonstrated the greatest stability 

when compared to poly(3-methylthiophene) and 
PEDOT (61). 
 
As elucidated in the preceding section, metal oxides 
are frequently employed in conjunction with polymers 
due to their inherent low conductivity and 
susceptibility to instability in acidic environments, 

notwithstanding their notable high capacity (62). 

Especially the wide band gaps of the oxides of the 
transition metals are the main reason for their low 

conductivity. However, for example, n-octadecyl-

trimethyl-ammonium-intercalated MnO2 used with 

PANI both maintained its high conductivity and 
increased the specific capacity of PANI from 187 F/g 

to 220 F/g at a current density of 1 A/g (63). There 
are many other studies in which the same binary 
mixture is used in different morphologies (27,64,65). 
The PANI/CuO composite performed better than 

PEDOT/CuO and PPy/CuO (51). On the other hand, 
PPy has still been evaluated in producing 
supercapacitors by using it with many metal oxides. 

CoO (66), WO3 (67), MnO2 (68), and V2O5 (69) are 

some metal oxides whose electrochemical properties 

are strengthened thanks to their synergistic effects 
with PPy. In addition to carbonaceous materials and 
metal oxides, compounds can also be incorporated to 

create composites with polymers for application in 

supercapacitors. PANI, for instance, facilitates the 
crystal growth of Ni(OH)2, resulting in enhanced 

electrochemical performance (52). It also bolsters 
the conductivity of hydroquinone, rendering it 
suitable for utilization in supercapacitors (70). 

Moreover, PANI contributes to the capacitance and 

stability of MoS2 (71). 
 
Table 1 comprehensively compares recent 
breakthroughs in nanomaterials tailored for 
supercapacitor applications. The table outlines 

specific capacitance, energy, power densities, cycling 
stability, and rate capability, highlighting the 
significant impact of nano-based materials on 
elevating supercapacitor electrodes' design and 
operational prowess, ultimately leading to enhanced 
efficiency and effectiveness. 

 

3.2. An Innovative Class of 2D Materials for 
Energy Storage: MXene 
MXene has emerged as a promising contender 
among the most recent developments in energy 
storage materials. MXene is a name for a class of 
two-dimensional materials made of carbides, 

nitrides, or carbonitrides of transition metals. These 
substances have outstanding qualities such a high 
conductivity, a sizable surface area, and 
customizable surface chemistry. MXene is an 
appealing option for energy storage applications, 
such as supercapacitors, due to its distinctive 
qualities. The synthesis, characterization, and 

performance of MXene-based energy storage 
materials are covered in detail in this section, along 

with information on their potential to play a 
significant role in developing new energy storage 
technologies. The improved MXene-based 
composites outperform traditional materials 
regarding cycle lifetime and energy density while 

dramatically lowering the MXene stacking 
phenomenon and enhancing oxidation resistance. 
They work well with a variety of materials, including 
small molecules, polymers, and oxides. The complex 
relationship between their structural properties and 
electrochemical performance has been revealed 

through extensive investigation. This includes the 
way in which the characteristics are organized, the 
microstructure, the steric arrangement, and the 
makeup of the material, all of which influence the 

charge storage processes, ion transport, 
conductivity, and stability. Thanks to their systematic 
analysis of these interactions, researchers have 

made it possible to construct MXene-based 
electrodes with knowledge, resulting in more 
effective and efficient energy storage systems. These 
composite materials predominantly comprise 
conductive polymers, metal oxides, and carbon 
nanostructures. Approximately 40% of MXene-based 
composite publications focus on metal oxides, 

conducting polymers, and carbon nanomaterials. In 
the literature, Vigneshwaran made a significant 
contribution by successfully developing a novel 
three-dimensional (3D) nickel cobalt tungstate-
MXene nanocomposite specifically designed for coin 
cell supercapacitors (83). The nanocomposite 

demonstrated remarkable capacitance, achieving an 
impressive value of 587 F/g at a current density of 1 
A/g in a three-electrode cell configuration. These 
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outstanding results highlight the exceptional 
performance of this nanocomposite and its 

tremendous potential for high-performance 
supercapacitor applications. In 2023, MXene-
bacterial cellulose (MXene-BC) composite sheets, a 
novel substance that Weng et al. reported, have 
enormous potential for the creation of self-charging 

supercapacitors. These composite films have 
exceptional qualities that allow it possible to store 
and discharge electrical energy effectively. This 
research's ability to achieve a charging voltage of 0.6 
V for the self-chargeable supercapacitor is one of its 
notable accomplishments. This substantial voltage 

milestone was reached using synthetic sweat as the 
electrolyte, further boosting the supercapacitor's 
efficiency and usefulness. The MXene-BC composite 
films are formed by combining MXene, a two-
dimensional nanomaterial with high surface area and 

outstanding electrical conductivity, with bacterial 
cellulose, a biocompatible and durable material. This 

effective combination creates a material with effective 
charge storage and great mechanical characteristics 

(84). Tin-cobalt-sulfide (Sn-Co-S) coated on 2D 
MXene sheets was the ground-breaking cathode 
material for high-performance asymmetric 
supercapacitors developed by Kim et al. in a recent 
work (85). A high specific capacity value of 305.71 

mAh/gm at 1 A/g is one of the innovative 0D/2D Sn-
Co-S/MXene hybrid material's impressive features. 
The Sn-Co-S/MXene hybrid material's remarkable 
electrochemical performance is due to its highly 
electroactive and conductive design. This study 
produces outstanding efficiency qualities by enabling 

effective charge storage and transfer. Hence, the 
deliberate integration of precisely engineered binary 
sulfide nanoparticles in conjunction with 2D scaffold-
like MXene sheets presents exciting prospects for 
developing energy storage systems with outstanding 

performance and long-term stability. 

 
Table 1: Comparative overview of nanomaterials for supercapacitors. 

Nanomaterials Results Reference 

Graphene 
The specific capacitance: 523 F/g at 1.0 A/g, good 
rate capability and cycling stability. 

(72) 

Silver (Ag)-doped reduced 

graphene oxide (rGO)/PANI 
composite 

The specific capacitance: 0.5–30 A/g, the highest 
capacitance value:379 F/g 

(73) 

N-doped crumpled carbon nano-
tubes (CNTs) 

The high capacitance: 336 F/g, cycling stability: 
96.1% capacitance retention after 10,000 cycles, 
and good rate capability. 

(74) 

SmNiO3/Multi walled carbon 

nanotube (SWCNT)//CNT 

Capacitance retention: 79.34% and coulombic 

efficiency: 97.52% (20,000 cycles) 
(75) 

Multi-walled carbon nanotube 
(MWCNTs)/MgMn2O4 composite 

The specific capacitance: 1208 F/g at 1 A/g, high 
energy density of 54.39 W h/kg, and power density 
of 775.46 W/kg at 1 A/g. 

(76) 

Zn-Co metal-organic frameworks 

(MOFs) nanospheres/rGO 

The specific capacitance: 2925 F/g at 0.5 A/g, and 
good rate capability of 45.4% capacitance at a high 
current density of 50 A/g. 

(77) 

MOF-derived NiS2@carbon micro-
spheres wrapped with CNTs 

The specific capacitance: 1572 F/g at 0.5 A/g, 

energy density: 21.6 Wh/kg and 94.8% cycling 
stability after 10,000 cycles. 

(78) 

MOF derived NiCo2O4 nanosheets 
Energy density: 84.26 Wh/kg, power density: 1185 
W/kg with 83.23% capacitance retention after 
10,000 cycles. 

(79) 

3D MXene@graphene hydrogel 

The maximum area capacitance: 4.33 F/cm2 at 10 
mA/cm2 and a high area capacitance: 1.76 F/cm2 at 
1000 mA/cm2, the high capacitance retention: 

40.6%, a high cyclic stability of 8.37% decrease 
after 100,000 cycles. 

(80) 

PANI-MXene composite 
The specific capacitance: 222 F/g. The capacitance 
retention of 98.5% after 10,000 charges. 

(81) 

CuMn2O4/Ti3C2 MXene composite 

The specific capacitance: 496 mF/cm2 at 6 mA/cm2 
with cyclic stability of 80% for up to 10,000 cycles, 
and a power density: 1.5 m/cm2 at a higher energy 
density of 0.073 mWh/cm2 

(82) 

3.3. Carbon-Based Nanomaterials: Synthesis 
Techniques and Performance in 
Supercapacitors 
Due to their superior electrochemical qualities, 

carbon-based nanomaterials have attracted a lot of 
interest in the field of energy storage. This section 

examines several carbon-based nanomaterials and 
their synthesis processes, including carbon 
nanotubes, graphene, and carbon nanofibers. 

Additionally, it looks at how well they work as 
electrode materials in supercapacitors, concentrating 
on elements like pore structure, surface chemistry, 
and morphology that affect how much energy they 

can store. The promise of these materials for 
upcoming energy storage applications is also 

highlighted in this section, along with current 
developments in modifying carbon-based 
nanoparticles to enhance their electrochemical 



Yılmazoğlu E and Karakuş S. JOTCSA. 2023; 10(4): 1107-1122 REVIEW ARTICLE 

1114 

performance. The performance of carbon-based 
nanomaterials in supercapacitors can vary depending 

on various factors such as material structure, surface 
area, pore size, and electrode configuration. The 
green method for Carbon Dots (CDs), hydrothermal 
synthesis of Graphene Quantum Dots, Chemical 
Vapor Deposition (CVD) for Graphene and Reduced 

Graphene Oxide, electrochemical exfoliation for 
Reduced Graphene Oxide and Carbon Nanotubes 
(CNTs), and the template method for Mesoporous 
Carbon/nanoparticles have all been investigated for 
carbon-based nanomaterials in supercapacitor 
applications. 

 
In fabricating electrodes especially designed for 
supercapacitors, various deposition processes, 
including physical vapor deposition, chemical vapor 
deposition, and electrodeposition, are employed (86–

88). These techniques offer various ways to create 
electrode materials with specific characteristics and 

enable fine control over the thickness of the 
deposited films. The electrodes produced because of 

this customized process are guaranteed to have the 
best properties, such as increased surface area, 
electrical conductivity, and charge storage capacity, 
all of which are essential for the greater performance 
of supercapacitor devices. Additionally, the ability to 

precisely control the film thickness helps optimize the 
supercapacitor's energy and power density, allowing 
it to transmit and store electrical energy effectively 
in various applications. These techniques yield 
materials with a wide range of performance 
characteristics, including affordability, 

straightforward growth, high stability, excellent rate 
capability, high specific capacitance, long cycle life, 
low resistance, and good electrical conductivity, 
enabling researchers to choose materials based on 
specific application requirements. The Table 2 

provides a general overview of their performance 
characteristics. 

 
Table 2: A general overview of the performance characteristics of nanomaterial in supercapacitor 

applications. 

Synthesis 
Method 

Nanostructure Performance Characterization Results Reference 

Green 
Method 

Carbon Dots (CDs) 
Low specific capacitance, cost-
effectiveness, simple growth, 

and high stability 

10-20 nm (89) 

Hydrothermal 
Method 

Graphene quantum 
dots 

Low specific capacitance, cost-
effectiveness, simple growth, 
and high stability 

Lateral dimensions: 10–20 nm (90) 

Chemical 

Vapor 
Deposition 

(CVD) 

Graphene 

Excellent rate capability, high 

specific capacitance, long cycle 
life, and low resistance 

Spherical nanoparticles 
diameter: 80±8 nm and the 

lateral size 500 nm (PPY 
grown on dopamine-coated 
graphene) 

(91) 

Chemical 

Vapor 
Deposition 
(CVD) 

Reduced graphene 
oxide 

Excellent rate capability, high 
specific capacitance, long cycle 
life, and low resistance 

the average crystallite size of 

GO and thermally reduced 
graphene oxide (TRGO)/Ni- 
Foam (NF) 35.43 and 1.61 nm 

(92) 

Electro-
chemical 
Exfoliation 

Carbon nanotubes 

Excellent electrical 
conductivity, high specific 

capacitance, and rapid 
charge/discharge rates 

The high specific surface area: 

219 - 210 m2/g 
(93) 

Electro-
chemical 
Exfoliation 

Carbon nanofibers 
Long cycle life, good electrical 
conductivity, and moderate 
specific capacitance 

Diameter: 10–40 nm (94) 

One-pot 

synthesis 
technique 

Mesoporous 
carbon/nanoparticles 

Excellent ion accessibility, high 

specific capacitance, and good 
stability 

The high specific surface area: 
686 m2/g 

(95) 

Solvothermal 
Method 

Heterostructure 
hollow spheres 

Low cost, good stability, 
moderate specific capacitance, 

and simple scalability 

Size: 1140 and 1520 nm. (96) 

Pyrolysis Porous carbon 
Large surface area, low cost, 
strong stability, and moderate 
specific capacitance 

Pores with width between 10 

nm and 50 nm 
(97) 

Sonication 
Nb2C MXenes 
composites 

Good cycling stability, electrical 

conductivity, and high specific 
capacitance 

100 nm for single layer (98) 

Sonication 
MnFe2O4/MXene/NF 
nanosized composite 

Good cycling stability, electrical 
conductivity, and high specific 
capacitance 

quasi-2D MXene sheets (99) 
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4. CHALLENGES AND FUTURE OPPORTUNITIES 
 

In the realm of energy storage, the pursuit of 
innovative solutions remains paramount to meet the 
escalating demand for environmentally sustainable 
and carbon-neutral power sources. This review, 
focused on nanostructure-based systems, endeavors 

to provide a comprehensive panorama of recent 
advancements in energy storage technologies and 
refined energy storage materials. Facilitating the 
transition to a sustainable energy landscape 
necessitates the development of efficient and secure 
energy storage techniques. Supercapacitors have 

emerged as a central focus across a diverse array of 

energy storage applications, driven by their swift 
charge/discharge kinetics, high power density, and 

extended cycle life. The integration of nanostructures 
has incontrovertibly demonstrated their potential to 
significantly amplify supercapacitor electrodes' 
effectiveness. Running parallel to this, the evolution 
of MXene, an inventive class of two-dimensional 

materials, holds great promise as a formidable 
contender in the energy storage arena. MXene's 
expansive surface area, remarkable electrical 
conductivity, and adaptable properties render it an 
appealing candidate for diverse energy storage 
applications.

 

 
Figure 2: Energy density vs power density of capacitors, batteries, fuel cells, and supercapacitors. 

 
The Ragone plot (Fig. 2), a graph that juxtaposes 
electricity storage and transmission devices along 
the energy density (Wh/kg) -power density (W/kg) 
axes, offers valuable insights. As data points 

populate this graph, batteries, characterized by their 
high storage capacities and low transmission forces, 
populate the high energy density-low power density 
quadrant. In contrast, classical capacitors occupy a 
different region. Fuel cells notably exhibit higher 
energy density compared to batteries. Devices 
closest to the ideal region align with mechanical 

components like engines and turbines. 
Supercapacitors, positioned along the graph's axial 
line, showcase their structure and composition 
diversity. This expansive variety positions 
supercapacitors, spanning a wide spectrum, to 
deliver superior densities. To encapsulate, the 

journey from EDLC to asymmetric and hybrid 
structures progressively enhances energy density. 
 
Biological materials are used too, besides polymeric 
and other chemical materials in the separators that 
are expected to prevent unwanted ions' transition 
and be stable throughout the working life. Materials 

can present negative features along with some 
superior features. For example, PVA, which is 
preferred in terms of properties such as permeability, 

biodegradability, can withstand low voltages (100). 
In addition to organic structures, it is seen that 
ceramic-like inorganic structures are also 

developed. Eggshell is one of the biologically based 
separators (101). In general, in addition to the 
stability of the separators, flexibility is another 
desired feature. Conductive liquids used as 

electrolytes can also be supplemented with other 
solutions that can give ions. For example, adding a 
solution that will make the pH move away from 
neutral but will not adversely affect other 
components will increase the power density (102). 
Materials such as anodic aluminum oxide, 
polystyrene colloidal particles, and sugar cubes are 

some of the auxiliary materials that can be used to 
increase the surface area of the electrodes. The 
smaller size of the ions also increases the 
performance, providing a faster transfer. While 
carbon itself, as active material, shows a weak 
capacitance, its derivatives with various 

morphological properties can improve performance. 
Although metal oxides, which are frequently used for 
this purpose, have different energy levels that 
facilitate charge transfer, they can be disadvantageous 
regarding environmental pollution, cyclic life, and 
charging efficiency (103). Conductive polymers, 
which are environmentally friendly, easily produced, 

and provide high power density, are another material 
class used as active material. Polypyrrole, polyaniline, 
polythiophene, polyphenylenevinylene, and 

polyacetylene are the most widely used conductive 
polymers. They can also be easily used in composite 
production with other materials and increase the 
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adjustability of properties (104). The diffusion rate of 
immobilized ions into the electrolyte is a parameter 

that affects the energy density. Materials with very 
different contents and structures have been designed 
to develop this speed in a controlled way. 
Hierarchical nanoarrays offer an advantageous 
approach when the one-pot strategy of hierarchical 

structures is used for dimension increase. 
Asymmetric fiber structures create folds and twists 
on the surface, creating a 3D morphology, which 
increases capacitance and power density. The 
properties of some supercapacitors, such as 
transparency, flexibility, lightness, small size, and 

biodegradability, increase the possibility of using 
these materials in biomedical engineering. This is a 
very important development in the field of medical 
electronics. It is possible to use supercapacitors in 
wearable electronics, electric vehicles, solar cells, etc 

(105). 
 

In contrast to lithium-ion batteries, supercapacitors 
boast safer and more straightforward electrolytes. 
Moreover, the realm of biodegradable 
supercapacitors introduces an added advantage in 
this domain. Their distinctive structural makeup 
ensures an extended cyclic life and elevated power 
density. As illustrated in the examples, many of these 

supercapacitors exhibit substantial performance 
retention even after enduring thousands or even up 
to 100 thousand cycles. While their relatively lower 
energy densities may be perceived as a drawback; 
this aspect often pales compared to their many 
advantages. Furthermore, the emergence of novel 

materials and techniques holds the promise of 
surmounting this limitation. Various production 
methods, including lithography, electrospinning, 
printing, laser scribing, deposition (electrophoretic, 
electrolytic, physical/chemical vapor), and 
sputtering, form the backbone of supercapacitor 
fabrication from diverse materials. Within this 

comprehensive review, the exploration spans diverse 
nanomaterials, their synthesis processes, and their 
functional performance within supercapacitor 
frameworks. Reported studies also spotlight the 
untapped potential inherent in waste recycling, 
underscoring the capacity to craft high-performance 
nanomaterials tailored exclusively for energy storage 

applications. Ultimately, the overarching objective is 

to establish a robust foundation for advancing energy 
storage technologies, thereby catalyzing a surge of 
research and development endeavors. 
 
5. CONCLUSION 

 
Recent developments in energy storage technology 
have focused on nanostructures for modifying energy 
storage materials. Creating effective and secure 
energy storage systems is necessary to transition to 
a carbon-free and sustainable energy system. As a 
result of their high power density, quick 

charge/discharge rates, and long cycle life, 
supercapacitors have attracted a lot of attention. 
Supercapacitor electrode performance has been 
demonstrated to be improved by the incorporation of 

nanostructures. MXene, a 2D material renowned for 
its sizable surface area, superior electrical 
conductivity, and varied features, is one promising 

substance in this domain. With a focus on 
supercapacitors, nanostructures, and MXene, this 

special issue includes various research articles and 
reviews highlighting the most recent advancements 
in advanced energy storage materials and systems. 
While highlighting the possibility of recycling waste 
materials to produce high-performance 

nanomaterials for energy storage applications, the 
paper also examines the synthesis methods of 
carbon-based nanomaterials and their performance 
in supercapacitors. Overall, regarding the current state-
of-the-art and future directions in this quickly 
developing sector, this study seeks to encourage 

more research and development in energy storage 
technologies. 
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