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Abstract
The aim of this study is to investigate the curved rods subjected to dynamic loads with variable geometric 
properties along the axis theoretically. The transient analysis of the planar rods under the various in-plane 
dynamic loads has been analyzed in the Laplace domain. The obtained canonical form of the first order 
ordinary differential equations has been solved by Complementary Functions Method (CFM) in the 
transformed domain. The fifth-order Runge–Kutta method has been applied to the solution of the obtained 
equations.  The materials of the structural elements are assumed to be homogeneous, isotropic, and elastic. 
The solutions obtained are transformed to the time domain using the modified Durbin’s inverse numerical 
Laplace transformed method. For the suggested models, a computer program is coded in Fortran for the 
dynamic analysis of the planar curved structural elements. Verification of the computer program is performed 
by comparing the results of the present methods with the other numerical methods available in the literature. 
The procedures have been proved to be highly accurate and efficient compared to various other numerical 
methods. 

Keywords: Two-Point Boundary Value Problems, Complementary Functions Method (CFM), Inverse 
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1. INTRODUCTION
Rods are very important structural elements in several engineering fields such as automotive, mechanical and civil en-
gineering. Generally, curved rods are used as curved structural elements in bridges, aqueducts, stairs, vaulted roofs, and 
arches.  Due to the importance of those engineering structures, it is significant to determine the behavior of curved rods 
under both static and dynamic loads.  

Many researchers have investigated the static and dynamic behavior of rods. Among those, Haktanır [1] investigated the 
static behavior of in-plane rods, made up of isotropic-elastic material, by stiffness matrix method based on Complemen-
tary Functions Method (CFM). The Runge–Kutta fourth-order method has been used for the solution of the obtained 
equations. Bayhan [2] studied the static behavior of planar frames with members of circular axes with the aid of both 
transfer and stiffness matrix methods. Bozkurt [3] used Complementary Functions Method (CFM) for the bending 
analysis of circular planar systems, helicoidal stair cases, axisymmetric shell structures, and cylindrical vault structures 
under static loadings. Yildirim et. al.[4] investigated the static analysis of compound  planar frames with members of 
linear and circular axes by stiffness matrix method. The stiffness matrixes and force vectors of the frame members with 
circular axes, under planar loads and perpendicular loads to plane, were calculated by transform matrix method precisely. 

The dynamic behavior of cylindrical helical rods made of isotropic, anisotropic and elastic, viscoelastic materials under 
time dependent loads is investigated by Çalım [5] in the Laplace domain theoretically.  In the solutions, Kelvin model 
was employed. The obtained solutions transformed to the time domain by using a proper inverse Laplace transform 
method. Kıraç [6] examined the dynamic behavior of composite straight rods subjected to time-dependent loads in the 
Laplace domain theoretically. The free vibration was considered as a special case of forced vibration. In the formulations, 
the effect of the rotary inertia, axial and shear deformations were taken into account. The ordinary differential equations 
obtained in canonical form in the Laplace domain were solved numerically by the Complementary Functions Method to 
calculate the dynamic stiffness matrix. Aktan [7] studied the free vibration of in-plane circular beams. The Timoshenko 
beam theory was used and the effect of the rotary inertia was considered. Çoban [8] investigated the dynamic analysis of 
curved beams using mixed finite element method with Gâteaux derivative. Akkurt [9] investigated the dynamic beha-
vior of straight and circular rods resting on elastic foundation in the Laplace domain theoretically. Karaca [10] studied 
the static and dynamic analysis of circular Timoshenko rods which are loaded in-plane and out-of-plane, theoretically. 
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The longitudinal vibrations of elastic bars were investigated using the Gâteaux differential method and the mixed finite 
element method by Ecer [11].

Literature survey shows that many studies dealing with static and free vibration analysis of curved rods have been made 
and several methods have been investigated by researchers. However, there are limited studies in the literature addressing 
to the solutions of in-plane curved rods subjected to time variable dynamic loads by Complementary Functions Method 
in the Laplace domain. In present paper the forced vibration of in-plane curved rods has been analyzed under various 
types of dynamic loads by Laplace transform method and Complementary Functions Method for the first time. The 
CFM is a numerical solution method which transforms a two point boundary value problem to a system of initial value 
problems. For the solution of initial value problems fifth order Runge-Kutta is applied in this study. The application of 
Laplace Transform, with respect to time, to partial differential equations, converts them to ordinary differential equa-
tions in the transformed domain.  Thus the numerical solution of partial differential equations in the Laplace domain 
can be done easily. To transform the obtained solutions in the Laplace domain to the time domain an efficient inverse 
Laplace transform method has been used. The results of the present method are compared with those solutions given in 
the literature and it has been seen that he results obtained in this study are found to be in good agreement with those 
available in the literature.

2. EQUATIONS OF MOTIONS

The time and location depended partial differential equations of in-plane rods under dynamic loads are given as follows 
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Here, E, ρ, h(ϕ),A(ϕ), Ib(ϕ) and αn indicate the modulus of elasticity, mass density, section area, the moment of inertia 
and shear correction  factor respectively. The unknown column matrix, {Y(ϕ,t)}, for the forced vibration of in-plane 
loaded rods is given as:
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Applying the Laplace transform to equations (1-6),  converts these partial differential equations to variable-coefficient  
ordinary differential equations. Thereby, the governing ordinary differential equations of the dynamic behavior of in-pla-
ne loaded curved rods can be obtained in the Laplace domain as follows
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Where the terms shown by  indicates the Laplace transform of the quantities. 

The Laplace transformation of axial, flexural and mass moment of inertia are given as:
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The second and third terms on the right-hand side of the equation (14) are the initial conditions given for t=0; in present 
study those terms are assumed to be zero. 

3. COMPLEMENTARY FUNCTIONS METHOD 

The matrix notation of the ordinary differential equations (8-13) obtained in the Laplace domain is given below;
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Here  is independent variable and z is the Laplace transform parameter. The state vector for in-plane curved rods is given 
by equation (16).
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The complementary functions method is based on the principle of the solution of equation (15) with the help of the ini-
tial conditions. This method is basically the reduction of two-point boundary value problems to initial-value problems. 
The general solution of Eq. (15), is given by
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φ is the complementary solution such that its mth component is equal to 1, whereas all the others are 

0. ( ){ }sV ,φ is the inhomogeneous solution with all 0 initial conditions, the integration constants Cm will be determined 
from the boundary conditions at both ends.

The results, obtained in the Laplace domain, are transformed to the time domain with the help of modified Durbin’s 
numerical inverse Laplace transform method (Durbin, 1974, Temel et al., 2004).

4. NUMERICAL EXAMPLES AND DISCUSSION 
A pin-ended isotropic parabolic arch, shown in figure 1.a, is now considered under a point dynamic load, applied to 
its midpoint. Material properties density, ρ=7850x10-6  kgf/cm3, Poisson’s ratio, ν = 0.3, and modulus of elasticity, 
ρ=7850x10-6  kgf/cm3. Two types of dynamic point loads, shown in figure 1.b, with the amplitude p0 = 1 kg are applied 
on the plate.

The axis line equation of the parabolic arch in the rectangular coordinate system shown in figure 1.a. and changes of the 
radius of curvature or “r” along the axis can be expressed as follows respectively.
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The boundary conditions of pinned-end and symmetric point are given as follows
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Figure 1: (a) Pin-ended parabolic arch; (b) Dynamic loads;

The equations (8-13) given in canonical form are solved numerically in the Laplace domain by CFM.  The results are 
compared with those obtained from ANSYS finite element software, which uses the Newmark time integration method 
to solve the equations of motion. Comparisons are shown in the graphics. In this problem the effect of shear deformation 
is taken into account. 

The geometric properties of the parabolic arch are as follows.

A(0) = 1 cm2 ; Ib(0) = 0.0833 cm4; L= 200 cm, r0 =100 cm; f=50 cm ; p0 =1 kg ; ϕ0=45֩ ;αn= 1 	  

The vertical displacement of the midpoint of the parabolic arch under a point step load obtained by present method is 
presented in Fig. 2. The problem has been solved for various time increments as transform parameters (dt=0.08 sec., N 
= 64), (dt =0.04 sec., N = 256) ,(dt =0.02 sec., N = 256) and  (dt = 0.01 sec., N = 512). It is apparent that results obta-
ined for a coarse time increment along with fewer Laplace transform parameters overlap the results obtained with finer 
increments and higher parameters. This indicates the efficiency of the present method.
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Figure 2: Vertical displacement of the midpoint of the parabolic arch under a point step load

The parabolic arch is divided into 40 uniaxial elements in ANSYS while the cross section of the arch is considered to be 
constant. In respect to this the flexural rigidity and cross section of the curved rods is taken as Db=EIb (0)    and A(ϕ) = 
A(0) respectively in CFM method for all solutions of step loading. The comparison of proposed method and Newmark 
method for various time increments and constant cross section given in Figs. 3 and 4 show the Un vertical  displacement 
and Mb bending moment at the midpoint of the arch for a step load respectively. It can be seen that time increments of 
0.01 sec. and finer had to be considered for consistent results in ANSYS. An exact match is obtained by using a coarse 
time increment of 0.08 sec. in the present method as opposed to much finer increment of 0.01 sec. in Newmark method. 
The proposed method leads to considerable saving in computation time. 

Figure 3: Comparison of Un vertical displacement versus time at the arch midpoint for step load.
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Figure 4: Comparison of Mb bending moment versus time at the arch midpoint for step load.

The cross section of the parabolic arch is considered to be variable under sinusoidal load. The vertical displacement Un 
and  Mb moment of bending at the arch midpoint under a sinusoidal load for elastic material are shown in Figs.5 and 
6, respectively. The figures include the elastic–dynamic case.

Figure 5: Un vertical displacement versus time at the arch midpoint for sinusoidal load.

Figure 6: Mb Moment of bending versus time at the arch midpoint for sinusoidal load.
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5. CONCLUSION
In this paper, the forced vibration of planar curved rods is investigated under various types of dynamic loads. The dy-
namic behavior of such structures is examined in Laplace domain by CFM. Fifth order Runge–Kutta algorithm is used 
for the solution of the initial value problems based on the complementary functions method. For the suggested model, a 
finite element analysis computer program is coded in Fortran. Results of the presented method are compared with those 
obtained from ANSYS finite element software which uses the Newmark time integration method to solve the equations 
of motion. The governing equations of motion of the problem are first obtained in the time domain. Laplace transform 
is then applied and the set of simultaneous linear algebraic equations are solved by CFM in the Laplace domain for a set 
of Laplace parameters. The solutions obtained are transformed to the time domain using the modified Durbin’s inverse 
numerical Laplace transform method.

The accuracy of the results of Newmark method (ANSYS - finite element software) depends on the appropriate selection 
of the optimum time increment. By using the presented method, highly accurate results can be obtained, even with a 
coarse time increment.  It is manifest that combination of Laplace transform and Complementary Functions Method 
(CFM) is far more efficient than the conventional step-by-step integration methods. Laplace transformation gives a ti-
me-independent boundary-value problem in spatial coordinate which is then solved by CFM. The numerical examples 
has proved that the suggested procedure is highly accurate and efficient compared to various other numerical methods 
available in the literature and it can be easily applied to the planar curved rods. 
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