NÖHÜ Müh. Bilim. Derg. / NOHU J. Eng. Sci., 2023; 12(4), 1452-1480 Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi

Niğde Ömer Halisdemir University Journal of Engineering Sciences Araştırma makalesi / Research article

www.dergipark.org.tr/tr/pub/ngumuh / www.dergipark.org.tr/en/pub/ngumuh

Mathematical correlations for variation in heat release rate of a diesel engine fuelled with n-octanol blends

n-Oktanol karışımlarıyla çalışan bir dizel motorun ısı yayılımı oranının değişimi için matematiksel korelasyonlar

Mert Gülüm^{1,*}

¹ Karadeniz Technical University, Mechanical Engineering Department, 61080, Trabzon, Türkiye

Abstract

The current literature reports a few papers regarding the prediction of heat release rate of a diesel engine fuelled with n-octanol blends using numerical methods. To address this gap, the main objective of the presented study is to derive correlations for estimating the variation in heat release rate of a diesel engine fuelled with diesel fuel and diesel fuelbiodiesel-n-octanol blends. For this purpose, three different ternary blends were prepared by varying the n-octanol concentration to 6% (OCT6), 8% (OCT8), and 10% (OCT10) by volume. The estimation of heat release rate was accomplished using the least-squares regression (sine, piecewise, and rational equations) and the function approximation (Padé approximation) methods. The ignition delay and peak heat release rate increased by 3.8462%, 5.9501% for OCT6; 7.6923%, 3.7125% for OCT8; and 8.9744%, 3.0755% for OCT10, respectively, compared to diesel fuel. The peak cylinder pressure of OCT6 and OCT8 was observed to be higher by 2.4378% and 1.3982%, respectively, whereas that of OCT10 was found to be lower by 1.9458%, compared to diesel fuel. Compared to the others, the suggested rational equation qualitatively and quantitatively achieved the best correlation with all experimental heat release rate data measured by both the author and some other authors.

Keywords: n-Octanol, Heat release rate, Sine equation, Padé approximation, Piecewise equation

1 Introduction

The ever-growing energy demand worldwide, the rise in environmental concerns (global warming), and the volatility of petroleum prices have led to a growing interest in alternative fuels [1, 2]. Among the alternative fuels for diesel engines, biodiesel and higher alcohols have been focused on in this study. Biodiesel is a type of fuel composed of mono-alkyl esters of long-chain fatty acids. Biodiesel is produced by the transesterification of animal fats or vegetable oils. Biodiesel has been gaining attention for decades because of its many advantages over diesel fuel (being renewable, biodegradable, non-toxic, and having a higher flash point) [3, 4]. Higher alcohols have been used as an additive to diesel fuel and biodiesel [5]. Among higher

Öz

Mevcut literatür, n-oktanol karışımları ile çalışan bir dizel motorun ısı yayılımı oranının sayısal yöntemlerle tahmin edilmesiyle ilgili birkaç makale sunmaktadır. Bu boşluğu gidermek için, sunulan çalışmanın temel amacı, dizel yakıtı ve dizel yakıtı-biyodizel-n-oktanol karışımları ile çalışan bir dizel motorun 1s1 yayılımı oranındaki değişimi tahmin etmek için korelasyonlar elde etmektir. Bu amaçla n-oktanol miktarı hacimsel olarak %6 (OCT6), %8 (OCT8) ve %10 (OCT10) oranlarında değiştirilerek üç farklı üçlü karışım hazırlanmıştır. Isi yayılımı oranının tahmini, en küçük kareler regresyonu (sinüs, parçalı ve rasyonel denklemler) ve fonksiyon yaklaşımı yöntemleri (Padé yaklaşımı) kullanılarak gerçekleştirilmiştir. Tutuşma gecikmesi ve en yüksek ısı yayılımı oranı, dizel yakıtına kıyasla sırasıyla, OCT6 için %3.8462, %5.9501; OCT8 için %7.6923, %3.7125; ve OCT10 için %8.9744, %3.0755 oranlarında artmıştır. Dizel yakıtına kıyasla, OCT6 ve OCT8'in en yüksek silindir basınçlarının %2.4378 ve %1.3982 oranlarında daha yüksek olduğu, OCT10'un ise %1.9458 oranında daha düşük olduğu görülmüştür. Diğer denklemler ile karsılaştırıldığında, önerilen rasyonel denklem, nitelik ve nicelik olarak hem yazar hem de diğer bazı yazarlar tarafından ölçülen tüm deneysel ısı yayılımı oranı verileriyle en ivi korelasyonu sağlamıştır.

Anahtar kelimeler: n-Oktanol, Isı yayılımı oranı, Sinüs denklemi, Padé yaklaşımı, Parçalı denklem

alcohols, n-octanol is a next-generation biofuel produced from renewable lignocellulosic biomass [6]. It has a higher cetane number and heating value (39 and 37.53 MJ/kg) than methanol, ethanol, n-butanol, and n-pentanol. Because of its superior hydrophobic nature, n-octanol is likely to cause less corrosion in fuel lines than n-butanol, n-pentanol, and nhexanol [7]. The higher flash point temperature (81°C) and lower vapor pressure of n-octanol make it safer for storage and transport than diesel fuel [8]. Unlike ethanol and methanol, which are hydrophilic and tend to phase separate when mixed with diesel fuel, n-octanol exhibits high miscibility in diesel fuel. This property offers an encouraging opportunity to replace diesel fuel with a higher proportion of biofuel than methanol and ethanol [9]. Compared to biodiesels, n-octanol generally exhibits superior cold flow

^{*} Sorumlu yazar / Corresponding author, e-posta / e-mail: gulum@ktu.edu.tr (M. Gülüm)

Geliş / Recieved: 29.06.2023 Kabul / Accepted: 31.08.2023 Yayımlanma / Published: 15.10.2023 doi: 10.28948/ngmuh.1320921

characteristics, as evidenced by its pour point of -13.5°C [10]. The use of n-octanol generally results in very low soot emissions owing to its high oxygen concentration (12.41%) [8]. Owing to the superior fuel properties of n-octanol, it has been the subject of extensive research in recent years as follows: Sidharth and Kumar [11] prepared three ternary blends (80% diesel fuel-10% waste cooking oil biodiesel-10% n-octanol. 70% diesel fuel-20% waste cooking oil biodiesel-10% n-octanol, and 70% diesel fuel-10% waste cooking oil biodiesel-20% n-octanol, v/v) and two binary blends (90% diesel fuel-10% waste cooking oil biodiesel, and 90% diesel fuel-10% n-octanol, v/v). They investigated the effects of ternary and binary blends on the performance, emission and combustion characteristics of a single-cylinder diesel engine under different brake mean effective pressures. The blend of 80% diesel fuel-10% waste cooking oil biodiesel-10% n-octanol exhibited improved brake thermal efficiency and brake specific energy consumption, compared to diesel fuel. Ashok et al. [12] researched the impacts of noctanol-biodiesel blends. Five different blends were prepared by varying the n-octanol concentration from 10% to 50% on a volumetric basis. These blends were tested and compared with pure diesel fuel at different engine loads (0%, 25%, 50%, and 100%) and 1500 rpm. According to the results, increasing the amount of n-octanol led to a longer ignition delay, resulting in a higher cylinder peak pressure. The use of n-octanol increased carbon monoxide and smoke emissions and decreased nitrogen oxide emissions. Sekar et al. [13] investigated the effects of O10NBD90 (10% noctanol-90% neem biodiesel, v/v) and O20NBD80 (20% noctanol-80% neem biodiesel, v/v) on the performance, emissions, and combustion of a single-cylinder diesel engine under different brake powers (1.1, 2.2, 3.3, 4.4 and 5.5 kW). Increasing the volume percentage of n-octanol resulted in a higher heat release rate and in-cylinder pressure during premixed combustion. The fuel consumption was reduced by 2.4% with higher n-octanol content. Sharbuddin et al. [14] prepared three ternary blends including diesel fuel (80% v/v), waste cooking oil biodiesel (15% v/v), and oxygenates (5% v/v). Di-n-butyl ether, n-octanol, and 2ethyl-hexanol were used as the oxygenates. Response surface methodology-based optimization was used to minimize nitrogen oxide and smoke opacity emissions while maximizing engine performance. It was determined that the blend (80% diesel fuel-15% waste cooking oil biodiesel-5% n-octanol) injected at a compression ratio of 19:1 with an EGR rate of 10% provided the best performance and emission characteristics. Konjevic et al. [15] investigated the effects of diesel fuel-n-pentanol and diesel fuel-n-octanol blends on engine performance and exhaust emissions in a diesel engine under different engine speeds and indicated mean effective pressures. The highest increment in specific fuel consumption (10.9%) was determined with the use of a diesel fuel-n-pentanol blend (including 10% n-pentanol v/v) at a low load and medium engine speed. The highest increment in nitrogen oxide emissions (11%) was determined for the use of a diesel fuel-n-pentanol blend (including 30% n-pentanol) under high load and high engine speed. Li et al. [16] performed a numerical analysis to investigate the effects of n-octanol and di-n-butyl-ether mixtures on the combustion characteristics and formation of emissions in a diesel engine using the KIVA4-CHEMKIN code. Various n-octanol-di-n-butyl-ether mixtures were prepared by changing the di-n-butyl-ether content from 10% to 90% (with an interval of 10%). The diesel engine was then simulated with pure n-octanol, pure di-n-butyl-ether, and their blends at engine speeds of 1500 rpm and 2280 rpm. Blending more di-n-butyl-ether into n-octanol decreased the ignition delay and the pressure rise rate, increased the peak pressure, and prolonged the combustion duration. Blending di-n-butyl-ether into n-octanol decreased carbon monoxide but increased nitrogen oxide emissions. The optimum di-nbutyl-ether blending ratio was determined to be 50%, resulting in carbon monoxide reductions of 69.91% and 65.98% at 1500 and 2280 rpm.

Considering the other relevant studies in the existing literature [17-19] as well as the literature review mentioned above, the effects of n-octanol blends on the performance, emissions, and combustion characteristics have been frequently investigated in recent decades. However, although accurate knowledge of the change in the heat release rate is essential in internal combustion engine studies to understand the ignition and combustion characteristics of the used fuel, few studies have focused on predicting the heat release rate of diesel engines. To overcome this limitation, this study aims to derive an equation and use the function approximation method (Padé approximation) to estimate the change in the heat release rate of a diesel engine fuelled with diesel fuel and n-octanol blends. In other words, the importance of this study is that it can offer an alternative approach for predicting the heat release rate, considering some technical and economic difficulties in experimentally determining the heat release rate.

2 Material and methods

2.1 Test fuels

The test fuels consist of diesel fuel (DF), biodiesel (vegetable oil methyl ester) [20], and n-octanol. Table 1 and Appendix Table 1 show the properties of n-octanol [7, 21-23] and diesel fuel (DF). Considering the European Directives [24, 25], a binary blend is prepared by combining DF and biodiesel in a volumetric ratio of 80:20 at room temperature. n-Octanol, as an oxygenated fuel additive, is added to the DF-biodiesel binary blend at 6% (OCT6), 8% (OCT8), and 10% (OCT10) by volume to obtain ternary blends at room temperature.

Table 1. Some fuel properties of n-octanol

Properties	n-octanol
Chemical formula	C ₈ H ₁₇ OH
Molecular weight (g/mol)	130.23
Carbon content (wt.%)	73.68
Hydrogen content (wt.%)	13.91
Oxygen content (wt.%)	12.41
Cetane number	39
Boiling point (°C)	195
Lower heating value (MJ/kg)	37.53
Latent heat of evaporation (kJ/kg)	538
Flash point (°C)	81
Self-ignition temperature (°C)	270
Density at 15°C (kg/m ³)	827
Viscosity at 40°C (mm ² /s)	5.8

A magnetic stirrer is used to obtain all blends for nearly 30 min. All blends are prepared just before conducting the experiments. No phase separation is detected in any of the blends at room temperature. Owing to the high cost of noctanol (analytical grade) in Turkey and its low cetane number, volume ratios exceeding 10% are not studied.

2.2 Experimental setup and procedure

To conduct the experiments, a single-cylinder diesel engine (Hatz) in the Internal Combustion Engines Laboratory at Karadeniz Technical University is used. The main technical specifications of the diesel engine are listed in Appendix Table 2. Appendix Figure 1 shows the test bed which includes the engine, an electric dynamometer (DC), a fuel tank, and monitoring systems. No modifications are made on the engine or the fuel supply/injection system. To measure the engine torque (± 0.1 Nm) and engine speed (± 1 rpm), a force sensor and an optical encoder are fixed to the electric dynamometer. The data acquisition system, consisting of an engine cycle analyzer, a cylinder head pressure piezoelectric transducer (made by Kistler, sensitivity: ~36 pC/bar, measuring range: 0-300 bar, and natural frequency: >70 kHz), and an optical crank angle encoder (with a resolution of 1 crank angle (degree)), collects data (cylinder pressure, cylinder volume, etc.). Cylinder pressure data are taken for every 1 crank angle (degree). The engine is allowed to run for a while at full throttle before measurements are taken to achieve a steady operating condition. All experiments are carried out under steady-state conditions at 1200 rpm, and before running the engine with a new fuel, any remaining fuel from the previous experiment is consumed. All measurements are conducted 20 times to minimize uncertainties. The cylinder pressure data from 50 consecutive engine cycles are averaged. The cylinder head pressure piezoelectric transducer exhibits a linearity of \leq ± 0.4 . These factors contribute to the reliability and accuracy of the cylinder pressure data and the results related to the combustion parameters. After measurements are taken for each fuel, the engine is operated with pure diesel fuel to remove any remaining blends from the fuel line. No difficulties are encountered during the engine tests for each fuel [26].

2.3 Calculation of heat release rate

The apparent net heat release rate is the difference between the apparent gross heat release rate and the heat transfer rate to the walls. It is calculated using the following equation:

$$\frac{dQ_n}{d\theta} = \frac{k}{k-1} \cdot P \cdot \frac{dV}{d\theta} + \frac{1}{k-1} \cdot V \cdot \frac{dP}{d\theta}$$
(1)

where $dQ_n/d\theta$ is the apparent net heat release rate (J/degree), k is the ratio of specific heats, P is the instantaneous cylinder pressure (Pa), V is the instantaneous cylinder volume (m³), θ is the crank angle (degree), $dV/d\theta$ is the derivative of cylinder volume over crank angle (m³/degree), and dP/d θ is the derivative of cylinder pressure over crank angle (Pa/degree) [27].

2.4 Padé Approximation

The Padé approximation is not an interpolation approach, but a rational approximation (i.e., the quotient of two polynomials) [28, 29]. The Padé approximation seeks to approximate a function (f(x)) by finding a rational function that matches the function values and its derivatives at a specific point (x_0) [30]. The desired rational function (the numerator of degree m and the denominator of degree n) takes the following form [29, 30]:

$$r(x) = \frac{p_m(x)}{q_n(x)} = \frac{a_m \cdot x^m + \dots + a_0}{b_n \cdot x^n + \dots + b_0}$$
(2)

Assuming that the values of $f(x_0)$, $\hat{f}(x_0)$, ..., $f^{(k)}(x_0)$ are known for k = m + n, and x_0 is equal to zero for simplicity [30]. Let t(x) denote the Taylor polynomial of a given function (f(x)). The function (t(x)) can be written as:

$$t(x) = c_k \cdot x^k + \dots + c_2 \cdot x^2 + c_1 \cdot x + c_0$$
(3)

where c_k equals $f^{(k)}(0)/k!$ in terms of derivatives of f(x). We want r(x) to exactly match t(x) —to have the same value at x = 0 and the same derivatives of all orders up to, and including k = m + n [30]. Therefore, the fundamental approach is to utilize the following equivalence of the expressions [30]:

$$t(x) = r(x) = \frac{p_m(x)}{q_n(x)} \tag{4}$$

and

$$q_n(x) \cdot t(x) = p_m(x) \tag{5}$$

Based on Eq. (5), the following relationship is established:

$$(b_n \cdot x^n + \dots + b_0) \cdot (c_k \cdot x^k + \dots + c_1 \cdot x + c_0) = a_m \cdot x^m + \dots + a_0$$
(6)

By considering the requirement that $q_n(0) \cdot t(0) = p_m(0)$, Eq. (6) gives us

$$b_0 \cdot c_0 = a_0 \tag{7}$$

The value of b_0 can be taken as unity [29]. With this convention, an equation is obtained to determine a_0 [30]. Similarly, with the use of derivatives of Eq. (6) at x = 0, all unknown coefficients can be determined for the desired rational function (r(x)) using the Naive Gauss Elimination method.

3 Results and discussions

Figures 1-5 show the variation in cylinder pressure and heat release rate (HRR) of DF, OCT6, OCT8, and OCT10 as a function of crank angle (degree). In the case of using OCT6, OCT8, and OCT10, the ignition delay is higher by 3.8462%, 7.6923%, and 8.9744% owing to the lower cetane number of n-octanol, compared to DF. The peak cylinder pressures of OCT6 (83.7289 bar) and OCT8 (82.8791 bar) are found to be 2.4378% and 1.3982% higher, respectively, whereas that of OCT10 (80.1459 bar) is found to be 1.9458% lower, compared to DF (81.7363 bar). The peak HRR increases by 5.9501%, 3.7125%, and 3.0755% for the use of OCT6 (28.9586 J/degree), OCT8 (28.3470 J/degree), and OCT10 (28.1729 J/degree), respectively, compared with DF (27.3323 J/degree). The increase in the peak cylinder pressure and peak HRR is linked to the oxygen concentration of n-octanol (enhances the combustion reaction) and the extended ignition delay (causes more fuel accumulation in the combustion chamber). However, the decrease in the peak cylinder pressure associated with OCT10 is due to the lower heating value of n-octanol. In other words, the lower heating value becomes more dominant over the change in cylinder pressure for the highest n-octanol content (10%). As shown in Figures 2-5, the experimental HRR data are correlated by the sine equation (Eq. (8)) and the piecewise equation (Eq. (8))(9)) composed of quadratic and exponential terms using MATLAB and NCSS software [31, 32]:

$$y = a_1 \cdot \sin(b_1 \cdot x + c_1) + a_2 \cdot \sin(b_2 \cdot x + c_2) + a_3 \cdot \sin(b_3 \cdot x + c_3) + a_4 \cdot \sin(b_4 \cdot x + c_4) + a_5 \cdot \sin(b_5 \cdot x + c_5)$$
(8)

y

$$= \begin{cases} a_1 + b_1 \cdot x + c_1 \cdot x^2 + (x - d_1) \cdot sign(x - d_1) \\ \cdot (e \cdot (x + d_1) + f), \ x < 0 \\ (a_2 + b_2 \cdot x) \cdot exp(-c_2 \cdot x) + d_2, \ x \ge 0 \end{cases}$$
(9)

where x is the crank angle (radian for Eq. (8), degree for Eq. (9)); y is the predicted HRR value: and $a_1, \dots, a_5, b_1, \dots, b_5, c_1, \dots, c_5, d_1, d_2, e$, and f are the regression constants. It can be noted that because HRR shows different characteristics in the negative and positive crank angle (degree) regions, the piecewise equation (Eq. (9)) is used to correlate the HRR data. In addition to the sine (Eq. (8)) and the piecewise (Eq. (9)) equations, their Padé approximations are also constructed to correlate the HRR data by using Mathematica software. Different numerator and denominator degrees are tried for their Padé approximations, and finally, rational functions with a numerator of degree 2 and a denominator of degree 6 are used in the Padé approximations of the sine (Eq. (8)) and the piecewise (Eq. (9)) equations for all HRR data. As shown in Figures 1-5, all fuels reveal almost similar characteristics of cylinder pressure and HRR variations depending on crank angle. It should be also noted that the predicted values of DF and OCT8 by Padé approximation of the sine equation slightly deviate from the related experimental data (i.e. the negative HRR values). Table 2 lists the regression constants of the sine (Eq. (8)) and piecewise (Eq. (9)) equations for the author's data. Table 3 lists the regression results of Eq. (8), Eq. (9), and their Padé approximations $(r^2, relative errors)$ (between measured peak HRR data and calculated peak HRR value), and mean absolute errors (between measured HRR

data and calculated HRR values) for the author's data. The average (over the fuel type) r^2 values are calculated to be 0.9983 (the sine equation (Eq. (8)), 0.9852 (Padé approximation of the sine equation), 0.9976 (the piecewise equation (Eq. (9)), and 0.9974 (Padé approximation of the piecewise equation). The average (over the fuel type) relative errors are calculated as 0.9881%, 0.9882%, 0.7388%, and 0.7388% for the sine equation (Eq. (8)), Padé approximation of the sine equation, the piecewise equation (Eq. (9)), and Padé approximation of the piecewise equation, respectively. The average (over the fuel type) mean absolute errors are calculated as 0.3228, 0.8060, 0.2988, and 0.3180 for the sine equation (Eq. (8)), Padé approximation of the sine equation, the piecewise equation (Eq. (9)), and Padé approximation of the piecewise equation, respectively. Considering Figures 2-5, the sine equation (Eq. (8)), the piecewise equation (Eq. (8))(9)), and Padé approximation of the piecewise equation (Eq. (9)) qualitatively agree very well with the experimental HRR data measured by the author. Moreover, the sine equation (Eq. (8)), the Padé approximation of the piecewise equation (Eq. (9)), and the piecewise equation (Eq. (9)) quantitatively outperform in terms of higher average r² (0.9983), lower average relative error (0.7388%), and lower average mean absolute error (0.2988) values, respectively. The predictive abilities of the sine equation (Eq. (8)), the piecewise equation (Eq. (9)), and their Padé approximations are evaluated against different experimental HRR data of n-octanol blends measured by Yesilyurt and Cakmak [8] as well as Cakmak et al. [33]. Yeşilyurt and Çakmak [8] investigated the engine performance and combustion characteristics of a singlecylinder diesel engine fuelled with pure diesel and diesel-noctanol blends (including 5%, 10%, 15%, and 20% n-octanol by volume) at a fixed engine speed of 1500 rpm and four different engine loads. The variation in HRR was investigated under the full load condition by Yeşilyurt and Cakmak [8]. Cakmak et al. [33] performed the exergy, exergoeconomic, and environmental analysis for a diesel engine fuelled with pure diesel and diesel-biodiesel-noctanol blends at a constant engine speed (1500 rpm) and different engine loads. n-Octanol was added to the dieselbiodiesel blend at fractions of 5%, 10%, 15%, and 20% by volume [33]. They investigated the variation in heat release rate at the full engine load. Appendix Tables 3 and 4 list the regression constants of the sine (Eq. (8)) and the piecewise (Eq. (9)) equations for the experimental data measured by Yeşilyurt and Çakmak [8], and Çakmak et al. [33]. Appendix Tables 5 and 6 list the regression results of Eq. (8), Eq. (9), and their Padé approximations (r², relative errors (between measured peak HRR data and calculated peak HRR value), and mean absolute errors (between measured HRR and calculated HRR)) for the experimental data measured by Yeşilyurt and Çakmak [8] as well as Çakmak et al. [33]. As shown in Appendix Table 5 for the data measured by Yeşilyurt and Çakmak [8], the average (over the fuel type) r², relative error and mean absolute error values are calculated as 0.9357, 22.8316%, 1.2847; 0.3341, 22.7955%, 5.2281; 0.9512, 6.7514%, 0.9666; and 0.9503, 6.7515%, 0.9903 for the sine equation (Eq. (8)), Padé approximation of the sine equation, the piecewise equation (Eq. (9)), and

Padé approximation of the piecewise equation (Eq. (9)). As shown in Appendix Table 6 for the data measured by Çakmak et al. [33], the average (over the fuel type) r^2 , relative error and mean absolute error values are calculated as 0.9522, 16.4322%, 1.0958; 0.0937, 16.4303%, 5.6557; 0.9793, 4.4275%, 0.7905; and 0.9792, 4.4274%, 0.7977 for the sine equation (Eq. (8)), Padé approximation of the sine equation, the piecewise equation (Eq. (9)), and Padé approximation of the piecewise equation (Eq. (9)). It is not necessary to investigate their qualitative predictive capabilities, because they have relatively high errors and low r^2 values (poor quantitative predictive capability). Considering Appendix Tables 5 and 6, since the sine equation (Eq. (8)), Padé approximation of the sine equation, the piecewise equation (Eq. (9)), and Padé approximation of the piecewise equation yield relatively high errors and low r^2 values (poor prediction accuracy), other piecewise equations (Eqs. (10)-(12)) are tested and fitted to the experimental HRR data measured by the author, Yeşilyurt and Çakmak [8] as well as Çakmak et al. [33]. Considering the regression results (given in Table 3, Appendix Table 5, and Appendix Table 6), to determine the best correlation for the data measured by both the author and other authors [8, 33], these piecewise equations (Eqs. (10)-(12)) are structured to include both sine, polynomial, and exponential terms (given in Eq. (8) and Eq. (9)).

$$y = \begin{cases} a_1 + b_1 \cdot x + c_1 \cdot x^2 + (x - d_1) \\ \cdot sign(x - d_1) \cdot (e_1 \cdot (x + d_1) + f_1), \ x < 0 \\ a_2 + b_2 \cdot x + c_2 \cdot (x - d_2) \cdot sign(x - d_2) \\ + e_2 \cdot (x - f_2) \cdot sign(x - f_2), \ x \ge 0 \end{cases}$$
(10)

$$y = \begin{cases} a_1 \cdot \sin(b_1 \cdot x + c_1) + a_2 \cdot \sin(b_2 \cdot x + c_2) \\ +a_3 \cdot \sin(b_3 \cdot x + c_3) \\ +a_4 \cdot \sin(b_4 \cdot x + c_4) \\ +a_5 \cdot \sin(b_5 \cdot x + c_5), x < 0 \\ a_6 + b_6 \cdot x + c_6 \cdot (x - d) \cdot sign(x - d) \\ +e \cdot (x - f) \cdot sign(x - f), x \ge 0 \end{cases}$$
(11)

$$y = \begin{cases} a_1 \cdot \sin(b_1 \cdot x + c_1) + a_2 \cdot \sin(b_2 \cdot x + c_2) \\ +a_3 \cdot \sin(b_3 \cdot x + c_3) \\ +a_4 \cdot \sin(b_4 \cdot x + c_4) \\ +a_5 \cdot \sin(b_5 \cdot x + c_5), x < 0 \\ (a_6 + b_6 \cdot x) \cdot exp(-c_6 \cdot x) \\ +d, x \ge 0 \end{cases}$$
(12)

Tables 4-6 and Appendix Tables 7-12 list the regression constants of Eqs. (10-12) for the experimental HRR data measured by the author, Yeşilyurt and Çakmak [8], and Çakmak et al. [33]. Table 7, Appendix Table 13, and Appendix Table 14 present the regression results of Eqs. (10)-(12) (r^2 , relative errors (between measured peak HRR and calculated peak HRR), and mean absolute errors (between measured HRR data and calculated HRR values)) for the experimental HRR data measured by the author, Yeşilyurt and Çakmak [8], and Çakmak et al. [33]. In Table 7 for the author's data, the average values of r^2 , relative error, and mean absolute error are listed as follows: 0.9916, 8.1590%, 0.4007 for Eq. (10); 0.9899, 8.1590%, 0.5276 for Eq. (11); and 0.9959, 0.7388%, 0.4257 for Eq. (12). In Appendix Table 13 for the data measured by Yeşilyurt and Çakmak [8], the average values of r^2 , relative error, and mean absolute error are listed as follows: 0.9583, 6.7514%, 0.6970 for Eq. (10); 0.9900, 5.5069%, 0.4586 for Eq. (11); and 0.9829, 5.5069%, 0.7281 for Eq. (12). In Appendix Table 14 for the data measured by Cakmak et al. [33], the average values of r², relative error, and mean absolute error are listed as follows: 0.9853, 4.4275%, 0.5782 for Eq. (10); 0.9887, 2.7285%, 0.4792 for Eq. (11); and 0.9828, 2.7285%, 0.6916 for Eq. (12). According to these results, among Eqs. (10-12), a correlation with quantitatively sufficient accuracy (relative error of less than 5%, and r^2 of closer to 1.00) is not obtained for all experimental HRR data measured by the author, Yeşilyurt and Çakmak [8], and Çakmak et al. [33]. Finally, the experimental HRR data measured by the author, Yeşilyurt and Çakmak [8], and Çakmak et al. [33] are corrected by the following rational equation (x: crank angle (degree)) [31] (Eq. (13)):

$$y = \frac{(a_1 \cdot x^3 + a_2 \cdot x^2 + a_3 \cdot x + a_4)}{(x^4 + b_1 \cdot x^3 + b_2 \cdot x^2 + b_3 \cdot x + b_4)}$$
(13)

Table 8, Appendix Table 15, and Appendix Table 16 list the regression constants of Eq. (13) for the experimental HRR data measured by the author, Yeşilyurt and Çakmak [8], and Çakmak et al. [33]. The r², relative error, and mean absolute error (between measured HRR and calculated HRR) values from Eq. (13) for the HRR data measured by the author, Yeşilyurt and Çakmak [8], and Çakmak et al. [33] are listed in Table 9, Appendix Table 17, and Appendix Table 18. The average values of r², relative error, and mean absolute error arising from Eq. (13) are listed as follows: 0.9978, 0.6158%, 0.3178 for the author's data; 0.9939, 1.2185%, 0.4626 for Yeşilyurt and Çakmak's data [8]; and 0.9884, 1.5837%, 0.5991 for Çakmak et al.'s data [33]. Eq. (13) exhibits quantitatively more agreement with the experimental HRR data measured by both the author and other authors [8, 33], compared to other equations (Eq. (8)-(12)). As for qualitative predictive accuracy, Figure 6 and Appendix Figures 2-14 portray the comparison between the calculated HRR values using Eq. (13) and the experimental HRR data measured by the author, Yesilyurt and Cakmak [8], and Cakmak et al. [33]. According to these figures, the calculated HRR values from Eq. (13) are also qualitatively well consistent with the experimental HRR data measured by the author, Yeşilyurt and Çakmak, and Çakmak et al. This result is likely due to the fact that the characteristic of Eq. (13) is similar to the variation characteristic of the HRR.

Figure 2. Comparison of measured HRR data of DF and calculated values from the sine (Eq. (8)) and the piecewise (Eq. (9)) equations and their Padé approximations

Figure 3. Comparison of measured HRR data of OCT6 and calculated values from the sine (Eq. (8)) and the piecewise (Eq. (9)) equations and their Padé approximations

Figure 4. Comparison of measured HRR data of OCT8 and calculated values from the sine (Eq. (8)) and the piecewise (Eq. (9)) equations and their Padé approximations

Crank Angle (Degree)

Figure 5. Comparison of measured HRR data of OCT10 and calculated values from the sine (Eq. (8)) and the piecewise (Eq. (9)) equations and their Padé approximations

Table 2. Regression constants of the sine (Eq. (8)) and the piecewise (Eq. (9)) equations for the author's data

Fuel	Equation	Regression constants						
Puer	Equation	a ₁	a ₂	a ₃	a ₄	a ₅	b ₁	b ₂
DF		11.67	37.93	5.978	2.897	1.568	5.213	0.03855
OCT6	Sine	11.92	960.9	7.077	2.707	1.561	5.211	0.001213
OCT8	(Eq. (8))	10.98	7.885	6.379	2.879	1.534	5.499	1.246
OCT10		9.032	10.41	5.63	2.849	1.287	6.369	2.143
DF		10.45762	25.47713	-	-	-	2.29846	5.78886
OCT6	Piecewise	10.86057	25.84369	-	-	-	2.38726	7.73898
OCT8	(Eq. (9))	10.67781	25.58212	-	-	-	2.38618	6.93811
OCT10		11.26198	24.87711	-	-	-	2.36364	7.58063

Table 2. (Continued)

Fuel	Equation	Regression constants						
Tuer	Equation	b ₃	b ₄	b ₅	C ₁	C ₂	C ₃	c ₄
DF		10.39	15.44	20.52	0.8966	0.1672	0.7394	1.031
OCT6	Sine	10.47	15.56	20.32	0.9511	0.00672	0.7682	0.8721
OCT8	(Eq. (8))	10.53	15.61	20.68	0.8905	1.245	0.7464	0.9233
OCT10		10.98	15.92	20.77	0.8569	1.23	0.7839	0.8928
DF		-	-	-	0.09231	0.14523	-	-
OCT6	Piecewise	-	-	-	0.09727	0.16550	-	-
OCT8	(Eq. (9))	-	-	-	0.09726	0.15638	-	-
OCT10	-	-	-	-	0.09495	0.16650	-	-

Table 2. (Continued)

Fuel	Equation	Regression constants					
Tuer	Equation	C ₅	d1	d ₂	е	f	
DF		1.048	-	-	-	-	
OCT6	Sine	1.134	-	-	-	-	
OCT8	(Eq. (8))	1.084	-	-	-	-	
OCT10		1.068	-	-	-	-	
DF		-	-15.33455	-0.92116	0.09400	2.49308	
OCT6	Piecewise	-	-15.00712	-0.86288	0.09934	2.62792	
OCT8	(Eq. (9))	-	-15.07171	-0.85542	0.09884	2.58905	
OCT10		-	-15.46649	-0.64289	0.09603	2.51447	

Table 3. The r ² , relative error, and mean absolute error values coming from Ed	q. (8) and E	q. (9), and their	Padé approximations
for the author's data			

Fuel	Equation	r^2	Relative error (%)	Mean absolute error
DF		0.9984	1.0772	0.2984
OCT6	Sino	0.9979	1.2612	0.3609
OCT8	$(\Sigma_{-}, (2))$	0.9982	0.9343	0.3346
OCT10	(Eq. (8))	0.9985	0.6797	0.2973
Average		0.9983	0.9881	0.3228
DF		0.9699	1.0773	1.1710
OCT6		0.9898	1.2612	0.7088
OCT8	Padé approximation of Sine (Eq. (8))	0.9883	0.9346	0.7614
OCT10		0.9929	0.6797	0.5828
Average		0.9852	0.9882	0.8060
DF		0.9982	1.7809	0.2651
OCT6	Discourise	0.9950	0.2501	0.4401
OCT8	(Eq. (0))	0.9981	0.5354	0.2962
OCT10	(Eq. (9))	0.9990	0.3888	0.1938
Average		0.9976	0.7388	0.2988
DF		0.9981	1.7807	0.2839
OCT6	Dadá annuavination of Discoving	0.9946	0.2502	0.4621
OCT8	rade approximation of Piecewise $(E_{a}, (0))$	0.9978	0.5353	0.3153
OCT10	(Eq. (9))	0.9989	0.3888	0.2106
Average		0.9974	0.7388	0.3180

Table 4. Regression constants of the piecewise (Eq. (10)) equation for the author's data

Fuel	Equation	Regression constants					
i dei	Equation	a ₁	a ₂	b ₁	b ₂	c ₁	C ₂
DF		10.45762	16.40062	2.29846	-0.60450	0.09231	0.19770
OCT6	Piecewise	10.86057	9.85106	2.38726	-0.55465	0.09727	0.57381
OCT8	(Eq. (10))	10.67781	15.03272	2.38618	-0.60274	0.09726	0.53061
OCT10		11.26198	16.97065	2.36364	-0.67669	0.09495	0.39183

Table 4. (Continued)

Fuel	Equation	Regression constants					
i dei	Equation	d ₁	d ₂	e ₁	e ₂	f_1	f ₂
DF		-15.33455	18.61222	0.09400	0.32554	2.49308	28.49428
OCT6	Piecewise	-15.00712	22.24746	0.09934	0.16712	2.62792	53.35073
OCT8	(Eq. (10))	-15.07171	23.63617	0.09884	0.05732	2.58905	51.65241
OCT10		-15.46649	19.94766	0.09603	0.21111	2.51447	28.61170

Table 5. Regression constants of the piecewise (Eq. (11)) equation for the author's data

Fuel	Equation		Regression constants					
	Equation	a ₁	a ₂	a ₃	a ₄	a ₅	a ₆	
DF		38.22	40.15	12.47	9.189	-0.06939	16.40062	
OCT6	Piecewise	26.71	1526	1503	1.212	-0.1556	9.85106	
OCT8	(Eq. (11))	20.28	371.8	354.8	1.185	-0.05414	15.03272	
OCT10		18.77	525.7	509.4	0.7225	-0.1826	16.97065	

Table 5. (Continued)

Fuel	Equation		Regression constants					
	Equation	b ₁	b ₂	b ₃	b_4	b ₅	b ₆	
DF		11.55	12.39	17	18.65	67.72	-0.60450	
OCT6	Piecewise	13.23	16.52	16.57	25.5	47.97	-0.55465	
OCT8	(Eq. (11))	12.35	16.14	16.32	23.39	69.13	-0.60274	
OCT10	-	12.56	16.43	16.54	26.55	48.15	-0.67669	

Table 5. (Continued)

Fuel	Equation		Regression constants					
	I	c ₁	c ₂	с ₃	c ₄	C ₅	c ₆	
DF		3.755	1.118	1.432	-6.87	5.113	0.19770	
OCT6	Piecewise	3.92	2.292	-0.8264	-6.462	-1.422	0.57381	
OCT8	(Eq. (11))	3.608	2.221	-0.8382	-7.11	5.342	0.53061	
OCT10		3.674	2.303	-0.7859	-6.048	-1.405	0.39183	

Table 5. (Continued)

Fuel	Equation	Regression constants				
	Equation	d	е	f		
DF		18.61222	0.32554	28.49428		
OCT6	Piecewise	22.24746	0.16712	53.35073		
OCT8	(Eq. (11))	23.63617	0.05732	51.65241		
OCT10		19.94766	0.21111	28.61170		

Table 6. Regression constants of the piecewise (Eq. (12)) equation for the author's data

F 1		Regression constants					
Fuel	Equation	a ₁	a ₂	a ₃	a ₄	a ₅	a ₆
DF		38.22	40.15	12.47	9.189	-0.06939	25.47713
OCT6	Piecewise	26.71	1526	1503	1.212	-0.1556	25.84369
OCT8	(Eq. (12))	20.28	371.8	354.8	1.185	-0.05414	25.58212
OCT10		18.77	525.7	509.4	0.7225	-0.1826	24.87711

Table 6. (Continued)

F 1		Regression constants					
Fuel	Equation	b ₁	b ₂	b ₃	b_4	b ₅	b ₆
DF		11.55	12.39	17	18.65	67.72	5.78886
OCT6	Piecewise	13.23	16.52	16.57	25.5	47.97	7.73898
OCT8	(Eq. (12))	12.35	16.14	16.32	23.39	69.13	6.93811
OCT10		12.56	16.43	16.54	26.55	48.15	7.58063

Table 6. (Continued)

	-	Regression constants					
Fuel	Equation	c ₁	c ₂	c ₃	C ₄	c ₅	
DF		3.755	1.118	1.432	-6.87	5.113	
OCT6	Piecewise	3.92	2.292	-0.8264	-6.462	-1.422	
OCT8	(Eq. (12))	3.608	2.221	-0.8382	-7.11	5.342	
OCT10		3.674	2.303	-0.7859	-6.048	-1.405	

Table 6. (Continued)

	E ć	Regressio	n constants
Fuel	FuelEquationDF0CT6OCT6PiecewiseOCT8(Eq. (12))	C ₆	d
DF		0.14523	-0.92116
OCT6	Piecewise	0.16550	-0.86288
OCT8	(Eq. (12))	0.15638	-0.85542
OCT10	-	0.16650	-0.64289

Table 7. The r², relative error, and mean absolute error values coming from Eqs. (10)-(12) for the author's data

Fuel	Equation	r^2	Relative error (%)	Mean absolute error
DF		0.9931	7.2153	0.3598
OCT6	Discouries	0.9903	8.6836	0.5023
OCT8	(Fa (10))	0.9918	7.5255	0.3747
OCT10	(Eq. (10))	0.9912	9.2117	0.3661
Average		0.9916	8.1590	0.4007
DF		0.9930	7.2153	0.4093
OCT6	Diagonviso	0.9879	8.6836	0.6771
OCT8	(Fa. (11))	0.9919	7.5255	0.3937
OCT10	(Eq. (11))	0.9867	9.2117	0.6302
Average		0.9899	8.1590	0.5276
DF		0.9981	1.7809	0.3147
OCT6	Discourise	0.9927	0.2501	0.6149
OCT8	(Fa. (12))	0.9981	0.5354	0.3152
OCT10	(Eq. (12))	0.9945	0.3888	0.4579
Average		0.9959	0.7388	0.4257

Table 8. Regression constants of Eq. (13) for the author's data

F 1				Regression	constants		
Fuel	Equation	a ₁	a ₂	a ₃	a ₄	b ₁	b ₂
DF		-70.64	-1399	1.318e5	1.09e6	-14.51	646.6
OCT6	E_{2} (12)	-77.76	-694.3	1.057e5	8.519e5	-3.003	433.8
OCT8	Eq. (15)	-73.85	-1048	1.202e5	9.665e5	-8.067	536.2
OCT10		-51.73	-785	8.645e4	7.162e5	-6.25	381.4

Table 8. (Continued)

Fuel Fou	Equation	Regression constants		
i uci	Equation	b ₃	b ₄	
DF		1456	4.472e4	
OCT6	$\mathbf{E}_{\mathbf{a}}$ (12)	965.8	3.339e4	
OCT8	Eq. (15)	1094	3.87e4	
OCT10		785	2.879e4	

Table 9. The r^2 , relative error, and mean absolute error values coming from Eq. (13) for the author's data

Fuel	Equation	r^2	Relative error (%)	Mean absolute error
DF		0.9984	1.2667	0.2822
OCT6		0.9955	0.2562	0.4403
OCT8	Eq. (13)	0.9983	0.5027	0.3195
OCT10		0.9990	0.4377	0.2292
Average		0.9978	0.6158	0.3178

Figure 6. Comparison of the predicted values (from Eq. (13)) with the experimental HRR data of DF measured by the author

Table 10 summarizes the regression results of the investigated equations for all the experimental datasets. In Table 10, the "well" term indicates that the corresponding equation gives both an average relative error of less than 5% and an average r^2 of closer to 1.00 for the corresponding data set (i.e. well prediction accuracy), while the "poor" term indicates the opposite (i.e. poor prediction accuracy).

Equation		Measured HRR data	
Equation	The author	Yeşilyurt and Çakmak [8]	Çakmak et al. [33]
Eq. (8)	Well	Poor	Poor
Eq. (9)	Well	Poor	Well
Eq. (10)	Poor	Poor	Well
Eq. (11)	Poor	Poor	Well
Eq. (12)	Well	Poor	Well
Eq. (13)	Well	Well	Well

4 Conclusions

In recent years, n-octanol has emerged as a promising biofuel option, exhibiting considerable potential as an alternative to diesel fuel owing to its favourable fuel properties. Therefore, experimental studies have been performed to examine the effects of n-octanol blends on the performance, exhaust emissions, and combustion characteristics of diesel engines. On the other hand, there are a limited number of studies on the use of the function approximation methods for predicting combustion parameters. To eliminate this gap in the existing literature, this study focuses on the use of regression equations and their Padé approximations to predict the HRR of a single-cylinder diesel engine fuelled with DF and n-octanol blends (OCT6, OCT8, and OCT10). The predictive capabilities of suggested regression equations and their Padé approximations are also tested against the literature data measured by different authors. The main conclusions are as follows:

Compared with DF, the ignition delay and peak heat release rate show an increase of 3.8462% and 5.9501% for OCT6, 7.6923% and 3.7125% for OCT8, and 8.9744% and 3.0755% for OCT10, respectively.

Compared to DF, the peak cylinder pressure of OCT6 and OCT8 is observed to be higher by 2.4378% and 1.3982%, while that of OCT10 is found to be lower by 1.9458%.

The sine equation (Eq. (8)), the piecewise equation (Eq. (9)), and the Padé approximation of the piecewise equation (Eq. (9)) demonstrate superior quantitative performance in terms of higher average r^2 (0.9983, 0.9976, 0.9974), lower average relative error (0.9881%, 0.7388%, 0.7388%), and lower average mean absolute error values (0.3228, 0.2988, 0.3180), respectively, for the author's HRR data.

The sine equation (Eq. (8)), Padé approximation of the sine equation, the piecewise equation (Eq. (9)), and Padé approximation of the piecewise equation (Eq. (9)) yield relatively high average relative errors (22.8316%, 22.7955%, 6.7514%, 6.7515%; and 16.4322%, 16.4303%, 4.4275%, 4.4274%) and low average r^2 (0.9357, 0.3341, 0.9512, 0.9503; and 0.9522, 0.0937, 0.9793, 0.9792) values for the prediction of the HRR data measured by Yeşilyurt and Çakmak [8], and Çakmak et al. [33].

None of the other piecewise equations (Eqs. (10-12)) show a correlation with quantitatively sufficient accuracy for all experimental HRR data obtained by the author, Yeşilyurt and Çakmak [8], and Çakmak et al. [33]. Eq. (10), Eq. (11), and Eq. (12) exhibit relatively low average r^2 (0.9916, 0.9899, 0.9959 for the author's data; 0.9583, 0.9900, 0.9829 for Yeşilyurt and Çakmak's data; 0.9853, 0.9887, 0.9828 for Çakmak et al.'s data) and high average relative error (8.1590%, 8.1590%, 0.7388% for the author's data; 6.7514%, 5.5069%, 5.5069% for Yeşilyurt and Çakmak's data; 4.4275%, 2.7285%, 2.7285% for Çakmak et al.'s data) values when used for predicting HRR data.

Eq. (13) qualitatively and quantitatively exhibits better curve fitting with all experimental HRR data measured by the author and different authors compared to other equations.

This study can contribute to the literature by suggesting Eq. (13) as a useful tool to predict the heat release rate of a diesel engine fuelled with diesel fuel and n-octanol blends for internal combustion engine studies. In other words, given the technical and economic difficulties involved in determining the heat release rate, Eq. (13) appears to be one of the most favorable choices, particularly for numerical internal combustion engine studies.

For deriving general correlations depending on fuel properties, engine speed, engine load, injection timing, compression ratio, etc., more cylinder pressure data can be measured. Then, multiple regression models with independent variables can be used. Moreover, some machine learning methods can be used to generalize the regression constants. In addition, other function approximation methods can be investigated for predicting HRR.

As a future study, machine learning methods can be chosen for classification or prediction problems related to engine studies.

Conflict of interest

The author declares that there is no conflict of interest.

Similarity rate (iThenticate): 18%

References

T. Sathish, Ü. Ağbulut, S. M. George, K. Ramesh, R. Saravanan, K. L. Roberts, P. Sharma, M. Asif and A. T. Hoang, Waste to fuel: Synergetic effect of hybrid nanoparticle usage for the improvement of CI engine characteristics fuelled with waste fish oils. Energy, 275, 127397, 2023. https://doi.org/10.1016/j.energy.2023.127397.

[2] S. Beccari, E. Pipitone and S. Caltabellotta, Analysis of the combustion process in a hydrogen-fueled CFR engine. Energies, 16(5), 1-14, 2023. https://doi.org/10.3390/en16052351.

- [3] M. K. Yesilyurt and C. Cesur, A statistical optimization attempt by applying the Taguchi technique for the optimum transesterification process parameters in the production of biodiesel from *Papaver somniferum* L. seed oil. Fuel, 329, 125406, 2022. https://doi.org/10.1016/j.fuel.2022.125406.
- [4] H. Sanli, E. Alptekin and M. Canakci, Using low viscosity micro-emulsification fuels composed of waste frying oil-diesel fuel-higher bio-alcohols in a turbocharged-CRDI diesel engine. Fuel, 308, 121966, 2022. https://doi.org/10.1016/j.fuel.2021.121966.
- [5] K. Seeniappan, B. Venkatesan, N. N. Krishnan, T. Kandhasamy, S. Arunachalam, R. K. Seeta and M. V. Depoures, A comparative assessment of performance and emission characteristics of a DI diesel engine fuelled with ternary blends of two higher alcohols with lemongrass oil biodiesel and diesel fuel. Energy & Environment, 33(6), 1134-1159, 2022. https://doi.org/10.1177/0958305x211051323.
- [6] M. V. D. Poures, A. P. Sathiyagnanam, D. Rana, R. K. Babu, S. Subramani, B. Sethuramasamyraja and D. Damodharan, Using renewable n-octanol in a non-road diesel engine with some modifications. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects, 41(10), 1194-1208, 2019. https://doi.org/10.1080/15567036.2018.1544997.
- [7] B. R. Kumar, S. Saravanan, D. Rana, V. Anish and A. Nagendran, Effect of a sustainable biofuel–n-octanol– on the combustion, performance and emissions of a DI diesel engine under naturally aspirated and exhaust gas recirculation (EGR) modes. Energy Conversion and Management, 118, 275-286, 2016. https://doi.org/10.1016/j.enconman.2016.04.001.
- [8] M. K. Yeşilyurt and A. Çakmak, An extensive investigation of utilization of a C8 type long-chain alcohol as a sustainable next-generation biofuel and diesel fuel blends in a CI engine-The effects of alcohol infusion ratio on the performance, exhaust emissions, and combustion characteristics. Fuel, 305, 121453, 2021. https://doi.org/10.1016/j.fuel.2021.121453.
- [9] K. Gopal, A. P. Sathiyagnanam, B. R. Kumar, S. Saravanan, D. Rana and B. Sethuramasamyraja, Prediction of emissions and performance of a diesel

engine fueled with n-octanol/diesel blends using response surface methodology. Journal of Cleaner Production, 184, 423-439, 2018. https://doi.org/10.1016/j.jclepro.2018.02.204.

- [10] M. K. Akhtar, H. Dandapani, K. Thiel and P. R. Jones, Microbial production of 1-octanol: A naturally excreted biofuel with diesel-like properties. Metabolic Engineering Communications, 2, 1-5, 2015. https://doi.org/10.1016/j.meteno.2014.11.001.
- [11] Sidharth and N. Kumar, Performance and emission studies of ternary fuel blends of diesel, biodiesel and octanol. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects, 42(18), 2277-2296, 2020. https://doi.org/10.1080/15567036.2019.1607940.
- [12] B. Ashok, K. Nanthagopal, V. Anand, K. M. Aravind, A. K. Jeevanantham and S. Balusamy, Effects of noctanol as a fuel blend with biodiesel on diesel engine characteristics. Fuel, 235, 363-373, 2019. https://doi.org/10.1016/j.fuel.2018.07.126.
- [13] M. S. C. Sekar, V. R. Ananthan, N. Baskaran, H. K. S. Kumar and R. Arumugam, Combustion, performance, and emission study on the octanol-neem biodiesel blends fueled diesel engine. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects, 1-13, 2020. https://doi.org/10.1080/15567036.2020.1741736.
- [14] S. Ali, M. V. D. Poures, D. Damodharan, K. Gopal, V. C. Augustin and M. R. Swaminathan, Prediction of emissions and performance of a diesel engine fueled with waste cooking oil and C8 oxygenate blends using response surface methodology. Journal of Cleaner Production, 371, 133323, 2022. https://doi.org/10.1016/j.jclepro.2022.133323.
- [15] L. Konjević, M. Racar, P. Ilinčić and F. Faraguna, A comprehensive study on application properties of diesel blends with propanol, butanol, isobutanol, pentanol, hexanol, octanol and dodecanol. Energy, 262, 125430, 2023. https://doi.org/10.1016/j.energy.2022.125430.
- [16] J. Li, Y. Liang and W. Yang, Combustion characteristics and emissions formation of a compression ignition engine fueled with C8 biofuels blends. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects, 44(3), 5991-6008, 2022. https://doi.org/10.1080/15567036.2022.2095062.
- [17] A. Mahalingam, Y. Devarajan, S. Radhakrishnan, S. Vellaiyan and B. Nagappan, Emissions analysis on mahua oil biodiesel and higher alcohol blends in diesel engine. Alexandria Engineering Journal, 57(4), 2627-2631, 2018. https://doi.org/10.1016/j.aej.2017.07.009.
- [18] D. Damodharan, K. Gopal, A. P. Sathiyagnanam, B. R. Kumar, M. V. Depoures and N. Mukilarasan, Performance and emission study of a single cylinder diesel engine fuelled with n-octanol/WPO with some modifications. International Journal of Ambient Energy, 42(7), 779-788, 2019. https://doi.org/10.1080/01430750.2018.1563824.
- [19] N. Joy, Y. Devarajan, B. Nagappan and A. Anderson, Exhaust emission study on neat biodiesel and alcohol blends fueled diesel engine. Energy Sources, Part A:

Recovery, Utilization, and Environmental Effects, 40(1), 115-119, 2018. https://doi.org/10.1080/15567036.2017.1405119.

- [20] A. Bilgin and M. Gulum, Effects of various transesterification parameters on the some fuel properties of hazelnut oil methyl ester. Energy Procedia, 147, 54-62, 2018. https://doi.org/10.1016/j.egypro.2018.07.033.
- [21] M. K. Yesilyurt, A detailed investigation on the performance, combustion, and exhaust emission characteristics of a diesel engine running on the blend of diesel fuel, biodiesel and 1-heptanol (C7 alcohol) as a next-generation higher alcohol. Fuel, 275, 117893, 2020. https://doi.org/10.1016/j.fuel.2020.117893.
- [22] M. A. Ghadikolaei, P. K. Wong, C. S. Cheung, Z. Ning, K. F. Yung, J. Zhao, N. K. Gali and A. V. Berenjestanaki, Impact of lower and higher alcohols on the physicochemical properties of particulate matter from diesel engines: A review. Renewable and Sustainable Energy Reviews, 143, 110970, 2021. https://doi.org/10.1016/j.rser.2021.110970.
- [23] A. I. El-Seesy, M. S. Waly, Z. He, H. M. El-Batsh, A. Nasser and R. M. El-Zoheiry, Influence of quaternary combinations of biodiesel/methanol/n-octanol/diethyl ether from waste cooking oil on combustion, emission, and stability aspects of a diesel engine. Energy Conversion and Management, 240, 114268, 2021. https://doi.org/10.1016/j.enconman.2021.114268.
- [24] European Parliament Directive 2003/30/EC of the European Parliament and of the Council of 8 May 2003 on the promotion of the use of biofuels or other renewable fuels for transport. https://eurlex.europa.eu/legalcontent/EN/TXT/PDF/?uri=CELEX:32003L0030&fro m=en, Accessed 28 June 2023.
- [25] European Parliament Regulation (EU) 2018/1999 of the European Parliament and of the Council and Directive 98/70/EC of the European Parliament and of the Council as regards the promotion of energy from renewable sources, and repealing Council Directive (EU) 2015/652. https://eur-lex.europa.eu/legalcontent/EN/TXT/?uri=CELEX%3A52021PC0557, Accessed 28 June 2023.
- [26] M. Gülüm, Performance, combustion and emission characteristics of a diesel engine fuelled with diesel fuel + corn oil + alcohol ternary blends. Environmental Science and Pollution Research, 30, 53767–53777, 2023. https://doi.org/10.1007/s11356-023-26053-x
- [27] J.B. Heywood, Internal Combustion Engine Fundamentals. McGraw Hill Series in mechanical engineering, 1988. ISBN: 0-07-100499-8.
- [28] M. Bakioğlu, Sayısal Analiz (in Turkish). Birsen Yayınevi, 2011. ISBN: 978-975-511-353-3.
- [29] C.F. Gerald and P.O. Wheatley, Applied Numerical Analysis (Seventh Edition). Pearson Education, 2004. ISBN: 0-321-13304-8.
- [30] L.V. Fausett, Numerical Methods Using MathCAD. Prentice-Hall, 2002. ISBN: 0-13-061081-X.

- [31] MATLAB Curve Fitting Toolbox User's Guide. The MathWorks, Inc., 2020.
- [32] J.L. Hintze, NCSS User's Guide III Regression and Curve Fitting. NCSS Statistical System, 2007, https://www.ncss.com/download/ncss/manuals/, Accessed: 31.05.2023.
- [33] A. Çakmak, M. K. Yeşilyurt, D. Erol and B. Doğan, The experimental investigation on the impact of noctanol in the compression-ignition engine operating with biodiesel/diesel fuel blends: exergy, exergoeconomic, environmental analyses. Journal of Thermal Analysis and Calorimetry, 147, 11231-11259, 2022. https://doi.org/10.1007/s10973-022-11357-w.

Appendix

Appendix Figure 1. Schematic figure of the experimental setup

Appendix Figure 2. Comparison of the predicted values (from Eq. (13)) with the experimental HRR data of OCT6 measured by the author

Appendix Figure 3. Comparison of the predicted values (from Eq. (13)) with the experimental HRR data of OCT8 measured by the author

Appendix Figure 4. Comparison of the predicted values (from Eq. (13)) with the experimental HRR data of OCT10 measured by the author

Appendix Figure 5. Comparison of the predicted values (from Eq. (13)) with the experimental HRR data of pure diesel measured by Yeşilyurt and Çakmak [8]

Appendix Figure 6. Comparison of the predicted values (from Eq. (13)) with the experimental HRR data of the blend (including 5% octanol) measured by Yeşilyurt and Çakmak [8]

Appendix Figure 7. Comparison of the predicted values (from Eq. (13)) with the experimental HRR data of the blend (including 10% octanol) measured by Yeşilyurt and Çakmak [8]

Appendix Figure 8. Comparison of the predicted values (from Eq. (13)) with the experimental HRR data of the blend (including 15% octanol) measured by Yeşilyurt and Çakmak [8]

Appendix Figure 9. Comparison of the predicted values (from Eq. (13)) with the experimental HRR data of the blend (including 20% octanol) measured by Yeşilyurt and Çakmak [8]

Appendix Figure 10. Comparison of the predicted values (from Eq. (13)) with the experimental HRR data of pure diesel measured by Çakmak et al. [33]

Crank Angle (Degree)

Appendix Figure 11. Comparison of the predicted values (from Eq. (13)) with the experimental HRR data of the blend (including 5% octanol) measured by Çakmak et al. [33]

Appendix Figure 12. Comparison of the predicted values (from Eq. (13)) with the experimental HRR data of the blend (including 10% octanol) measured by Çakmak et al. [33]

Appendix Figure 13. Comparison of the predicted values (from Eq. (13)) with the experimental HRR data of the blend (including 15% octanol) measured by Çakmak et al. [33]

Appendix Figure 14. Comparison of the predicted values (from Eq. (13)) with the experimental HRR data of the blend (including 20% octanol) measured by Çakmak et al. [33]

Appendix Table 1. The main fuel properties of DF

Pro	nertv*	Test method	Limit		Value	
110	perty	Test method	Min.	Max.	value	
Density at	15°C (kg/m ³)	TS EN ISO 12185	820	845	834.8	
Kinematic visco	sity at 40°C (mm ² /s)	TS EN ISO 3104	2	4.5	2.714	
Flash point t	emperature (°C)	TS EN ISO 2719	>55	-	58.5	
Higher heatin	ng value (MJ/kg)	DIN 51900-2	-	-	45.225	
Total conta	minat. (mg/kg)	TS EN 12662	-	24	16.5	
Cold filter plugging	point temperature (°C)	TS EN 116	-	+5 (Sum.) -15 (Win.)	-12	
Copper strip corre	osion at 3 h and 50°C	TS 2741 EN ISO 2160		1	1A	
Lubrication	property (µm)	TS EN ISO 12156-1	-	460	397	
Sulfu	r (mg/kg)	TS EN ISO 20846	-	10	6.8	
	250°C (% v/v)	TS EN ISO	-	<65	38.2	
Distillation	350°C (% v/v)	15 EN 150	85	-	93.8	
	95% (v/v)	3403	-	360°C	356.1	
Ceta	ne index	TS EN ISO 4264	46	-	51.7	
Cetane	e number**	EN ISO 5165 EN 15195	51	-	51	

*: All properties except cetane number were measured at Prof. Dr. Saadettin GUNER Fuel Application and Research Center. **: Cetane number is given by the supplier of DF used in this study.

Appendix Table 2. Technica	l specification	of the test	engine
----------------------------	-----------------	-------------	--------

Type of engine	Direct-injection and naturally aspirated
Valve	2 (One inlet and one exhaust)
Nozzle hole number/diameter	5/0.162 mm
Nozzle type	Standard
Injector opening pressure	220 bar
Injection pump type	Mechanical
Cooling system	Air
Bore x stroke (mm)	88 x 76
Connecting rod length (mm)	124
Engine capacity (cm ³)	462
Compression ratio	20.5:1
Start of fuel injection	13 crank angle (degree) before the top dead center

Appendix Table 3. Regression constants of the sine (Eq. (8)) and the piecewise (Eq. (9)) equations for Yeşilyurt and Çakmak's data [8]

Octanol Content	Equation	Regression constants						
Octanoi Content	Equation	a ₁	a ₂	a ₃	a ₄	a ₅	b ₁	b ₂
0 (Pure diesel)	Sine (Eq. (8))	4.94	13.17	3.614	2.048	3.243	7.453	2.176
5		3.515	13.94	3.789	2.955	-2.186	7.901	2.443
10		3.721	13.38	4.682	3.409	2.395	7.791	2.38
15		4.193	13.63	4.567	3.524	2.301	7.989	2.35
20		3.594	13.54	4.557	3.524	2.378	8.103	2.463
0 (Pure diesel)		8.22380	6.77598	-	-	-	-3.23415	0.75714
5	D:	3.80474	11.42232	-	-	-	-4.62354	1.83147
10	(Eq. (9))	5.90853	10.02813	-	-	-	-4.46131	1.55554
15		14.28259	19.42027	-	-	-	2.00227	0.59948
20		14.57193	22.04874	-	-	-	1.99629	1.02745

Appendix Table 3. (Continued)

_

Octanol Content	Equation	Regression constants						
Octanor Content	Equation	b ₃	b_4	b ₅	c ₁	c ₂	C ₃	C ₄
0 (Pure diesel)		12.06	22.02	16.85	1.620	1.089	2.825	-2.599
5	Cino	12.03	17.12	21.99	1.238	1.067	2.802	3.241
10	(Eq. (P))	12.06	17.03	21.99	1.412	1.133	2.841	3.204
15	(Eq. (o))	12.44	17.67	22.50	1.284	1.026	2.421	2.533
20		12.43	17.71	22.54	1.322	1.000	2.459	2.593
0 (Pure diesel)		-	-	-	-0.33508	0.07427	-	-
5	D:	-	-	-	-0.47497	0.06283	-	-
10	Piecewise	-	-	-	-0.46152	0.06240	-	-
15	(Eq. (9))	-	-	-	0.05609	0.02968	-	-
20		-	-	-	0.05407	0.03233	-	-

Appendix Table 3. (Continued)

Octanol Content	Equation	Regression constants						
Octation Content	Equation	C ₅	d ₁	d ₂	e	f		
0 (Pure diesel)		3.236	-	-	-	-		
5	Cina	6.733	-	-	-	-		
10	$(\mathbf{E}_{\mathbf{a}}, (\mathbf{S}))$	3.538	-	-	-	-		
15	(Eq. (8))	2.841	-	-	-	-		
20		2.908	-	-	-	-		
0 (Pure diesel)		-	-11.37961	5.11708	-0.35157	-4.17335		
5	Discouries	-	-10.32028	-1.94341	-0.48798	-5.35529		
10	(Eq. (0))	-	-10.55624	-1.12643	-0.47895	-5.37384		
15	(Eq. (9))	-	-21.28344	-6.56398	0.06078	2.36784		
20		-	-21.51955	-11.27791	0.05772	2.25004		

Appendix Table 4. Regression constants of the sine (Eq. (8)) and the piecewise (Eq. (9)) equations for Çakmak et al.'s data [33]

Octanol Content	Equation		Regression constants						
Octation Content	Equation	a ₁	a ₂	a ₃	a ₄	a ₅	b1	b ₂	
0 (Pure diesel)		4.042	15.1	3.328	4.389	-2.294	7.954	2.2	
5	Sino	5.062	14.68	4.027	3.096	1.943	7.86	2.085	
10	$(\mathbf{E}_{\mathbf{a}}, (\mathbf{S}))$	4.721	15.08	4.07	3.386	2.23	7.821	2.141	
15	(Eq. (o))	3.897	14.6	4.422	-2.422	3.563	8.022	2.245	
20		14.94	3.555	4.68	2.901	1.522	2.287	12.07	
0 (Pure diesel)		11.74727	14.24844	-	-	-	-3.55641	1.01905	
5	Discorrigo	15.77979	15.37784	-	-	-	-1.50551	0.00025	
10	(Eq. (0))	13.08163	13.47703	-	-	-	-3.75826	0.51029	
15	(Eq. (9))	10.38882	17.89887	-	-	-	-3.80176	0.96558	
20		13.76048	16.92187	-	-	-	-1.40068	0.76323	

Appendix Table 4. (Continued)

	г ('	Regression constants						
Octanol Content	Equation	b ₃	b ₄	b ₅	c ₁	c ₂	C ₃	c ₄
0 (Pure diesel)	<u>.</u>	17.43	12.15	22.23	1.259	1.112	9.026	-3.688
5		12.19	17.38	22.17	1.211	1.132	2.454	2.458
10	$(\mathbf{E}_{\mathbf{a}}, (\mathbf{e}))$	12.34	17.54	22.45	1.309	1.087	2.52	2.638
15	(Eq. (8))	12.26	22.36	17.41	1.366	1.093	2.565	-0.1094
20		7.776	17.37	22.2	1.073	2.404	1.062	2.454
0 (Pure diesel)		-	-	-	-0.48930	0.04633	-	-
5	Diagonviso	-	-	-	-0.31175	0.02324	-	-
10	(Eq. (9))	-	-	-	-0.56737	0.04064	-	-
15		-	-	-	-0.51000	0.03658	-	-
20		-	-	-	-0.28745	0.04968	-	-

Appendix Table 4. (Continued)

			Regression constants						
Octanol Content	Equation	c ₅	d ₁	d ₂	е	f			
0 (Pure diesel)		6.181	-	-	-	-			
5	Sino	2.783	-	-	-	-			
10	$(\mathbf{E}_{\mathbf{a}}, (\mathbf{S}))$	2.875	-	-	-	-			
15	$(\mathbf{L}\mathbf{q}, (0))$	2.781	-	-	-	-			
20		2.676	-	-	-	-			
0 (Pure diesel)		-	-9.11591	-1.26027	-0.50455	-4.35598			
5	Piacowisa	-	-9.16442	1.76318	-0.32927	-2.34533			
10	(Eq. (D))	-	-8.41445	1.60137	-0.58481	-4.69576			
15	(Eq. (9))	-	-9.14452	-5.90583	-0.52145	-4.43124			
20		-	-9.22525	-0.00061	-0.30054	-2.10746			

Appendix Table 5. The r^2 , relative error, and mean absolute error values coming from Eq. (8) and Eq. (9), and their Padé approximations for Yeşilyurt and Çakmak's data [8]

Octanol Content	Equation	r^2	Relative error (%)	Mean absolute error
0 (Pure diesel)		0.9545	16.6249	1.0632
5		0.9240	28.8298	1.3481
10	Sine	0.9335	22.3415	1.3172
15	(Eq. (8))	0.9389	21.0810	1.2808
20		0.9276	25.2808	1.4141
Average		0.9357	22.8316	1.2847
0 (Pure diesel)	Padé approximation	0.3224	16.5582	5.3074

NÖHÜ Müh	. Bilim.	Derg. / NOH	U J. Eng	. <i>Sci</i> .	2023;	12(4),	1452-148	30
		М.	Gülüm					

5	of Sine (Eq. (8))	0.3763	28.8159	5.0280
10		0.4200	22.2565	4.7129
15		0.2573	21.0725	5.5438
20		0.2944	25.2744	5.5484
Average		0.3341	22.7955	5.2281
0 (Pure diesel)		0.9852	5.7504	0.6740
5		0.9805	11.5225	0.7434
10	Piecewise	0.9762	6.7997	0.9321
15	(Eq. (9))	0.9118	7.3347	1.2019
20		0.9025	2.3499	1.2815
Average		0.9512	6.7514	0.9666
0 (Pure diesel)		0.9804	5.7504	0.7964
5	D adá approximation	0.9805	11.5225	0.7409
10	of Discouries	0.9763	6.7997	0.9311
15	(E = (0))	0.9118	7.3348	1.2019
20	(Eq. (9))	0.9025	2.3500	1.2814
Average		0.9503	6.7515	0.9903

Appendix Table 6. The r^2 , relative error, and mean absolute error values coming from Eq. (8) and Eq. (9), and their Padé approximations for Çakmak et al.'s data [33]

Octanol Content	Equation	r^2	Relative error (%)	Mean absolute error
0 (Pure diesel)		0.9383	20.2908	1.2574
5		0.9642	12.3517	0.9354
10	Sine	0.9463	18.8404	1.1893
15	(Eq. (8))	0.9354	21.4228	1.3044
20		0.9768	9.2555	0.7927
Average		0.9522	16.4322	1.0958
0 (Pure diesel)		0.0905	20.2883	5.6050
5		0.0862	12.3512	5.7791
10	Padé approximation of Sine $(Eq. (8))$	0.0109	18.8363	6.0497
15	rade approximation of Sine (Eq. (8))	0.1733	21.4199	5.5042
20		0.1076	9.2559	5.3405
Average		0.0937	16.4303	5.6557
0 (Pure diesel)		0.9793	5.8774	0.7923
5		0.9764	3.6699	0.8142
10	Piecewise	0.9808	3.8426	0.7876
15	(Eq. (9))	0.9794	6.4867	0.7814
20		0.9808	2.2611	0.7771
Average		0.9793	4.4275	0.7905
0 (Pure diesel)		0.9793	5.8772	0.7920
5		0.9764	3.6698	0.8142
10	Padé approximation of Piecewise	0.9799	3.8426	0.8232
15	(Eq. (9))	0.9794	6.4866	0.7813
20		0.9808	2.2609	0.7778
Average		0.9792	4.4274	0.7977

Appendix Table 7. Regression constants of the piecewise equation (Eq. (10)) for Yeşilyurt and Çakmak's data [8]

Octanol Content	Equation	Regression constants						
Octation Content	Equation	a ₁	a ₂	b ₁	b ₂	c ₁	c ₂	
0 (Pure diesel)		8.22380	10.61204	-3.23415	-0.02448	-0.33508	-0.22091	
5		3.80474	10.20356	-4.62354	0.04243	-0.47497	-0.32678	
10	Piecewise	5.90853	8.41127	-4.46131	0.05494	-0.46152	-0.33204	
15	(Eq. (10))	14.28259	11.90488	2.00227	-0.07520	0.05609	-0.19699	
20		14.57193	11.11728	1.99629	-0.04330	0.05407	-0.23786	

Appendix Table 7. (Continued)

Octorel Content	Emertian	Regression constants						
Octanoi Coment	Equation	d1	d ₂	e ₁	e ₂	f_1	f ₂	
0 (Pure diesel)		-11.37961	16.80460	-0.35157	0.18721	-4.17335	26.87172	
5	D : 1	-10.32028	15.43546	-0.48798	0.15014	-5.35529	39.14301	
10	Piecewise	-10.55624	17.50194	-0.47895	0.20002	-5.37384	37.08696	
15	(Eq. (10))	-21.28344	21.32535	0.06078	0.13635	2.36784	34.12016	
20		-21.51955	20.91682	0.05772	0.11891	2.25004	40.06140	

Octanol Content Equation	D	Regression constants						
	Equation	a ₁	a ₂	b ₁	b ₂	c ₁	c ₂	
0 (Pure diesel)		11.74727	12.49190	-3.55641	-0.03718	-0.48930	-0.23466	
5	D:	15.77979	13.52185	-1.50551	-0.13344	-0.31175	-0.14453	
10	(Eq. (10))	13.08163	13.50237	-3.75826	-0.07436	-0.56737	-0.23366	
15		10.38882	12.91867	-3.80176	-0.05184	-0.51000	-0.21493	
20		13.76048	13.94956	-1.40068	-0.13647	-0.28745	-0.24210	

Appendix Table 8. Regression constants of the piecewise equation (Eq. (10)) for Çakmak et al.'s data [33]

Appendix Table 8. (Continued)

	Equation	Regression constants						
Octanol Content		d1	d ₂	e1	e ₂	f_1	f ₂	
0 (Pure diesel)		-9.11591	18.91832	-0.50455	0.14173	-4.35598	36.29648	
5	Diagonting	-9.16442	21.66059	-0.32927	0.19215	-2.34533	29.55688	
10	(Eq. (10))	-8.41445	19.50540	-0.58481	0.19374	-4.69576	28.37379	
15		-9.14452	18.85122	-0.52145	0.08771	-4.43124	37.10636	
20		-9.22525	20.38284	-0.30054	0.24352	-2.10746	30.11443	

Appendix Table 9. Regression constants of the piecewise equation (Eq. (11)) for Yeşilyurt and Çakmak's data [8]

Octanol Content Equation		Regression constants						
	Equation	a ₁	a ₂	a ₃	a ₄	a ₅	a ₆	
0 (Pure diesel)		32.56	3.845	37.02	31.94	29.36	10.61204	
5	Diagonico	24.44	3.657	27.54	46.88	45.24	10.20356	
10	(Eq. (11))	11.9	21.38	41.99	4.879	38.58	8.41127	
15		8.56	7.47	67.83	153	62.01	11.90488	
20		7.979	6.978	125.2	120	44.11	11.11728	

Appendix Table 9. (Continued)

Octanol Content Eq	Equation		Regression constants						
	Equation	b ₁	b ₂	b ₃	b ₄	b ₅	b ₆		
0 (Pure diesel)		7.755	25.44	6.173	33.41	33.97	-0.02448		
5	Disconviso	6.115	21.12	4.367	31.38	31.88	0.04243		
10	(Eq. (11))	7.695	2.767	30.95	23.89	31.59	0.05494		
15		8.276	24.11	29.34	0.2841	29.8	-0.07520		
20		8.387	23.61	29.53	29.78	0.9433	-0.04330		

Appendix Table 9. (Continued)

Octanol Content Equation	Equation	Regression constants						
	Equation	c ₁	c ₂	c ₃	C ₄	c ₅	c ₆	
0 (Pure diesel)		0.4427	-0.691	2.769	-0.09667	-2.97	-0.22091	
5	Diagonica	0.1658	-1.756	2.28	-0.2346	-3.146	-0.32678	
10	(Eq. (11))	0.7814	1.329	-0.5589	-0.7492	-3.394	-0.33204	
15		0.7915	4.924	-2.087	0.1212	-5.012	-0.19699	
20		0.9026	4.82	-1.898	-4.921	0.3896	-0.23786	

Appendix Table 9. (Continued)

Octorel Content	Equation	Regression constants					
Octanor Content	Equation	d	е	f			
0 (Pure diesel)		16.80460	0.18721	26.87172			
5	Diagonaigo	15.43546	0.15014	39.14301			
10	Piecewise	17.50194	0.20002	37.08696			
15	(Eq. (11))	21.32535	0.13635	34.12016			
20		20.91682	0.11891	40.06140			

Appendix Table 10. Regression constants of the piecewise equation (Eq. (11)) for Çakmak et al.'s data [33]

Octanol Content	Equation	Regression constants						
Octuator Content		a ₁	a ₂	a ₃	a ₄	a ₅	a ₆	
0 (Pure diesel)		88.75	9.294	9.851	98.41	89.88	12.49190	
5	Diagonica	52.7	10.89	4.375	32.49	29.27	13.52185	
10	$(\mathbf{E}_{\mathbf{a}}, (11))$	8.211	63.19	8.583	131.7	124.5	13.50237	
15	(Eq. (11))	7.788	105	7.118	85.92	80.36	12.91867	
20		10.84	85.18	5.981	47.12	42.03	13.94956	

Appendix Table 10. (Continued)

Octanol Content Equation			Regression constants						
	Equation	b ₁	b ₂	b ₃	b ₄	b ₅	b ₆		
0 (Pure diesel)		0.5271	7.802	25.48	29.68	30.06	-0.03718		
5	Dissouriss	0.9456	7.237	23.85	29.99	30.6	-0.13344		
10	(Eq. (11))	8.496	0.6916	25.18	29.84	30.08	-0.07436		
15		9.061	0.3905	24.37	29.92	30.28	-0.05184		
20		6.998	0.6569	25.44	29.95	30.44	-0.13647		

Appendix Table 10. (Continued)

Octanol Content	Equation	Regression constants						
		c ₁	c ₂	c ₃	c ₄	C ₅	C ₆	
0 (Pure diesel)		0.2555	0.6746	5.663	-1.81	-4.774	-0.23466	
5	Piecewise (Eq. (11))	0.4749	0.405	4.784	-1.836	-4.692	-0.14453	
10		0.936	0.3221	5.295	-1.977	-5.003	-0.23366	
15		1.177	0.1786	5.137	-1.731	-4.705	-0.21493	
20		0.2045	0.2982	5.414	-1.937	-4.848	-0.24210	

Appendix Table 10. (Continued)

		Regression constants					
Octanol Content	Equation	d	е	f			
0 (Pure diesel)		18.91832	0.14173	36.29648			
5	Diagonvigo	21.66059	0.19215	29.55688			
10	(Fee (11))	19.50540	0.19374	28.37379			
15	(Eq. (11))	18.85122	0.08771	37.10636			
20		20.38284	0.24352	30.11443			

Appendix Table 11. Regression constants of the piecewise equation (Eq. (12)) for Yeşilyurt and Çakmak's data [8]

Octanol Content Ec	Equation	Regression constants						
	Equation	a ₁	a ₂	a ₃	a ₄	a ₅	a ₆	
0 (Pure diesel)		32.56	3.845	37.02	31.94	29.36	6.77598	
5	Diagonica	24.44	3.657	27.54	46.88	45.24	11.42232	
10	(Eq. (12))	11.9	21.38	41.99	4.879	38.58	10.02813	
15		8.56	7.47	67.83	153	62.01	19.42027	
20		7.979	6.978	125.2	120	44.11	22.04874	

Appendix Table 11. (Continued)

Octanol Content	Equation			Regressio	on constants		
	Equation -	b ₁	b ₂	b ₃	b_4	b ₅	b ₆
0 (Pure diesel)		7.755	25.44	6.173	33.41	33.97	0.75714
5	Disservice	6.115	21.12	4.367	31.38	31.88	1.83147
10	(E.e. (12))	7.695	2.767	30.95	23.89	31.59	1.55554
15	(Eq. (12))	8.276	24.11	29.34	0.2841	29.8	0.59948
20		8.387	23.61	29.53	29.78	0.9433	1.02745

Appendix Table 11. (Continued)

Octanol Content	Equation			Regression constant	ts	
Octanoi Content	Equation	c ₁	c ₂	C ₃	c ₄	c ₅
0 (Pure diesel)		0.4427	-0.691	2.769	-0.09667	-2.97
5	Dissouries	0.1658	-1.756	2.28	-0.2346	-3.146
10	(E.e. (12))	0.7814	1.329	-0.5589	-0.7492	-3.394
15	(Eq. (12))	0.7915	4.924	-2.087	0.1212	-5.012
20		0.9026	4.82	-1.898	-4.921	0.3896

Appendix Table 11. (Continued)

Octanol Content	Equation	Regression constants		
Octanor Content	Equation	c ₆	d	
0 (Pure diesel)		0.07427	5.11708	
5	Diagonica	0.06283	-1.94341	
10	(Eq. (12))	0.06240	-1.12643	
15	(Eq. (12))	0.02968	-6.56398	
20		0.03233	-11.27791	

Octanol Content	Equation		Regression constants						
	Equation	a ₁	a ₂	a ₃	a ₄	a ₅	a ₆		
0 (Pure diesel)		88.75	9.294	9.851	98.41	89.88	14.24844		
5	Dissouriss	52.7	10.89	4.375	32.49	29.27	15.37784		
10	(Eq. (12))	8.211	63.19	8.583	131.7	124.5	13.47703		
15	(Eq. (12))	7.788	105	7.118	85.92	80.36	17.89887		
20		10.84	85.18	5.981	47.12	42.03	16.92187		

Appendix Table 12. Regression constants of the piecewise equation (Eq. (12)) for Çakmak et al.'s data [33]

Appendix Table 12. (Continued)

Octanol Content	Equation		Regression constants					
Octanor Content	Equation	b ₁	b ₂	b ₃	b ₄	b ₅	b ₆	
0 (Pure diesel)		0.5271	7.802	25.48	29.68	30.06	1.01905	
5		0.9456	7.237	23.85	29.99	30.6	0.00025	
10	Piecewise (Eq. (12))	8.496	0.6916	25.18	29.84	30.08	0.51029	
15	(Eq. (12))	9.061	0.3905	24.37	29.92	30.28	0.96558	
20		6.998	0.6569	25.44	29.95	30.44	0.76323	

Appendix Table 12. (Continued)

Octanol Content	Equation		Regression constants						
Octation Content	Equation	c ₁	c ₂	C ₃	c ₄	C ₅			
0 (Pure diesel)		0.2555	0.6746	5.663	-1.81	-4.774			
5		0.4749	0.405	4.784	-1.836	-4.692			
10	Piecewise	0.936	0.3221	5.295	-1.977	-5.003			
15	(Eq. (12))	1.177	0.1786	5.137	-1.731	-4.705			
20		0.2045	0.2982	5.414	-1.937	-4.848			

Appendix Table 12. (Continued)

Octanol Content	Equation	Regression constants		
Octanol Content		C ₆	d	
0 (Pure diesel)		0.04633	-1.26027	
5		0.02324	1.76318	
10	Piecewise (Eq. (12))	0.04064	1.60137	
15	(Eq. (12))	0.03658	-5.90583	
20		0.04968	-0.00061	

Appendix Table 13. The r^2 , relative error, and mean absolute error values coming from Eqs. (10)-(12) for Yeşilyurt and Çakmak's data [8]

Equation	r^2	Relative error (%)	Mean absolute error
	0.9901	5.7504	0.4988
	0.9849	11.5225	0.5046
Piecewise	0.9878	6.7997	0.5359
(Eq. (10))	0.9180	7.3347	0.9713
	0.9107	2.3499	0.9746
	0.9583	6.7514	0.6970
	0.9957	0.8526	0.3412
	0.9900	10.0711	0.4485
Piecewise	0.9944	4.8528	0.3770
(Eq. (11))	0.9842	4.4973	0.5640
	0.9856	7.2607	0.5623
	0.9900	5.5069	0.4586
	0.9908	0.8526	0.5164
	0.9856	10.0711	0.6873
Piecewise	0.9829	4.8528	0.7731
(Eq. (12))	0.9780	4.4973	0.7946
	0.9773	7.2607	0.8692
	0.9829	5.5069	0.7281
	Equation Piecewise (Eq. (10)) Piecewise (Eq. (11)) Piecewise (Eq. (12))	Equation r ² 0.9901 0.9849 Piecewise 0.9878 (Eq. (10)) 0.9180 0.9107 0.9583 0.9957 0.9900 Piecewise 0.9944 (Eq. (11)) 0.9842 0.99856 0.9900 Piecewise 0.99856 0.9908 0.9829 (Eq. (12)) 0.9773 0.9829 0.9829	$ \begin{array}{c c c c c c c c } \hline Equation & r^2 & Relative error (\%) \\ \hline & 0.9901 & 5.7504 \\ 0.9849 & 11.5225 \\ \hline Piecewise & 0.9878 & 6.7997 \\ (Eq. (10)) & 0.9180 & 7.3347 \\ 0.9107 & 2.3499 \\ 0.9583 & 6.7514 \\ \hline & 0.9957 & 0.8526 \\ 0.9900 & 10.0711 \\ \hline Piecewise & 0.9944 & 4.8528 \\ (Eq. (11)) & 0.9842 & 4.4973 \\ 0.9856 & 7.2607 \\ \hline & 0.9900 & 5.5069 \\ \hline & 0.9829 & 4.8528 \\ (Eq. (12)) & 0.973 & 7.2607 \\ \hline & 0.9829 & 5.5069 \\ \hline \end{array} $

Octanol Content	Equation	r^2	Relative error (%)	Mean absolute error
0 (Pure diesel)		0.9872	5.8774	0.5181
5		0.9796	3.6699	0.6766
10	Piecewise	0.9864	3.8426	0.5840
15	(Eq. (10))	0.9850	6.4867	0.5792
20		0.9881	2.2611	0.5332
Average		0.9853	4.4275	0.5782
0 (Pure diesel)		0.9906	4.2514	0.4490
5		0.9838	0.8669	0.5555
10	Piecewise	0.9875	4.3333	0.5408
15	(Eq. (11))	0.9903	4.0377	0.4519
20		0.9913	0.1534	0.3990
Average		0.9887	2.7285	0.4792
0 (Pure diesel)		0.9827	4.2514	0.7233
5		0.9805	0.8669	0.6931
10	Piecewise	0.9819	4.3333	0.7443
15	(Eq. (12))	0.9847	4.0377	0.6542
20		0.9840	0.1534	0.6429
Average		0.9828	2.7285	0.6916

Appendix Table 14. The r^2 , relative error, and mean absolute error values coming from Eqs. (10)-(12) for Çakmak et al.'s data [33]

Appendix Table 15. Regression constants of Eq. (13) for Yeşilyurt and Çakmak's data [8]

Octanol Content	Fauation			Regression	constants		
octation content	Equation	a ₁	a ₂	a ₃	a ₄	b ₁	b ₂
0 (Pure diesel)		234.5	5887	7.499e4	5.521e5	3.575	520.4
5		108.6	1163	1.403e4	1.877e5	-10.27	8.55
10	Eq. (13)	89.07	386.8	8821	2.474e5	-15.91	-11.18
15		134.5	565.6	8159	2.066e5	-19	159.1
20		123.7	8.992	3517	1.739e5	-19.53	94.49

Appendix Table 15. (Continued)

Octanol Content	Equation	Regression constants		
	Equation	b ₃	b ₄	
0 (Pure diesel)		8140	3.893e4	
5		2479	1.522e4	
10	Eq. (13)	2867	1.905e4	
15		2516	1.165e4	
20		2189	1.058e4	

Appendix Table 16. Regression constants of Eq. (13) for Çakmak et al.'s data [33]

Octanol Content	Equation			Regressio	on constants		
	Equation	a ₁	a ₂	a ₃	a ₄	b ₁	b ₂
0 (Pure diesel)		107.7	2685	2.832e4	2.845e5	-19.25	251
5		86.38	8923	1.914e5	1.386e6	-25.13	1230
10	Eq. (13)	171.1	4721	5.152e4	3.82e5	-14.02	461.3
15		116.6	1848	1.693e4	2.415e5	-19.37	201.8
20		115.8	1377	2.191e4	3.305e5	-17.88	195.5

Appendix Table 16. (Continued)

Octanol Content	Equation	Regression constants	
		b ₃	b ₄
0 (Pure diesel)		3918	1.661e4
5		1.538e4	6.624e4
10	Eq. (13)	5377	2.041e4
15		3332	1.462e4
20		2827	1.666e4

Equation	r^2	Relative error (%)	Mean absolute error			
Eq. (13)	0.9883	1.6441	0.6273			
	0.9922	1.7033	0.5767			
	0.9960	1.1325	0.3557			
	0.9978	1.5626	0.2869			
	0.9950	0.0502	0.4663			
	0.9939	1.2185	0.4626			
	Equation Eq. (13)	Equation r ² 0.9883 0.9922 0.9960 0.9960 0.9978 0.9970 0.9939 0.9939	$\begin{array}{c c c c c c c c c c c c c c c c c c c $			

Appendix Table 17. The r^2 , relative error, and mean absolute error values coming from Eq. (13) for Yeşilyurt and Çakmak's data [8]

Appendix Table 18. The r², relative error, and mean absolute error values coming from Eq. (13) for Çakmak et al.'s data [33]

Octanol Content	Equation	r^2	Relative error (%)	Mean absolute error
0 (Pure diesel)	Eq. (13)	0.9925	1.9242	0.5028
5		0.9721	0.2319	0.9537
10		0.9859	2.4487	0.7473
15		0.9966	1.8238	0.3499
20		0.9950	1.4900	0.4419
Average		0.9884	1.5837	0.5991

