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A B S T R A C T  
Modern techniques are often applied to analyze the body shape differences among biological 

organisms. Also, taxonomy and systematics are two essential fields of Biology concerning shape 
discrimination. This study aims to identify the shape variations of Sardinella lemuru (Bali sardinella) using 
Symmetry Asymmetry Geometric Data (SAGE) Software Application. A total of 70 fish samples consisting 
of 35 males and 35 females were collected in Barangay Caasinan, Cabadbaran, Agusan Del Norte, 
Philippines. Standard laboratory procedures were done and fish samples were subjected to the analysis. 
Procrustes ANOVA revealed a highly significant difference (P<0.0001) among the components analyzed 
(individuals, sides, and individuals vs. sides). This implied that each of the fish samples exhibited different 
body shapes. Principal Component Analysis (PCA) obtained a high rate of Interaction/Fluctuating 
Asymmetry (76.79%) in males when compared to female samples (74.08%). The shape dissimilarities 
within the populations were associated with genetic components, ecological adaptations-swimming, 
predator escape, and resource competition. Thus, the present study identified shape disparity within the 
fish populations. The development of employing modern techniques enhances scientific methods to 
quantify shape dissimilarities among species individuals and assemblages. 
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Introduction 

Over the decades, using modern methods is a way of 
elaborating realistic shape analyses. It draws significant 
information to generate specific data useful to create 
knowledge. While determining shape discrimination with the 
use of modern techniques often utilized by many researchers. 
Form and shape transformation has been an ultimate 
requirement to evaluate biological phenotypes. Since then up to 
the present, detecting shapes and copying metric observations 
has been a challenge to recognize how various biological forms 
vary. A modern and systematic approach proved the 
connection between form and function. Thus, measuring the 
distinct factors could be used for detecting species 
characteristics (Richtsmeier et al., 2002). Body shape is an 
important aspect of identifying variations within the fish 
assemblages. It has been associated with numerous dynamic 
activities, such as food hunting, swimming, and escaping 
predators (Schoener, 1971; Webb, 1984; Martinez-Leiva et al., 
2023). Additionally, fish body shape has also been influenced 
by mating (Martinez-Leiva et al., 2023). The shape of the fish 
was found to have phenotypic plasticity: this information 
showed the ability of single genotypes to create different 
phenotypes when open to ecological conditions (Pigliucci et al., 
2006; Fusco & Minelli, 2010; Klingenberg, 2019). 

Fish are commonly used as a biomarker of environmental 
status. They are the best sample for detecting conditions since 
they inhabit where most alteration occurs. Biological changes 
can affect its physiological activities and later may express its 
morphology. Ecological risks and anthropogenic activities may 
pose unfavorable conditions both in the environment and the 
organisms (Natividad et al., 2015). Over the years, aquatic 
habitat has become a place with a wide range of alterations 
(Dikshith et al., 1990). Aquatic modifications can be a factor in 
changing the genetic makeup of an organism and result in 
diversity and variation in the population (Trono et al., 2015). It 
causes intolerable effects, damaging the environmental state 
and leading to phenotypic differences (Duruibe et al., 2007). 
Adaptations are a key component that can alter the 
morphological traits of the aquatic organism (Jumawan et al., 
2016). These are contributing factors that directly affect its state 
of well-being. The effect of adaptation may be described as 
morphological asymmetries through imperfect development 
(Cabuga et al., 2022). Individual and fish groups had a chance 
to adapt where necessary for survival. Ecological characteristics 
shown by juveniles and adults could be influenced by 
environmental factors through their embryonic development 

up to epigenetic modifications (Best et al., 2018; Jonnson & 
Jonnson, 2018). Moreover, morphological, sensorial, and 
behavioral changes occur during the fish’s ontogenetic 
development dependent on exogenous influences such as 
temperature and food supply. Nonetheless, physiological traits 
(e.g., type of respiration and muscle reorganization) impact the 
metabolism activities of each sample (Burggren & Blank, 2009; 
Somarakis & Nikolioudakis, 2010; Biro & Stamps, 2010). The 
development of vital organs and sensory mechanisms is the 
result of metabolism changes that are associated with 
optimizing survival (Osse, 1997; Khemis et al., 2013).  

To recognize the shape variation in fishes, Geometric 
Morphometric Analysis (GMA) was applied to demonstrate the 
unlike characteristic traits. Indeed, this was an effective tool to 
evaluate the developmental variability of an individual species 
as it represents the total population (Bergstrom & Reimchen, 
2002). It serves as a significant mechanism to assess 
environmental pollutants that alter the species (Tomkins & 
Kotiaho, 2001). It is also identified as an efficient instrument for 
quantifying environmental conditions (Lecera et al., 2015). And 
a potential quantitative approach to assessing if the 
environment can provide ecological growth toward species 
(Angtuaco & Leyesa, 2004). In addition, GM was a simple and 
reliable means of identifying developmental instability (Ducos 
& Tabugo, 2015). It is widely known to describe indiscriminate 
nonconformities based on morphological traits (Swaddle, 
2003). This application is widely recognized as it can 
deliberately identify the effects of several changes through 
species morphology (Jumawan et al., 2016). Furthermore, it is 
one of the most recognized scientific mechanisms because it 
can represent quantitative functions and analyze 
morphological shapes (Polly, 2012). This study utilized 
Sardinella lemuru a marine fish species called Tamban in the 
study area. A previous study was conducted by Luceño et al. 
(2014) employing the same species. The current study, 
however, would provide current information regarding the 
latter; as a result, this acts as the study’s significance in 
examining the metric qualities of the fish samples. Therefore, 
this study used Geometric Morphometric to determine the 
differences in the body shape of both the male and female 
populations of S. lemuru. 

Material and Method 

Study Area 
The study area was Barangay Caasinan, Cabadbaran City, 

Agusan Del Norte, Philippines (Figure 1). The fish collection 
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was done in May 2023 with the aid of local fishermen utilizing 
motorized boats or bancas and gillnets as their catching gears.  

Fish Collection, Processing and Sex Determination 

Totally 70 adult fish samples consisting of 35 males and 35 
females of the same size were randomly collected. The freshly 
caught samples were placed in an ice box and brought to the 
laboratory for further processing. Individually, the fish were 
sorted according to their size and positioned on the top of the 
Styrofoam. Each fish’s fin was spread and pinned to make it 
wider and visible and applied with 10% formaldehyde using a 
small paintbrush. After this, the ruler was placed in the bottom 
portion of each sample to obtain the total length (Natividad et 
al., 2015). Lastly, the image of each sample was then captured 
using a digital camera. The sex of the samples was determined 
through internal examination by checking the genitalia. 
Females exhibited yellow to orange granular textures in the 
presence of ovaries. While, the testes of males, are smooth to 
white and have a non-granular texture (Requiron et al., 2012). 

Figure 1. Map of the study area, Barangay Caasinan, 
Cabadbaran, Agusan Del Norte, Philippines 

Landmark Selection and Digitation 

The captured images were then categorized and sorted by 
sex. Then it was transferred and converted to a TPS file using 
the tpsUtil. The landmarking process of the samples was done 
through tpsDig2 (version 2, Rohlf, 2004). Sixteen (16) 
anatomical landmark points (Figure 2, Table 1) were utilized to 
digitize the samples of S. lemuru. To lessen the measurement 
error, the samples were tri-replicated. Its bilateral symmetry 
(left and right) was digitized using tpsDig2. The collected 
coordinates were then subjected to Symmetry and Asymmetry 
in Geometric Data (SAGE, version 1.04, Marquez, 2007) 
(Figure 3). 

Figure 2. Digitized fish sample with sixteen anatomical 
landmarks 

Figure 3. Symmetry and Asymmetry Geometric (SAGE) Data 
Software 

Table 1. Description of the landmark points adapted from Paña 
et al. (2015) 

Coordinates Locations/Nomenclature 
1 Snout tip 
2 Posterior end of nuchal spine 
3 Anterior insertion of dorsal fin 
4 Posterior insertion of dorsal fin 
5 Dorsal insertion of caudal fin 
6 Midpoint or lateral line 
7 Ventral insertion of caudal fin 
8 Posterior insertion of anal fin 
9 Anterior insertion of anal fin 
10 Dorsal base of pelvic fin 
11 Ventral end of lower jaw articulation 
12 Posterior end of the premaxilla 
13 Anterior margin through midline of orbit 
14 Posterior margin through midline of orbit 
15 Dorsal end of operculum 
16 Dorsal base of pectoral fin 

Shape Analysis and Data Generation 

The Procrustes ANOVA test was applied to identify the 
significant difference in the symmetry of the three factors 
analyzed – individual, sides, and interaction of individuals and 
sides. The significant level was verified at P<0.0001. Along with 
this, the variances of its side and the estimation of directional 
asymmetry were also identified. The level of shape variations 
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was specified through percentages (%) which were analyzed 
and compared between male and female samples (Natividad et 
al., 2015). 

Results and Discussion 

Table 2 shows the Procrustes ANOVA on the body shape of 
Sardinella lemuru for both the female and male sexes. Three 
parameters (individuals, sides, and individuals by sides) were 
evaluated to identify shape defects in the fish population. The 
analysis was applied to both female and male samples. 
Individual samples’ left and right sides were also compared and 
examined. It was observed that highly significant differences 
(P<0.0001) occur in the individual fish of both sexes, resulting 
in body shape differences when one of the fish samples is 
compared to another. Additionally, its sides displayed a quite a 
substantial variance, indicating varying asymmetries on the left 

and right samples. The detected dissimilarities could be an 
indication that the species samples were under environmental 
stress in the area while others were associated with endo-
parasites. Under typical circumstances, symmetrical 
appearances in fish species were anticipated. However, the poor 
water quality of the disturbed environment affected the 
morphological characteristics of the fish species during their 
development (Lytle & Poff, 2004). Thus, deformities developed 
by absorbing the environmental perturbations that ultimately 
changed an organism’s developmental hemostasis and gave rise 
to diverse phenotypic traits (Parsons, 1990). Further, 
considering the scenario it includes a wide array of factors such 
as changes in temperature and length of the growing season. 
However, the differences were also related to other 
environmental issues like resource availability, and water 
velocity (Craig & Foote, 2001; Kishida et al., 2010).  

Table 2. Procrustes ANOVA test for samples of S. lemuru in terms of sexes 

Factors SS DF MS F P-value

Female 

Individuals 0.1485 952 0.0001 2.5945 0.0001** 

Sides  0.0302 28 0.0011 18.7075 0.0001** 

Individual x Sides 0.0549 952 0.0001 7.0073 0.0001** 

Measurement Error 0.0161 1960 0 -- -- 

Male 

Individuals 0.1553 952 0.0002 2.5775 0.0001** 

Sides 0.026 28 0.0009 14.6622 0.0001** 

Individual x Sides 0.0603 952 0.0001 5.5827 0.0001** 

Measurement Error 0.0222 1960 0 -- -- 

Note: Side = directional asymmetry; individual x sides interaction = fluctuating asymmetry; * P<0.0001 significant, ns – statistically 
insignificant (P>0.05); significance was tested with 99 permutations. 

Table 3. Principal Component Analysis of S. lemuru in terms of sexes 

PCA Individual Sides Interaction (FA) Affected Landmarks 
Female 

PC1 51.60% 100% 49.51% 1, 12, 14, 15, 16 
PC2 11.54% 11.54% 1, 2, 3, 4, 5, 6, 7, 9, 10, 11, 13, 16 
PC3 8.36% 7.58% 1, 2, 3, 4, 9, 10, 11, 12, 13, 14, 15, 16 
PC4 6.50% 5.45% 8, 9, 10, 11, 13, 14 
Total 78.00% 74.08% 

Male 
PC1 53.06% 100% 45.72% 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 16 
PC2 13.79% 14.38% 1, 3, 4, 5, 6, 8, 9, 10, 16 
PC3 7.84% 10.85% 1, 4, 7, 8, 9, 10, 12, 15 
PC4 5.06% 5.84% 1, 4, 9, 11 
Total 79.75% 76.79% 

Note: Individual = individual samples, Sides= Left & Right, Interaction= Fluctuating Asymmetry. 
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Figure 4. Principal Components (PC) implied deformation 
grid and a histogram of individual (symmetric) in S. lemuru 
female 

Moreover, the observed differences in body shapes were 
associated with the influence of genetics and ecological factors 
i.e., feeding habits, prey and predator relationship, mobility,
and the aging process (Cabuga et al., 2018). The study showed
that female S. lemuru revealed a stout body outline compared
to that of males which had a slender body shape. Evidently,
female populations indicate larger abdomens which is linked to
sexual maturation (Echem, 2016). Additionally, evidence in the
body shape variations correlated with physiological traits such
as growth, development, and reproductive stage (Parsons, 1987; 
Arendt & Wilson, 1999; Laugen et al., 2003; Salvanes et al., 2004;
Conover et al., 2006; Kakioca, 2013). Previously, Thompson’s
work, which referred to the ideas of Galileo and Goethe on
morphology and of Russell on functionalism, was the first to
hypothesize that physical forces and transformations result in
morphological space (Abzhanov, 2017). While the theory of
morphology expresses that shape is a reflection of an organism
to the ecology, evolution, and phylogenetic processes (Karr &
James, 1975; Winemiller, 1991; Wainwright et al., 2002; Neige,
2003; Kerschbaumer & Sturmbauer, 2011; Price et al., 2011).
Thus, measuring the distance and applying geometric

morphological analysis (GMA) is the common technique for 
computing the degree of variation in shape, and the latter is the 
most forceful for depicting different visual patterns (Bookstein, 
1991; James Rohlf & Marcus, 1993). Generally, numerous 
studies inferred that a fish with a more streamlined body shape 
exhibited maximum metabolic rates than a deep-bodied one 
within intra and interspecific levels (Petterson & Brönmark, 
1999; Killen et al., 2016; Sánchez-González & Nicieza, 2022). 
These conditions were associated with lengthy swimming 
ability but the existing gap during these stages are shape and 
metabolism which may contribute to morphological differences 
(Latorre et al., 2020).  

Figure 5. Principal components (PC) implied deformation grid 
and a histogram of individual (symmetric) in S. lemuru male 

Using the symmetry and asymmetry scores, principal 
component analysis was applied to determine the Interaction 
(Fluctuating Asymmetry) and affected landmarks among the 
fish samples. Four principal components (PC) were considered 
in male and female samples (PC1-PC4). The four principal 
components (PC) accounted for 77.9544% of the total variation 
in female samples. PC1 accounted for 51.5961%, which has the 
highest variation. Unexpectedly, there were no commonly 
affected landmarks in female samples for the four principal 
component scores (Table 3). Subsequently, in male samples, the 
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four PCs also constituted 79.7482% of the cumulative 
variations. PC1 contributed the highest accounted variation 
with 53.055%. The commonly affected landmarks in male 
samples for the four PC scores were landmarks 1, 4, and 9 
(Table 3). These were a portion of the snout tip, posterior 
insertion of the dorsal fin, and anterior insertion of the anal fin. 

Male S. lemuru were observed to reveal higher affected 
landmarks with 79.7482% from the upper 5% of composite 
principal components from PC1 to PC4. PC1 reveals that all 
affected landmarks were found to have greater asymmetry. This 
means that male phenotypic variability tends to be high under 
conditions of environmental stress (Parsons, 1987; Holloway et 
al., 1990; Hoffmann & Parsons, 1991). On the other hand, 
female Sardinella lemuru reveals none affected landmark than 
to males from PC1 to PC4 with a total of 77.9544%. It was 
interesting to note that the affected landmarks were only 
observed in males than in female samples of S. lemuru. These 
affected landmarks were further shown in the deformation grid, 
and the histogram of the values revealed skewness, suggesting 
asymmetry in body form (Figures 4 & 5). This shows the 
anatomical landmark points affecting the male S. lemuru. 

Moreover, it was also observed that male samples have the 
highest Interaction or Fluctuating Asymmetry (FA) at 76.79% 
compared to female samples at 74.08%. This suggests shape 
variances among the sexes. The higher the FA the more altered 

the body shape which was seen in the histogram provided in 
Figure 6. In general, those affected landmarks among the male 
and female fish samples could be attributed to their mobility 
and interaction within the environment. Further, energy 
utilization as a source for swimming could affect the physical 
traits of the species. While, reduced locomotion can be a reason 
for gaining higher speed (Dabrowski, 1986; Khemis et al., 2013; 
Nemova, 2016). Study shows that affected anatomical regions 
were significant for body movement during swimming and 
requires high protein content and oxygen supply. Nonetheless, 
this constituted the development of the axial musculature and 
was connected to the increased swimming activity due to 
avoiding predation. Nevertheless, given the limits of geometric 
morphometric analysis, all indication implies that distinct 
growth in body shape elongation may be more noteworthy than 
the ontogenetic period (Martinez-Leiva et al., 2023). During 
this transition, the body shape of fish modifies to develop 
deeper and laterally compressed, which is more suitable for 
speedy swimming (Koumoundouros et al., 2009; Kourkouta et 
al., 2021; Downie et al., 2021). Thus, the importance of 
identifying shape dissimilarities within the fish species could be 
visualized through patterns. Finally, with the aid of Geometric 
Morphometrics, it is now possible to get precise information on 
how two unique species within populations differ from one 
another in terms of physical features. 

Figure 6. Actualized picture of digitized male and female fish with the affected landmarks shown in the PCA-deformation grid for PC1 
and PC2 
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Conclusion 

The present study has identified the intraspecific shape 
differentiation between the female and male S. lemuru. 
Procrustes ANOVA revealed a highly significant difference 
(P<0.0001), indicating morphological differences between 
sexes. While Principal Component Analysis shows that males 
exhibited a 76.69% rate of interaction (Fluctuating 
Asymmetry), which is higher compared to female with 74.07%. 
Further, several different anatomical landmarks points were 
affected among the fish samples. This suggests a disparity in the 
body shape that occurs among species of the same population. 
The implication suggests that phenotypic plasticity could play a 
significant role in the longevity of fishery resources. Evidently, 
using Symmetry and Asymmetry Geometric (SAGE) Data 
software applications enables one to draw vital information to 
understand shape variances within the same fish type and even 
more to numerous fish assemblages. 
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