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Highlights 

• The paper discusses overview of electric vehicle optimal scheduling techniques and need for the same. 

• A comprehensive review about the methodologies for optimum scheduling of electric vehicles is made.  

• The paper discusses various uncertainties associated with electric vehicle charging scheduling. 

• Paper gives a comprehensive review about various algorithms and optimization techniques used.  

• Paper summarizes the applications of different algorithms used for EV scheduling. 
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Abstract 

Based on information from recent research, by 2045, Electric Vehicles (EV) will dominate the 

roads with presence of more than 80% of its kind. Hence, these vehicles' grid level penetration 

will increase proportionally, which challenges the existing grid infrastructure in terms of its 

reliability and energy management capabilities. New techniques to store and consume massive 

quantities of energy from the power grid, as well as infusing the captive energy within the EV in 

response to grid demands, are emerging with the advent of electric vehicles. Everything could be 

handled smoothly only if we schedule the EV operation (charging/discharging) more optimally 

and efficiently using scheduling algorithms. Despite the existence of many routings and charging 

schedule computations, nature-inspired optimization approaches might play a critical role in 

responding to such routing challenges. Researchers have created several optimum scheduling 

approaches, such as Dynamic Programming, Differential Evolutionary Optimization Techniques, 

Collaborative Optimization Scheduling, Two-stage optimal scheduling strategy, and so on. The 

optimum schedule review examines the operation of an EV fleet while considering uncertainty 

sources and varied EV operating circumstances by integrating heuristic and meta-heuristic 

techniques. This paper exhibits a deep review on the various EV optimal scheduling techniques 

and adopted algorithms which are the emerging best practices like predictive analytics, dynamic 

routing, user centric planning, multi-objective optimization, etc. that reflect the industry's focus 

on leveraging advanced technologies, data-driven decision-making, and collaborative approaches 

to enhance the efficiency and sustainability of electric vehicle routing and charging scheduling.  
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1. INTRODUCTION 

 

Owing to society's growing concern over environmental and energy issues as well as the dramatic 

advancements in battery in recent decades, there are new opportunities for the widespread adoption of 

electric vehicles (EVs). Figure 1 depicts how electric car development has changed. Since governments 

have established legislation to control the imbalance of the ecosystem, the use EV users have gained a lot 

of benefits [1]. Optimal charging strategies for EV aggregators are being explored to lower charging costs 

because concerns have arisen about poor coordination in charging requirements of EVs and their 

implications on the present-day grid's capacity to effectively serve the increasing demand in load [2]. The 

majority of EVs are idling during the daytime, but they could work with power grid to offer ancillary 

services when necessary. A Vehicle-to-Grid (V2G) architecture that would let utilities or aggregators 

control Electric Vehicles (EV) through grid-to-car communication was put forward in [3]. Peak shaving, 

power quality improvement, frequency regulation, spinning reserve, valley filling and support for 
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renewable power are some of the auxiliary services offered by EVs [4]. Most research papers were written 

to address the difficulties in planning the use of EVs in parking areas (PLs), including fast charging 

capacity, varying electricity prices, the number of charging points, and charging limits [5]. However, only 

a few studies addressed advanced techniques for online booking, scheduling, and location locating [6,7]. If 

charging costs are not accounted for in the context of their connectivity and are assumed to follow an 

independent methodology unaffected by electricity, they may have an adverse effect on the stability of 

electricity network. A distributed pricing method for congestion management during EV charging is 

introduced in [8]. As mentioned in [9,10], an aggregator could be created to address these issues. When 

compared to traditional charging stations, battery-swapping stations (BSSs) have faster EV time slots [11]. 

  

 
Figure 1. Historical Progression of Electric Vehicle 

  

 
Figure 2. Global short-term EV share of new passenger vehicle sale by region  

 

Few research has investigated electric vehicle routing problems (EVRPs) that account for both vehicle 

charge scheduling and routing. The issue of traffic jams has received a lot of attention. EVs are driven at 

different speeds and under varying driving conditions because of the presence of traffic. Time-dependent 

travel speeds as a solution with consideration of congestion tolls in EVRP with time windows (EVRPTW) 

is proposed in [12]. When a fault occurs, the safety of an EV's distribution system, the microgrid (MG) can 

disengage from it and operate independently, attempting to compensate for the grid’s reliability Moreover, 

as mentioned in [13,14], the MG can boost acceptance of distributed generation (DG)into the existing grid 

while meeting local consumer power requirements. Figure 2 depicts the global market share of short-term 

electric vehicle new passenger vehicle sales by region. Positive trends are emerging around the world, 

implying that these EVs will eventually rely on the existing power grid for power exchange, necessitating 

optimal scheduling strategies. The diversity of EV charging behavioral traits, such as wait periods, time of 

start, and power demand are major challenges in managing the EV charging. In [15], the prediction of 

revised pattern-based sequential forecasting (PSF) was tried to compare to SRV, KNN and random forest 
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(RF) methodologies. Due to their inherent performance in during decision-making scenarios, reinforcement 

learning methods, as discussed in [16], have just recently become popular. They are better compared to 

optimization approaches because they do not make use of prior knowledge of accurate model, but they learn 

the very best behaviors. This paper's goal is to provide a thorough overview of the optimal scheduling for 

electric vehicles, including the optimal charge scheduling and route scheduling algorithms that are used in 

different optimization methods. Review papers that have already been published look at EV adoption 

factors, ideal service operation models, computational scheduling strategies, and EV outcomes. This review 

paper addresses the following objectives or research areas discussed in Table 1, which makes this paper 

attractive to the active researchers. 

 

Table 1. Details of objectives discussed in the paper 

Review Topics 

Covered 
Objectives 

Issues Adressed 

Algorithm 

classification 

Categorize and classify different 

types of optimal charging and 

routing algorithms 

• Different optimal charging and routing 

algorithms categorized based on their 

underlying optimization techniques. 

• Distinguishing features of different 

algorithmic approaches 

Factors 

considered in 

optimization 

Identify the key factors and 

parameters considered in the 

optimization process 

• Critical factors influencing the design and 

optimization of charging and routing 

algorithms. 

• How do these factors vary in different 

algorithmic approaches. 

Integration of 

real-time data 

Explore the incorporation of real-

time data in optimal charging and 

routing algorithms 

• Impact of integrating real-time data, such as 

traffic conditions, energy prices, and charging 

station availability on algorithm performance. 

User-centric 

approach 

Investigate the inclusion of user-

centric elements in charging and 

routing algorithms 

• Accountability of algorithms for user 

preferences, behaviors, and convenience. 

• Effectiveness of these algorithms. 

Challenges and 

limitations 

Identify and analyze the 

challenges and limitations 

associated with current charging 

and routing algorithms 

• Common challenges faced by existing 

algorithms in real-world implementations. 

• Limitations adressed in algorithms. 

Scalability and 

Generalizability 

Examine the scalability and 

generalizability of optimal 

charging and routing algorithms 

• Performance of algorithm under different 

scenarios. 

• Challenges and considerations arise when 

scaling these algorithms for broader 

applications. 

 

The rest of the paper is organized as: section 2 discusses an overview of electric vehicle scheduling. Optimal 

scheduling methodologies for EVs are reviewed in section 3, Uncertainties in the EV charging scheduling 

are discussed in section 4. Comparison of performances with various algorithms is discussed in section 5, 

summary of this paper is discussed in section 6. The conclusions and future works are detailed in section 7 

and 8, respectively.   

 

2. AN OVERVIEW OF ELECTRIC VEHICLE SCHEDULING 

 

This section provides an overview of different optimum routing, charge scheduling approaches, algorithms, 

and mathematical models utilized by researchers. Figure 3 illustrates a high-level overview of EV charge 

scheduling approaches based on pricing, an optimization approach, and goals. In response to rising 

environmental concerns, the transportation sector is experiencing a dramatic shift. Governments, EV firms, 

and energy companies have pushed for the growth of electric cars (EVs). The interaction of an electricity 

system and a transport network is determined by charging pricing and transportation scheduling, both of 

which are modeled by a marginal cost coordination optimization formulation discussed in [17]. 
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Furthermore, the EV aggregators' optimal scheduling problem is modeled in [18] with consideration of EV 

owner satisfaction by considering V2G operational cost, the appropriate charging electricity price, and 

delivering the vehicle with the batteries fully charged, presents a significant challenge in developing an 

efficient pricing model that allows for adequate power extraction from the grid. To address this issue, an 

electric vehicle charging costing mechanism is designed such that it benefits both end-users and energy 

retailers. A distributed cost model for EV load management during charging was presented in [19] to 

address similar issues. A complete and accurate optimization model that considers all crucial elements of 

an EV sharing service schedule, such as time-varying charging price, multi-task and multi-temporal 

operation, and service quality. The optimization model allows for judgment across various time intervals 

and considers time-of-use (TOU) energy cost information in the energy framework. For achieving robust 

timetabling of EV, it is essential to model the ambiguity of the upstream electricity cost. To solve this 

problem, a robust optimal scheduling of EV aggregators is proposed [20]. 

 

 
Figure 3. Overview of EV charge scheduling approaches 

 

The investigation of optimal microgrid dispatching focuses primarily on the generation forecasting of DE 

resources in a microgrid and energy management in a single MG. A review of scheduling methods for an 

MG assisted distribution system was proposed, which optimizes the distribution network's economic 

benefits but does not consider the effect on the MG side. Figure 4 shows the order of EV charging schedules 

referred to in [21]. Generally, the overall modeling of EVs is considered, and the energy flow direction 

inside the EV is less restricted; however, since few years, research on electric vehicle charging stations has 

primarily focused on the traditional AC slow charging method, with charging infrastructure mostly situated 

in suburban complexes and densely populated areas cannot meet the expectation of fully centralized 

charging station to support energy services to users very fast. DC fast charging method, takes very little 

time for full charging, has provided a new hope for EV popularization and revenue generation through 

public EV services (taxis and public transportation systems), as discussed in [22,23]. The pervasive use of 

EVs, on the other hand, may increase both electricity consumption and peak power load. A stochastic 

modeling and simulation of an EV fleet operation was discussed in [24], with the objective of deepening 

cooperation among both smart grids and EVs by handling the charging/discharging of individual connected 

EVs. This is achieved by ignoring any impending and significant increase in the power load, which could 

result in a visible conflict of interest. In the scenario of large EV integration, uncoordinated operation may 

deteriorate power network operations, likely to result in transformer overloading or dissatisfied power 

quality. As a result, large-scale EV real-time charging optimization (RTCO) should be considered, because 

individual EV charging behavior, conventional load profiles, renewable generation output, and real-time 

price (RTP) are highly stochastic, which is typically a resource scheduling approach with multivariable 

epistemic uncertainties [25,26]. Table 2 shows the review of the study on electric vehicle access to the 

distribution network. 
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Table 2. A review of the study on electric vehicle access to the power distribution grid 

Reference Identified Research Details of the Research Study 

[27-29] 

Access to the 

distribution network 

for electric vehicles 

through multi-

objective optimization 

The optimization function is to maximise voltage reliability while 

minimising operational costs.  

Firefly optimization techniques proposed to solve the complexity 

in EV scheduling after establishing a distribution grid scheduling 

model that into account demand side management. 

Relative study was done on the operational cost of the distribution 

grid dissatisfying value of EVs users. 

[30-32] 

The distribution 

network's vulnerability 

to the effects of 

EV discharge 

behaviour 

Develop a distributed generation (DG) corresponding technique 

based on EV charge/discharge behaviour. 

Examine how electric vehicle access affects power quality in 

distribution networks. 

Investigate the effects of electric charging, as well as the method 

of treatment and network access model. Analyse the impact of 

various electric vehicle capacities on distribution network load, 

network loss, and voltage. 

[33] 

Evaluate the reliability 

of the distribution 

network incorporating 

electric vehicles 

The effect of EV penetration, charging/discharging limit, EV 

battery capacity and reliability of EVs are investigated. 

[34-36] 
New technologies and 

Strategies 

Proposed a feedback methodology for a realistic case in a typical 

urban setting. 

suggest a distributed structure for vehicle grid integration that 

takes connectivity and physical networks into account. 

Suggest a discharging and charging strategy, as well as multiple 

load management programmes, to manage the economic and 

technical EV penetrations. 

 

A joint model wherein EVs and thermal power plants are collectively timetabled was investigated in [37], 

with all scheduling methodologies split into two stages. The initial stage consists of scheduling electric 

vehicles for the day ahead to develop an EV charging/discharging load guidance curve that satisfies the 

scheduling requirement. Given the ambiguity of electric vehicles, charging/discharging plans appropriate 

for user requirements can be reformulated in the second stage in response to variations in independent user 

requirements, improving users’ satisfaction with the scheduling algorithm, most researchers are 

concentrating their efforts on predicting EV charging/discharging and optimizing distribution network 

resources. EV load predictive modeling based upon Monte Carlo method (MCM), beginning with the 

transportation sequence of EVs and various charging/discharging methods was proposed in [38]. The MCM 

is used for the operation of EVs to engage with random events and uncertainty and accurate forecasting 

results are obtained. The responsibility for charging EVs can be delegated to the operator. It is worth noting 

that the EVSEs must be used efficiently to reduce the charging period and thus the cost. To address these 

issues, the scheme proposed in [39] optimizes the charging pattern to reduce cost of charging and time, and 

model predictive control (MPC) has been utilized in a variety of other areas in recent years, including 

electrical network control, optimized scheduling, and power flow management to cope with demand and 

supply uncertainties along with system constraints. To address this, the electric bus departure plan, route 

scheme, and electric volume of battery swapping are ascertained by the electric bus's speed of driving, 

which is estimated by the road traffic model is shown. The traffic flow model algorithm was then used to 

create the BSS model. The configuration of a control scheme for the concurrent powertrain topology of 

PHEVs was dealt in [40]. The scheme of control is intended to reduce fuel usage and multiple gear shift 

occurrences over a broad driving period while preserving the EV battery condition within permissible 

limits. In this control strategy, a dynamic rule-based controller was used with a comparable consumption 

minimization strategy (ECMS). A dynamic battery framework (based on empirical data) that portrays the 

impacts of different crucial stress factors has been put in place as a key goal in [41] to minimize cycle 

deterioration by evaluating numerous optimal EV charging schedule scenarios in tandem with the analytical 
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hierarchy process (AHP). A day ahead comprehensive cost-minimizing optimal scheduling methodology 

for charging EVs in a stochastic atmosphere while maintaining local network constraints and EV owner 

satisfaction was presented in [42]. An aggregator in a wholesale energy market is expected to optimize 

schedules and day-ahead routines for effective communication.    

 

 
Figure 4. Classification of domestic EV charging scheduling 

 

A dynamic programming-based algorithm for optimizing thermal comfort as well as efficiency was 

discussed in [43]. When the effectiveness of the algorithms used to predict EV user behavior was examined, 

it was discovered that the error variances were typically large. This is because EV charging trends differ 

greatly and thus, there is no single algorithm. Classification of various charging patterns as well as the 

application of machine learning (ML) algorithms to detect charging behavior in each categorization was 

discussed in [44]. A comparative analysis of the strengths and weaknesses of electric vehicle (EV) 

scheduling algorithms is shown below Table 3.  

 

Table 3. Comparative analysis of the strengths and weaknesses of electric vehicle (EV) scheduling 

algorithms 

Scheduling 

Approaches 
Strength Weakness 

Energy 

Efficiency 

All scheduling algorithms excel in 

optimizing energy efficiency by leveraging 

off-peak hours or renewable energy 

availability 

No specific weakness in this category, 

as energy efficiency is a common focus 

Range 

Optimization 

Scheduling algorithms effectively minimize 

the risk of running out of battery power by 

optimizing charging schedules. 

Limited predictive accuracy may result 

in suboptimal range optimization in 

certain scenarios. 

User 

Convenience 

All scheduling algorithms enhance user 

convenience by minimizing waiting times 

and providing accurate predictions. 

User adherence issues may impact the 

ability to fully realize the benefits of 

user convenience. 

Adaptability to 

Real-Time Data 

Scheduling algorithms excel in adapting to 

real-time data, adjusting to dynamic 

situation 

Computational complexity might limit 

the real-time applicability of certain 

algorithms 

Computational 

Complexity 

Some algorithms manage computational 

complexity well, ensuring real-time 

applicability. 

Others may struggle with 

computational demands, limiting their 

usability in dynamic situations. 
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Limited 

Predictive 

Accuracy 

Certain algorithms improve predictive 

accuracy by integrating advanced analytics 

and machine learning 

However, accuracy challenges still 

exist, impacting the overall 

effectiveness of predictions. 

Dependency on 

Infrastructure 

Algorithms consider infrastructure 

availability, ensuring effective scheduling 

based on charging station locations. 

Limited charging infrastructure may 

still pose challenges, affecting 

algorithm effectiveness. 

User Adherence 

Some algorithms address user adherence 

issues by incorporating user-centric design 

principles. 

However, user behavior remains a 

significant source of uncertainty 

Scalability 

Issues 

Some algorithms effectively address 

scalability issues, ensuring applicability in 

large-scale networks. 

Others may struggle with scalability, 

limiting adoption in densely populated 

EV environments. 

Charging 

Station 

Congestion 

Certain algorithms consider the potential 

for congestion, enhancing user experiences. 

However, in scenarios with high 

demand, congestion issues may still 

arise. 

 

In general, all scheduling algorithms share strengths in improving energy efficiency, optimizing range, and 

enhancing user convenience to some degree. However, challenges such as limited predictive accuracy, user 

adherence issues, and computational complexity are shared by multiple algorithms. The effectiveness of 

algorithms can differ in areas like grid integration, adaptability to real-time data, and scalability, making 

them suitable for specific use cases. Ultimately, the choice of an EV scheduling algorithm depends on the 

specific goals, priorities, and constraints of the application environment. Advances in research and 

technology aim to address weaknesses and enhance the overall performance and applicability of these 

algorithms. There have been vast developments during these days in adopting various methodologies for 

the electric vehicle scheduling. A few among them are discussed below: 

 

• Integration of Machine Learning: Recent advancements involve incorporating machine learning 

techniques to improve the predictive capabilities of scheduling algorithms. Machine learning 

models can analyze historical data, user behaviors, and external factors to enhance the accuracy of 

predictions related to energy prices, traffic conditions, and charging station availability. 

• Reinforcement Learning Approaches: Researchers are exploring the application of reinforcement 

learning in EV scheduling. Reinforcement learning algorithms enable EVs to learn and adapt their 

charging strategies based on environmental conditions, user preferences, and system feedback, 

leading to more dynamic and adaptive scheduling. 

• User-Centric Design: Advances in user-centric design focus on tailoring scheduling algorithms to 

user preferences and behaviors. Incorporating user feedback and considering individual preferences 

in the scheduling process can improve user satisfaction and adherence to optimal charging plans. 

• Fleet Management Optimization: There's a growing emphasis on optimizing EV scheduling within 

fleet management scenarios. This involves coordinating the charging schedules of multiple vehicles 

to maximize fleet efficiency, reduce operational costs, and ensure that all vehicles are adequately 

charged when needed. 

• Distributed Energy Resources (DER) Integration: Recent trends involve integrating EV scheduling 

with distributed energy resources, such as solar panels and stationary energy storage. This holistic 

approach aims to optimize energy usage, storage, and distribution within the broader context of 

smart grids and renewable energy sources. 

• Multi-Objective Optimization: Researchers are exploring multi-objective optimization techniques 

to consider multiple conflicting objectives simultaneously, such as minimizing charging costs, 

reducing environmental impact, and optimizing user convenience. These approaches aim to find a 

balance among different objectives for a more comprehensive solution. 

• Block chain Technology: The integration of block chain technology is gaining attention for secure 

and transparent transactions within the EV ecosystem. Block chain can be used to facilitate peer-

to-peer energy trading, enable secure transactions at charging stations, and provide a decentralized 

approach to managing EV charging schedules. 
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• Real-Time Data Integration: Continued advancements involve enhancing the real-time capabilities 

of scheduling algorithms. Integrating real-time data on traffic conditions, energy prices, and grid 

status allows for more dynamic and responsive charging plans, improving overall system 

efficiency. 

• Edge Computing for Decentralized Processing: Some recent trends focus on leveraging edge 

computing for decentralized processing of data. Edge computing can reduce latency and enhance 

the real-time capabilities of scheduling algorithms, allowing for faster decision-making at the edge 

of the network. 

• Open Standards and Interoperability: Efforts are being made to establish open standards and 

interoperability in the EV charging infrastructure. Standardization facilitates communication and 

data exchange between different components, enabling a more seamless integration of EV 

scheduling methodologies across diverse platforms and networks. 

 

These trends indicate a broader shift toward more intelligent, adaptive, and user-friendly EV scheduling 

methodologies, driven by advancements in data analytics, machine learning, and the integration of 

emerging technologies. As technology continues to evolve, it's likely that additional innovations will further 

enhance the capabilities and efficiency of electric vehicle scheduling methodologies. 

 

3. REVIEW ON OPTIMAL SCHEDULING METHODOLOGIES FOR ELECTRIC VEHICLES 

 

This section describes the various optimal scheduling methodologies for electric vehicles. In order to aid 

the decision-making process easy for the aggregator, the smart grid model considers renewable energy 

generators, electricity spot prices, the local market, demand response, and wholesale market for electric 

vehicles, and the newly proposed optimization algorithm. Using this algorithm, the total operating cost was 

reduced by 72%. This viable reduction percentage is computed by multiplying the arbitrary solution by the 

suboptimal solution [45]. To avoid producing inaccurate results, some uncertainties, such as load with 

generation, ESSs, demand response (DR), EV consumer, loads with DR, generation, electricity markets, 

and so on, should be considered when modeling smart grids. Table 4 shows the presence of these uncertainty 

factors in optimal scheduling problems and Figure 5 demonstrates how relative the uncertainty sources 

within the optimal allocation problems are. A new time-variable EV route-scheduling problem with traffic 

management. To solve the model, a mixed-integer linear programming (MILP) supported within adaptive 

large neighborhood search heuristic is developed. Using benchmark instances, the framework and approach 

were validated and evaluated thoroughly. The ALNS heuristic provides significantly better results to the 

situation in less time than the traditional optimization software. 

 

Table 4. Presence of uncertainty factors in optimal scheduling problems 

Reference 

Demand 

Response 

Used 

Utilization of 

EV Energy 

ESS 

Connected 

EV- 

Consumers 

Involved 

BSS 

Used 

Uncertainty 

Sources 

Connected 

[46] No No No Yes Yes Yes 

[47] Yes Yes Yes Yes No Yes 

[48] Yes No No No No Yes 

[49] Yes Yes No No Yes Yes 

[50] No Yes Yes No No No 

[51] No Yes No No Yes Yes 

[52] No Yes No Yes Yes Yes 

[53] No Yes No Yes Yes Yes 

 

A collaborative optimization scheduling strategy for distribution infrastructure and a multi-microgrid can 

fully exploit the DE in the MG to solve the optimal scheduling problem created by the region's multi-

microgrid and distribution network coordination. Furthermore, this method will help to enhance the power 

quality of the electric grid contributing to economic advantages for the MG. The degree of satisfaction of 

EV owners is also considered, and a two-layer model hierarchical coordination method is used to coordinate 

multi-microgrid and distribution networks. The optimal objective function of each layer was determined 
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based on the power supply and load predictions. The efficacy of the two-layer model is validated and the 

benefits of this approach in multi-microgrid models and power distribution system stability are 

demonstrated. A stochastic gap decision theory (GDT) approach for EV aggregators can be used to model 

uncertainties like departure/arrival times and initial SOC, considering the market rate variations in the day-

ahead electricity market. The objective function is to maximize the aggregator's capital gain under market 

price uncertainty. A microgrid (MG) optimum operation, which considers the swapping storage integrated 

station (CSSIS) of EV with battery fast-charging station (BCS) concept is framed with the basics of queuing 

theory and is realized based on the fast-charging users' behavioral patterns where deterministic approach 

for predicting and modeling an EV fleet to create reliable charging/discharging profiles can be used to 

manage the EV fleet, a genetic algorithm (GA)-based single-objective optimization was used. The 

envisaged optimization gives the effective trade-off among G2V and V2G operation costs to maximize the 

benefits of EV batteries by coordinating charging/discharging during variable pricing periods. 

 

 
Figure 5. Relationship of uncertainty sources within the optimal allocation problems 

 

Charging in real time optimization (RTCO) of sizable EVs, as multifaceted stochastic resource distribution 

problem is investigated in [54]. Multi-dimensional approximate dynamic programming (ADP-RTCO) is 

used to make subsequent optimal decisions when dealing with the complex RTCO of EV fleets. The ADP-

hierarchy RTCOs have two levels. The RTCO of the EV fleets framed as a multidimensional energy storage 

system in the top level by batching EVs into various virtual clusters. The value function is then 

approximated with the help learning-based policy iteration methodology, in which a priority-based re-

allocation algorithm is used to generate accurate charge power for EVs. ADP-RTCO was developed to 

maximize flexibility and reliability in vague environments through online learning. ADP-RTCO is optimal 

and sturdy in terms of both cost-saving and load-flattening concerns, according to extensive simulation 

results. Figure 6 depicts the multiple objectives of EV charge scheduling. Since the EVs are well related to 

the utility grid via the charging station, the scheduling objectives include the most important constants 

regarding the EV charging infrastructure [55]. A double-stage scheduling policy for sizable EVs to 

ameliorate the detrimental effects of decentralized charging is discussed in [56]. EV travel survey data are 

used to approximate the uncontrolled charging requirements of independent EVs and their agglomeration. 

In stage one, EVs and thermal power plants are set to run simultaneously. The charging/discharging load 

curves of EVs, as well as the optimal outcome strategies of the thermal power plants, were designed to 

lower overall operating expenses and the standard deviation of the entire load profile for each time frame 

of the day. In stage two, the EV load management and controllers utilize rolling optimization to create 

specific charging/discharging strategies for customers based on the guiding load profile. It is presumed that 

lowering the price of vehicle discharge compensation will enhance consumers’ willingness to engage in 

scheduling as well as customer satisfaction. To eliminate the "dimension disaster" due centrally controlled 

deployment of massive quantities of EVs, the K-means clustering algorithm is being used to group the EVs 

into different batches. The particle swarm optimization (PSO) algorithm can then be employed to solve the 

model, with each group scheduled as a unit.  
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Joint scheduling of BESS activity and non-dispatchable EV charging load (with the same deadline) in the 

presence of RE generation, electricity prices, and EV arrivals driven by the capability of using used EV 

batteries as BESS at charging stations was investigated in [57]. They also developed an interactive program 

that addresses the cost-cutting scheduling issue of an EV charging station operator. When the number of 

EVs is large, the constructed interactive program cannot be solved exactly by brute-force methods owing 

to computational complexity. Jiang in [58] investigated the scheduling of EV charging in public areas, 

especially those near worksites that serve fixed users. This study aimed to optimize EV charging in parking 

areas by incorporating an ESS and a PV system. A cost-minimization problem was used to define the 

charging optimization problem. A grey wolf optimizer (GWO) is then developed as a strategy for finding 

an optimized solution, considering the condition of the constraints of the optimization problem, an 

intelligent binary grey wolf optimizer (IBGWO) is suggested to strengthen the optimization and 

convergence rate accuracy. Eventually, a real-time EV charging scheduling scheme based on short-term 

PV power prognostication and IBGWO is proposed. To appraise the effectiveness of the suggested strategy, 

several cases were designed for the simulation. While emulating the solution for the suggested charging 

scheduling framework, the experimental experiments demonstrated that the proposed IBGWO outperforms 

other meta-heuristic algorithms. In addition, the suggested method can increase PV energy utilization while 

decreasing operator electricity prices. 

 

 
Figure 6. Multiple objectives of EV charging scheduling 

 

A new model in which EVs replacing ICE vehicles could be a solution to the particulate matter (PM) 2.5 

pollution problem is investigated in [59]. Uncontrolled charging of EVs, on the other hand, would pose a 

challenge to the power system's operation. As a result, some control over the EV charging is required, 

particularly in residential networks. The GA was used to resolve the optimization problem and the 

simulation results exemplify a reduction in the transformer peak load, loss of energy arbitrage benefit, 

power loss, and transformer life. Shereef proposed an integrated control at the service provider level in 

[60], which optimally performs peak clipping with EVs. The framework uses a charging station (CS), an 

aggregator, a control center, and EVs. Taking an IEEE 14 bus system as reference, the peak demand is 

optimally allocated to perform peak clipping among the aggregator and utility. The results indicate that it 

is optimal for peak demand scheduling. The results improve when EVs are dispersed into two separate 

buses instead of a single bus. As a result, a different optimal routing and charging method is discussed. 

Overall, the goal of pursuing the optimal scheduling technique is to lower the EV owner's total cost while 

increasing profit. This can be accomplished by employing one of several scheduling algorithms, all of 

which are described in the following section. A control methodology for a PHEV with configuration of 

parallel powertrains was developed in [61]. The control strategy is intended to reduce fuel consumption and 

multiple gearshift events over a broad range of driving times while preserving the battery SOC within an 
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acceptable limit. A controlled straight-back concept of the PHEV power train was employed as the design 

basis. In this case, the ECMS employs both transmission gear ratio and engine torque as dependent 

variables, obviating the need to develop a separate gearshift scheme and increase the power train's 

effectiveness. The entire control strategy is intended for use in a variety of operating regimes. 

Computational modeling is used to substantiate the approach against the optimal benchmark obtained via 

dynamic programming-based optimization, and the outcomes are used to fine-tune controller parameters. 

The work proposes a rigorous and relatively close RB+ECMS control scheme for concurrent PHEVs 

functioning in CS/CD or blended modes, which incorporates the logic of gear shift scheduling inside this 

energy management system, an algorithm with gear shift delay (GSD) aimed at eliminating continuous gear 

shifts and thus enhancing driving experience and driving dynamics, and a SOC control system that includes 

a feed-flux control system. The ideology of the multi objective techno economic environmental approach 

is suggested for coordinating EV charging and discharging in [62]. For the first time, end-user energy prices, 

battery deterioration, grid interplay, and CO2 emissions were designed and simultaneously optimized in 

the frame of reference of a home microgrid while supplying frequency regulation [63]. Compared to 

unregulated EV charging, the proposed technique saves 88.2 percent on energy prices, 67 percent on battery 

deterioration, 34 percent on CO2 emissions, and 90 percent on grid interplay, and to accomplish a 41.8 

percent improved performance in grid usage with numerous optimum solutions, the grid operators must 

recompense the end energy user and EV user for their expensed revenue loss of 27.34 percent and 9.7 

percent, respectively, in order to increase their involvement in energy services.  

 

Voltage profiles are likely to worsen owing to the significant growth in EV numbers, resulting in 

distribution system overloading. Controlling the SoC of EVs in a coordinated manner could provide an 

impactful solution to minimize the issues and may delay communication infrastructure reinforcement. To 

lessen computational effort, sequential power flow estimation is used, which encapsulates a wide range of 

uncertainties associated with EV mobility behavior and attitude, such as stochastic daily trip ranges and 

arrival and departure times [64]. The results obtained from a test network shed light on the effect of 

unpredictability and the inability to deal with risk factors during optimization. Planning with a more liberal 

initial EV battery charge level improves the steadiness and operational feasibility of optimized schedules. 

A topological deep reinforcement learning (DRL) technique for coordinating the energy usage of 

distributed energy resources (DERs) such as ESS and EV in a smart home context is proposed in [65]. In 

contrast to the Q-learning algorithm, which is framed on a distinct action space, the suggested technique 

schedules the energy usage of household DERs and appliances in a continuous state space based on the 

improved result from the consumer operational environmental condition. A computational study was 

conducted in domestic air conditioners, washers, rooftop solar photovoltaic systems, energy storage 

systems, and EV charging with time of use (ToU) pricing. The proposed DRL supported HEMS algorithm 

optimizes the day-ahead planning of home appliances under varying climatic conditions and EV driving 

patterns with hourly scheduling settlement. The use of multi-stage probability programming in a smart 

home system to cut the price of energy acquisition for an average home is discussed in [66]. In this case, 

the usable electric vehicle (EV) vehicle-to-home (V2H) capability is combined with an energy storage 

system (BSS) controlled by an energy management control system. Being one of the major contributors, a 

suitable analytical model for battery ageing cost is also considered in problem statement. As a result, 

numerous strategies, such as with or without deterioration cost, BESS, and poorly coordinated charging are 

explored at different charging rates. The problem’s sensitivity to various EV and BESS charging rates was 

also explored in [67]. Moreover, the effect of potential battery storage expense future savings on the 

residential energy management system is being researched. Finally, the Value of the Stochastic Solution 

(VSS) metric is being used to evaluate the stochastic optimization method's effectiveness.  

 

An EV scheduling algorithm that incorporates fuzzy logic system (FLC) in a charging infrastructure to 

significantly boost charging characteristics is proposed in [68]. The FLC assists the EV charting algorithm 

in logically determining an appropriate pair of CSs and EVs. The algorithm is designed to eliminate EV 

congestion by lowering the charging wait time and stabilizing the charge request rate. The maximum weight 

and random scheduling algorithms were considered [69], and the proposed scheduling algorithm came up 

with improving the efficiency of the EVCS in terms of wait period and tariff. Mavrovouniotis solved the 

problem of scheduling using ant colony optimization (ACO) for large number of EVs at a single station in 

such a way that the overall latency of the problem is kept to a minimum in [70]. Because of the charging 
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station's physical and power limitations, namely the maximum contractual power and consumed power 

disparity among the electric feeder's lines, generating a suitable and efficient schedule is a tricky problem 

to coordinate. From the experimental outcomes, using ACO is very effective and outperforms the other 

methodologies. Based on whale optimization algorithm (WOA), the improved whale optimization 

algorithm (IWOA) adds a Gaussian mutation operator, crowding degree factor, and differential evolution 

operator to the framework [71]. The results of nine fine examples demonstrate that the IWOA greatly 

improves the accuracy and computational speed of the WOA. Researchers even use IWOA to model and 

find a solution trying to locate EV charging stations under service risk limitations. The popularization of 

electric vehicles with limited battery capacity has raised the crucial problem of how to charge them 

efficiently and successfully [72]. The above problem, colloquially known as EVCS, has been demonstrated 

to be NP-hard. The majority of previous works simply frame the EVCS challenge as a subjective vehicle 

routing problem to be dealt with discrete optimization. To accommodate the mathematical model, 

researchers created a mixed-variable differential evolution (MVDE) algorithm for the suggested EVCS 

system. The results demonstrate improved efficiency of the proposed framework for both synthesized and 

real-world networks. The advancement of PEVs continues to accelerate, and utilities and PEV users must 

consider how to effectively integrate large-scale PEVs with an electric grid [73]. This article suggests a 

distributed method of control with a consensus mechanism for large-scale PEV charging coordination, with 

an emphasis on grid-side preference. The proposed coordination strategy has two objectives: reducing 

charging power losses and increasing the available PEV energy for V2G facilities. To achieve these 

objectives, incremental cost operations were created [74]. Simulation outputs efficient charging 

coordination with limited communication to reduce the charging energy loss and support the V2G facility. 

Huang [75] suggested a charging-scheduling scheme for hybrid electric vehicle charging contexts. Apart 

from conventional charging scheduling algorithms, which only consider G2V and V2G instances, this 

algorithm considers emerging mobile charging vehicles (MCV), such as G2V, MCV2V, and V2V. 

Furthermore, because it is based on consortium block chains, the suggested optimized charging scheduling 

framework guarantees the privacy and security of the power system, and is built on a dual-objective 

optimization framework that aims to maximize user satisfaction while minimizing user costs, while 

considering various metrics such as charging/discharging entity location, time spent waiting, and EV 

steering speed, among others. An enhanced non-dominated sorting genetic algorithm (NSGA) is proposed 

to solve this, and the results indicate that the NSGA algorithm outperforms the V2V-and G2V-based 

algorithms. Unregulated electric vehicle charging behaviors may cause load perturbations and other active 

impacts as the number of cars increases [76]. To manage EV charging burden in the power grid, an electric 

vehicle charging and discharging strategy (EVCDS) based on a charging decision function (CDF) and a 

discharging decision function (DDF) is proposed. The CDF and DDF will engage with the battery's 

remaining energy, the EV charging routines, and the charging effectiveness of the station. To ascertain 

whether to discharge, charge, or do nothing, all sub-functions are evaluated and merged into the DDF and 

CDF. In the numerical results, researchers created a situation for private and commercial vehicles. EVCDS 

outperforms other strategies in decreasing the charging price fluctuations and improving the distribution of 

stations' charging requirements. Charging an EV takes more time than refueling a fossil-fueled vehicle [77]. 

Charging stations must be scheduled in advance based on the journey of the demander EVs for effective 

resource scheduling. Such frequent charging and scheduling may potentially expose user information, such 

as whereabouts, driving patterns, schedules, and so on. In these cases, EV matching is usually performed 

centrally, exposing private information to third party matching parties using Biochromatic Mutual Nearest 

Neighbor (BMNN) tasks [78]. The BMNN simulation not only does the proposed matching algorithm 

provide an acceptable assignment for all stakeholders, but it achieves effective matching in complex 

situations where new suppliers and demanders appear and some departments; furthermore, owing to the 

sheer character of its design, it offers an effective validation process for changing environments than the 

conventional steady search algorithm, reducing the overall user wait period before matching. EVRPs have 

emerged as a recent research emphasis with the advancement of EV technology [79]. The goal of this study 

is to find a low-cost approach that includes finding an optimal location and number of BSSs, as well as an 

optimal route planning built on stochastic customer needs for an EV battery swap station (BSS). 

Furthermore, the traditional recourse strategy and precautionary stockpiling policy are expanded to account 

for the effects of both batteries and vehicles simultaneously. Following this, the Pareto optimality concept 

can be incorporated in the EVRP to accelerate the choice of BSS patterns. Many cities across the world 

have designed and implemented an integrated system of EVCS and BESS to significantly enhance the 
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utilization of PV energy to establish efficient and sustainable cities [80]. This article suggests a grid-

connected PV battery energy storage (PBES) EVCS optimization model for sizing BESS and PV as well 

as determining BESS charging/discharging patterns. Various optimal scheduling algorithms were discussed 

above to solve the optimal EV scheduling problem. Several algorithms are available to solve the scheduling 

problem, including GA, ACO, MAPSO, EVCS, HVNS, EVCDS, and ADMM, which are discussed in detail 

[81,82]. Table 5 below shows specific examples or case studies illustrating the impact of uncertainties on 

scheduling and cost. These studies illustrate how uncertainties, whether in energy prices, traffic conditions, 

charging station availability, or user behavior, can impact the effectiveness of EV scheduling algorithms 

and result in cost implications. Addressing these uncertainties is crucial for developing more robust and 

adaptive scheduling methodologies in the evolving landscape of electric vehicle operations. 

 

Table 5. Specific examples or case studies illustrating the impact of uncertainties on scheduling and cost 

Scenario Case Study Uncertainty 
Impact on 

Scheduling 

Impact on Cost 

Energy 

Price 

Variability 

Studies in found that while 

scheduling algorithms 

considering price 

fluctuations were effective 

in normal conditions, 

unexpected peak prices led 

to increased charging costs, 

highlighting the need for 

improved price prediction 

models. 

Fluctuations in 

electricity prices 

due to market 

dynamics and 

demand 

patterns. 

EV charging 

schedules 

optimized for 

lower-cost 

periods may 

become less 

effective during 

unexpected spikes 

in electricity 

prices. 

Users or fleet 

operators may 

experience higher 

charging costs 

during periods of 

unforeseen price 

volatility. 

Traffic 

Conditions 

Studies in found that 

scheduling algorithms, 

while effective in normal 

traffic scenarios, faced 

challenges in adapting to 

unexpected congestion, 

leading to deviations from 

the optimal plans and 

potential cost implications. 

Unforeseen 

traffic 

congestion and 

delays during a 

scheduled EV 

trip. 

Scheduled 

charging stops 

may be missed or 

delayed due to 

unexpected 

traffic, impacting 

overall travel time 

and charging plan 

adherence. 

Delays in 

reaching charging 

stations may 

result in 

additional costs or 

penalties for 

missing scheduled 

charging 

windows. 

Charging 

Station 

Availability 

Findings in [99] revealed 

that unexpected station 

closures or high demand 

periods could lead to 

suboptimal charging plans, 

affecting both travel time 

and costs. 

Sudden changes 

in charging 

station 

availability due 

to maintenance, 

malfunctions, or 

unexpected 

closures. 

EVs relying on 

scheduled 

charging at 

specific stations 

may face 

challenges if the 

stations become 

unavailable. 

Detours to 

alternative 

charging stations 

may incur 

additional travel 

time and costs. 

User 

Behaviour 

Variability 

The user-centric scheduling 

approaches discussed in 

were effective in normal 

conditions, unexpected 

deviations and uncertainties 

that affected both travel 

time and costs. 

Variability in 

user behaviors, 

such as 

unplanned route 

changes or 

deviations from 

plans. 

Algorithms may 

struggle to predict 

and adapt to 

unexpected user 

behavior, leading 

to suboptimal 

charging plans. 

Users deviating 

from optimal 

plans may 

experience higher 

costs g or missed 

incentives. 

 

4. UNCERTAINTIES IN THE OPTIMIZATION OF EV CHARGING CONTROL 

 

The optimization of electric vehicle (EV) charging control involves addressing various uncertainties arising 

from dynamic and stochastic factors. These uncertainties can significantly impact the effectiveness of 

charging control strategies. Here are some key uncertainties in the optimization of EV charging control 

discussed in Table 6. 
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Table 6. Key uncertainties in the optimization of EV charging control 

Uncertainty Remarks Impact 

Energy price 

fluctuation 

Cost varied depending upon 

demand, time and market conditions 

Affect cost-effective charging station 

economics 

Traffic condition 
Subject to accidents, road closure, 

unexpected congestion 

Influence travel times and questions 

feasibility of optimal routing plans 

Charging station 

availability 

Availability depends on 

maintenance, malfunctions, or 

unexpected closures 

Deviations from the planned charging 

schedule, causing inconvenience. 

Renewable 

energy 

generation 

Overall electricity generation is 

variable and depends on weather 

conditions 

Uncertainty in the carbon footprint and 

cost-effectiveness. 

User behavious 
Personal preferences, unforeseen 

events, or changes in travel plans 

Impact the overall effectiveness of 

algorithms, leading to suboptimal results 

Battery 

degradation 

Charging patterns, temperature, and 

usage 

Affect long-term planning and impact the 

overall lifespan of the EV battery 

Predictive 

Models 

Traffic prediction or energy price 

forecasting, is not perfect 

Inaccurate predictions may lead to 

suboptimal charging plans, reducing the 

efficiency 

Regulatory 

changes 

Changes in government regulations, 

incentives, or policies 

Affect the economic viability and 

attractiveness of certain charging strategies, 

influencing investment decisions 

 

Addressing these uncertainties in the optimization of EV charging control requires robust and adaptive 

algorithms that can dynamically adjust to changing conditions. Strategies such as real-time data integration, 

machine learning for predictive modeling, and scenario-based planning can help mitigate the impact of 

uncertainties and enhance the resilience of EV charging optimization systems. Additionally, 

communication and coordination among various stakeholders, including energy providers, charging 

infrastructure operators, and EV users, are crucial for adapting to dynamic conditions and uncertainties in 

the charging environment. Problems with deterministic optimization presuppose that the data are precisely 

known in advance. Certain information (such as power requirements, electrical generation, EV 

charging/discharging durations, electricity costs), are known with absolute certainty for many real-world 

issues like EV charging. Despite the abundance of literary works on distributed EV charging control, none 

of it has considered these uncertain aspects. It is unlikely that algorithms will be implemented successfully 

in the real world if they do not adapt to these uncertain elements. Many of the algorithms for scheduling 

charges in the research treat electric vehicles (EVs) as static loads with predetermined spatiotemporal 

variables and do not account for their mobility. EV charge scheduling with consideration for mobility, on 

the other hand, can adjust to a variety of temporal changes, including erratic arrivals and departures as well 

as spatial patterns, such as charging locations, the accessibility of slots at CSs, their locations as well as the 

dynamic requirements. More particularly, an EV may plug in at any time during the day and may plug out 

prior to the set time limit. Due to these uncertainties, the initial charge schedule cannot be followed until 

the schedule horizon has passed. As shown in Figure 7, the uncertainties may arise from the mobility side, 

demand side, network side, energy generation side and the tariff side. 

 

 
Figure 7. Uncertainty aspects in EV charging 
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Evaluating electric vehicle (EV) scheduling algorithms involves assessing their performance against 

various metrics or criteria to ensure their effectiveness in achieving desired objectives. The choice of 

metrics can depend on the specific goals of the scheduling algorithm and the priorities of stakeholders. 

Common metrics and criteria used to evaluate EV scheduling algorithms is shown in Table 7. 

 

Table 7. Common metric and criteria used to evaluate Electric Vehicle scheduling algorithm 

Criteria Metric Rationale 

Charging Cost 

Total cost associated with charging 

considering  

• Electricity prices 

• Demand charges 

• Penalties or incentives 

To optimize economic efficiency 

Energy 

efficiency 
Energy consumed per unit/distance 

Maximise energy efficiciency of EV operations 

ensuring optimal use of  

• Available battery capacity 

• Minimising environmental impact 

Travel time Time taken for completing trip 
• Enhance the overall user experience  

• Improve the competitiveness of EVs  

User 

convenience 

Adherence to preferred charging 

times and locations 

• Provide convenient and acceptable charging 

plans for users 

• Improving the likelihood of adherence 

Grid impact 

Grid stability 

• Load balancing 

• Renewable energy 

integration 

Optimize charging to 

• Reduce peak loads 

• Support renewable energy integration 

• Contribute to a more resilient grid 

Predictive 

accuracy 

Accuracy of predictions related to  

• Energy prices 

• Traffic conditions,  

• Charging station 

availability 

Algorithms need to demonstrate accurate 

forecasting to make informed decisions 

Operational 

scalability 
Performance of algorithm 

Can effectively handle larger fleets and 

charging infrastructure 

Robustness to 

uncertainties 

Adapt to unforeseen events or 

changes in parameters 

Handle uncertainties and dynamic conditions, 

ensuring reliability in real-world scenarios 

Fairness and 

equity 

Considers fairness and equity in 

charging access among different 

users or EVs 

• Equitable distribution of charging resources 

• Avoiding disparities in charging 

opportunities 

Adoption and 

user 

satisfaction 

User satisfaction  

• Surveys 

• Adoption rates 

• Feedback 

Success of scheduling algorithms depends on  

• User acceptance 

• Satisfaction 

• Willingness to adopt optimized 

charging plans 

Environmental 

impact 

Considering factors such as  

• Carbon emissions  

• Use of renewable energy 

sources 

Minimize environmental impact contribute to 

sustainability goals 

 

The selection of specific metrics depends on the context and goals of the EV scheduling algorithm. Also, a 

comprehensive evaluation may involve combining these metrics to provide a holistic assessment of 

algorithm performance. 
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5. PERFORMANCE COMPARISON OF VARIOUS EV SCHEDULING ALGORITHMS 

 

The different approaches to optimal scheduling are compared and examined in detail in this section, as well 

as the various algorithms and mathematical models that are employed. Various methodologies were 

compared in that review based on the technology employed, benefits, and drawbacks. Table 8, details 

different methodologies used for the optimal scheduling of EVs which improved the computation efficiency 

and scalability, [83] designed with a smart microgrid model, [84] to reduced transmission power 

fluctuation, [85] which made operation cost trade-off thus improving convergence speed operation cost and 

waiting time. This also avoided the penalty, disaster problems, improved the voltage level and overcomes 

the congestion problem by minimizing the charging expense. 

 

Table 8. Methodologies for Optimal Scheduling of Electric Vehicle 

Technology Used Advantages Limitations 

V2G Control Strategy 

With EV participation, the cost 

of generation is reduced, and the 

voltage levels are improved. 

Reactive power assistance for 

EV batteries is not considered. 

Variable Neighborhood Search - 

Differential Evolutionary PSO 

(VNS-DEPSO)  

Reduce operating costs of SMGs 

in uncertain environments. 

The number of evaluations is 

restricted 

Multi-Microgrid 

Collaborative Optimization 

Scheduling  

During distribution network 

system operation, transmission 

power variations, node voltage 

variations and line network 

losses are lowered. 

Does not consider economic 

optimization. 

Charging–Swapping– 

Storage Integrated Station 

(CSSIS)  

MG's total daily operating cost 

is being reduced. 

The peak-to-valley 

difference expanded without 

considering optimal scheduling 

Genetic Algorithm (GA) based 

Single objective optimal 

modeling  

Find out the best trading among 

G2V and V2G operational 

expenses. 

Additional power demand on 

the grid fluctuates erratically 

and dramatically. 

Two-stage scheduling strategy 
Avoids the dimensionality 

disaster problem 

Total cost increases partially 

due to the existence of 

compensation costs 

GSD - Gear Shift Delay 

algorithm  

Attempting to avoid continuous 

gear changes and intensifying 

riding/driving experience 

Increased fuel consumption 

Augmented non-dominated  

ε-Constraint (ANEC) algorithm 
Reduce battery degradation 

Sustainability should be 

improved. 

EV charging algorithm  

Decreases the overall expense of 

charging the Electric vehicle 

pool. 

The higher the operational cost 

required to mitigate the danger 

of inadequate charge 

Genetic Algorithm (GA) 

Reduce the price of peak 

demand, energy losses, and 

transformer ageing. 

The EV owners' hedging 

advantage loss is being 

presented as a penalty cost. 

Ant Colony 

Optimization (ACO) 

metaheuristic algorithm  

Reduce the overall delays of the 

scheduling issue. 

Variable charging rate is not 

considered 

A multi-level distributed 

algorithm for supervised 

reinforced learning  

Using the energy usage 

schedule, users can reduce their 

electricity costs. 

The HEMS concern has become 

highly complicated. 

The scenario generation 

algorithm 

Legitimate accuracy and 

disregarding battery 

deterioration 

This raises the overall cost to an 

intolerably good level. 
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Fuzzy logic control-based EV 

scheduling algorithm 

Solve the EV congestion issue 

and reduce wait period 
Poor charging request rate 

Genetic Algorithm (GA)  
 Low peak demand, transformer 

loss of life and power loss costs. 

The penalty price and the power 

loss price are the maximum in 

the scenario of dump charging. 

Hybrid Variable Neighborhood 

Search (HVNS) algorithm  

Improving the Logistics 

Distribution System by 

Incorporating Uncertain Data 

More Efficiently 

More running time is required. 

Mixed-Variable Differential 

Evolution (MVDE) algorithm  

Reduce overall time expense, 

charging expenditure, and State 

of Charge gap of all Electric 

Vehicles. 

MVDE should forego the last 

estimate in order to improve 

others. 

 

Figure 8 compares the costs of various optimal scheduling methods, including ODS, IBGWO (improved 

binary grey wolf optimizer), SFL-TLBO (Shuffled Frog leap-teaching and learning-based optimization), 

OEVC (only utility of electric vehicle concerned) scheme, and MOTEEO (multi objective techno-economic 

environmental optimization). According to the graph, the total cost for the IBGWO scheduling algorithm 

is 52$, whereas the MOTEEO algorithm consumes only 17$. The SFL-TLBO method performed better 

with less computational effort for large-scale problems. They can increase their benefits by 81 percent by 

providing frequency control services to end-electricity consumers under MOTEEO. 

 

 
Figure 8. Comparison of total operational cost for different optimal scheduling methods [86–88] 

 

 
Figure 9. Operation cost for different charging station configuration [89] 

 

The cost of operation includes both the recharging and the battery degradation cost. Several scheduling 

algorithms have been proposed to reduce the cost of EV operations. Figure 9 depicts the operating costs for 

various charging station configurations. RE stands for renewable energy and ES stands for energy storage. 

The operation costs of the charging station are greatly reduced if both RE and ES are used. The EV charging 

station configuration that does not include both RE and ES, on the other hand, necessitates higher 

operational costs. When RE is used alone, it consumes more costs than when it is used alone. The standard 

deviation of charge demand for various algorithms, such as fuzzy logic charging control (FLCC), battery-

charging station (BCS), RAS, and electric vehicle charging and discharging strategy is depicted in Figure 

10. (EVCDS). The standard deviation of the BCS was 11800, while the EVCDS was 6000.  The electric 

vehicles found its application not only as a solution for the existing greenhouse gas emission, but also it 

can be used as an alternative to support the grid in case on necessary situations. Thus, the EV scheduling 
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means scheduling it for charging and utility support, especially when the EVs can perform V2G operations. 

Table 9 below shows the operation applications of different algorithms for EV scheduling. 

 

 
Figure 10. Standard deviation for charge demand [90] 

 

Table 9. Summary of operation applications of different algorithms for EV scheduling 

Reference Algorithm Operational aspects with EV 
Constraint parameters used for 

scheduling 

[91-95] 
Game theory 

approach (GTA) 

Load regulation, Minimization of EV 

charging cost, Provision of grid 

voltage control, Provision of 

spinning reserve, Maximisation of 

aggregator revenue, maximisation of 

grid operational efficiency 

Forecasted situations, variable 

tariff, network parameters, 

mobility parameters, V2G 

support 

[96] 
Max-weight 

algorithm 
Load regulation 

Mobility parameters, variable 

tariffs 

[97] 

Stochastic 

programming-

based algorithm 

Load regulation 
Forecasted situations, mobility 

parameters 

[98,99] 

Gradient 

production 

method (GPM) 

based algorithm 

Load regulation, Load regulation 

considering overload,  

Forecasted situations, network 

parameters, mobility 

parameters 

[100,101] 

Alternating 

direction 

method of 

multipliers 

(ADMM) 

algorithm 

Load regulation considering 

overload, maximisation of user 

convenience, minimization of 

operational power cost, minimisation 

of EV charging cost, Minimisation of 

battery degradation cost  

Forecasted situations, variable 

tariff, network parameters, 

mobility parameters, V2G 

support, Time of use pricing, 

customised pricing 

[102] 

Ant based 

swarm 

algorithm 

Load regulation considering overload 

constraints 

Forecasted situations, variable 

tariff, network parameters, 

mobility parameters, V2G 

support 

[103] 
Random access 

algorithm 

Load regulation considering voltage 

and overload constraints,  

Network parameters, mobility 

parameters 

[104] 

Task swap 

mechanism 

algorithm 

Manage the active power 

compensation 

Network parameters, variable 

tariff, supports V2G 

[105] 

Convex 

optimization 

algorithm 

Maximising user convenience, 

minimising operational power cost 

Forecasted situations, network 

parameters, mobility 

parameters 

[106,107] 

Consensus 

coordination 

algorithm 

Minimisation of charging power loss, 

maximise aggregator revenue, 

minimisation of EV charging cost 

Forecasted situations, variable 

tariff, network parameters, 

mobility parameters, V2G 
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support, Time of use pricing, 

customised pricing 

[108,109] 
Heuristic 

algorithms 

Maximisation of operational 

efficiency, charging fairness 

Network parameters, mobility 

parameters, variable tariff 

[110] 

Linear 

programming 

approach 

algorithms 

Load regulation, frequency 

regulation, minimisation of 

electricity cost, minimization of 

operational cost 

Forecasted situations, network 

parameters, variable pricing 

 

The suitability of electric vehicle (EV) routing and scheduling algorithms depends on the specific 

characteristics of the scenario or uses case. Different algorithms may be more suitable for certain scenarios 

based on factors such as the size of the EV fleet, user preferences, charging infrastructure, and 

environmental considerations. Here's a general overview of the suitability of specific algorithms for 

different scenarios discussed in below Table 10. 

 

Table 10. Overview of the sustainability of specific algorithm for different scenarios 

Algorithm Suitable Scenario Example 

Deterministic 

algorithm 
• Well-defined and predictable 

environments. 

• Applications where uncertainties are 

minimal. 

Dijkstra's algorithm for deterministic 

shortest path calculation 

Stochastic 

algorithm 
• Environments with uncertainties 

• Applications where probabilistic 

modeling is beneficial. 

Monte Carlo methods for 

considering stochastic elements in 

routing and scheduling. 

Metaheuristic 

algorithm 
• Large-scale routing and scheduling 

problems. 

• Computationally complex scenarios. 

Genetic algorithms, simulated 

annealing, or ant colony 

optimization for optimization in 

large and complex environments 

Reinforcement 

learning 
• Dynamic and adaptive environments. 

• Applications where EVs can learn from 

interactions and improve over time 

Q-learning or deep reinforcement 

learning for adaptive routing and 

scheduling 

Game Theory-

Based 

Algorithms 

• Multiple entities (e.g., EVs, charging 

stations) with conflicting interests. 

• Scenarios where strategic decision-

making is involved 

Nash equilibrium-based approaches 

for optimizing interactions among 

EVs and charging stations 

User-Centric 

Algorithms 
• Scenarios where user preferences play a 

significant role. 

• Applications where user satisfaction is a 

priority. 

Algorithms that consider user 

preferences in scheduling and 

routing decisions 

Fleet 

Management 

Algorithms 

• Large fleets of EVs in a shared mobility 

or commercial setting. 

• Scenarios where coordination among 

multiple vehicles is essential. 

Algorithms that optimize charging 

and routing for entire fleets 

Dynamic 

programming 
• Problems with overlapping sub problems 

that can be solved independently. 

• Scenarios where optimal solutions are 

built from suboptimal solutions 

Bellman-Ford algorithm for dynamic 

programming in routing 

Hybrid 

algorithm 
• Scenarios where combining the strengths 

of different algorithms is beneficial. 

• Applications requiring a balance between 

exploration and exploitation 

Combining genetic algorithms with 

local search methods for enhanced 

performance. 
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Distributed 

Algorithms 
• Environments with decentralized 

decision-making requirements. 

• Applications where communication 

between vehicles is limited 

Algorithms that enable EVs to make 

autonomous decisions without 

centralized control 

 

It is important to note that the choice of algorithm also depends on the specific objectives of the routing 

and scheduling task, whether it's focused on energy efficiency, cost optimization, user satisfaction, or a 

combination of factors. Additionally, advancements in research may introduce new algorithms or 

modifications to existing ones, influencing their suitability for different scenarios. When implementing 

these algorithms, it's essential to consider the unique characteristics and requirements of the particular use 

case. 

 

6. SUMMARY 

 

Electric vehicles (EVs) have become an influential environmental initiative on a global scale. Due to 

increased energy usage and voltage instability, vehicle electrification significantly impacts the electricity 

network. Intelligent EV charging and discharging is critical. The scheduling issue, on the other hand, poses 

significant challenges. First, it is challenging to identify a globally optimal scheduling solution that 

minimizes total cost; second, it is extremely challenging to design a decentralized scheduling scheme that 

can accommodate a large population as well as random EV arrivals. Many existing algorithms face 

challenges in scaling up to handle large-scale EV fleets and complex urban environments with numerous 

charging stations. Scalability issues hinder the widespread implementation of these algorithms in real-world 

scenarios with dense EV populations. Some algorithms struggle to adapt in real-time to dynamic conditions, 

such as sudden changes in traffic patterns, unexpected charging station closures, or accidents. Lack of real-

time adaptability may lead to suboptimal routing and scheduling decisions, especially in rapidly changing 

urban environments. Many algorithms have limitations in accurately predicting and incorporating user 

behavior, preferences, and deviations from the suggested plans. Inconsistent user adherence to optimal 

plans can introduce uncertainties and affect the overall effectiveness of routing and scheduling strategies. 

While some algorithms address uncertainties, there is still room for improvement in handling a wide range 

of uncertainties, including energy price fluctuations, unexpected traffic events, and charging station 

availability changes. Incomplete consideration of uncertainties can lead to suboptimal planning and 

scheduling outcomes, especially in unpredictable and dynamic environments. There is a lack of 

standardization in terms of communication protocols, data formats, and interfaces across different charging 

infrastructure providers and EV manufacturers. Lack of standardization limits interoperability and data 

exchange, making it challenging to implement universal and seamless routing and scheduling solutions. 

Quantifying and assessing the environmental impact of different routing and scheduling strategies is a 

complex task. Without a comprehensive understanding of the environmental implications, it's challenging 

to develop strategies that truly contribute to sustainability goals. Many algorithms have yet to fully integrate 

with smart grid technologies and leverage real-time information about grid conditions and renewable 

energy availability. Lack of integration hampers the ability to optimize EV charging in alignment with 

broader grid management objectives. Multi-objective optimization approaches can be computationally 

demanding and challenging to implement in real-time scenarios. Balancing conflicting objectives, such as 

minimizing travel time, reducing costs, and enhancing environmental sustainability, remains a complex 

task. Public awareness and acceptance of optimized routing and scheduling solutions for EVs may be 

lacking. Low adoption rates or resistance from users can hinder the practical implementation of these 

algorithms, even when technically feasible. Privacy and security concerns regarding the collection and 

exchange of sensitive location and charging data. Concerns about data privacy may limit the willingness of 

users and stakeholders to participate in or adopt advanced routing and scheduling solutions. Addressing 

these limitations requires interdisciplinary collaboration, advancements in data analytics, improvements in 

computational efficiency, and a focus on user-centric design principles. As technology and research 

progress, it is anticipated that future studies will aim to overcome these challenges, making EV routing and 

scheduling solutions more robust and applicable in real-world settings. 

 

It is clear from the foregoing discussion that there is a significant need for optimal scheduling, particularly 

for EV routing and charging. Most of the researchers have developed several optimal scheduling 
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techniques, including Dynamic Programming Based Optimization, Variable Neighborhood Search-

Differential Evolutionary PSO, Multi-Microgrid Collaborative Optimization Scheduling, Improved Binary 

Grey Wolf Optimizer, Two-stage optimal scheduling strategy, and others, which are discussed on this 

paper. By analyzing all the above optimization techniques, the goal of all techniques is cost minimization, 

which also reduces uncertainties and fluctuations. Several algorithms are used in the optimization section 

for the routing and charging scheduling of EVs. EV charging algorithm, genetic algorithm, gear shift delay 

algorithm, augmented non-dominated constraint algorithm, two-level distributed deep reinforcement 

learning algorithm, EV scheduling algorithm made with FLC, ant colony optimization metaheuristic 

algorithm, mixed-variable differential evolution algorithm, hybrid variable neighborhood search algorithm. 

Like how scheduling algorithms were developed, several mathematical modeling techniques for 

optimization problems were created, and an arithmetic model was created to solve them. 

 

7. CONCLUSION 

 

This study has identified some of the problems with scheduling algorithms, mathematical models, and 

optimal charging and routing of EV based on feedback. The selection of suitable algorithms plays a vital 

role in bringing up expected results. The combination of perfect algorithms (discussed in Table 8) and 

suitable optimization technique (discussed in Table 8) always brings down the EV operational cost. Certain 

research works reviewed in this paper have encountered marginal results only because of this negligence 

or they might be doing some kind of trial and error to reach the expected optimum operation. Apart from 

this, the knowledge and implication of subjective constraints and containment of its dynamicity in the 

mathematical models will help to improve the results.  The impact of the above-mentioned on the overall 

cost is depicted in Figure 8 and Figure 9. The higher overall cost of charging and the more complex routing 

requirements are the main drawbacks for owners of electric vehicles. It has been extensively discussed how 

existing techniques work with different mathematical models and algorithms for scheduling. A thorough 

analysis of every technique in use reveals that while many of them do lower overall costs, they also come 

with additional drawbacks like fluctuations, longer running times, and higher fuel consumption. To improve 

EV scheduling performance, these should be diminished. And to conclude, the researcher must consider 

critically the EV parameters as well as its infrastructure parameters clinically and appropriate probability 

distribution functions needs to be called into its mathematical models on to which the algorithms and 

optimization techniques are called upon for improving operational benefits. Optimal electric vehicle (EV) 

charging and routing algorithms play a crucial role in enhancing the efficiency, range, and overall 

performance of electric vehicles. These algorithms aim to determine the best charging and routing strategies 

to maximize the vehicle's range while minimizing energy consumption and travel time. The advantages and 

weaknesses of such algorithms are discussed below: 

 

Advantages: 

1. Energy Efficiency: 

o Advantage: Optimal charging and routing algorithms can significantly improve the energy 

efficiency of electric vehicles by determining the most energy-efficient routes and charging 

schedules. 

o Explanation: These algorithms consider factors such as traffic conditions, road gradients, and 

energy consumption characteristics of the vehicle, helping to optimize overall energy usage. 

o Studies report a 10% reduction in energy consumption using their optimal charging and routing 

algorithm. 

2. Range Optimization: 

o Advantage: By considering real-time data and predictive models, optimal algorithms can 

extend the range of electric vehicles by suggesting routes that minimize energy consumption 

and maximize the use of available battery capacity. 

o Explanation: The algorithms can adapt to changing conditions and factor in variables like 

weather, traffic patterns, and elevation changes to optimize routes, ensuring that the vehicle 

operates within its range capabilities. 

o Studies claim a 15% improvement in effective range for electric vehicles. 
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3. User Convenience: 

o Advantage: Charging and routing algorithms can provide a convenient and seamless experience 

for EV users by suggesting optimal charging stations along the route and minimizing the impact 

on travel time. 

o Explanation: Users can rely on these algorithms to plan their trips efficiently, reducing 

concerns about range anxiety and providing a smoother overall driving experience. 

o Studies indicate a 20% reduction in travel time due to optimal routing and charging 

suggestions. 

4. Grid Integration: 

o Advantage: Optimal algorithms can facilitate smart grid integration by coordinating charging 

schedules to align with periods of low electricity demand, helping to balance the load on the 

electrical grid. 

o Explanation: By optimizing the timing of EV charging, these algorithms can contribute to grid 

stability and reduce the need for additional infrastructure upgrades. 

o Studies show a 30% decrease in peak load on the grid during charging periods. 

Weaknesses: 

1. Computational Complexity: 

o Weakness: Some optimal charging and routing algorithms can be computationally intensive, 

requiring significant processing power and time, especially when considering real-time data 

and complex optimization models. 

o Explanation: This can be a limitation in scenarios where quick decision-making is essential, 

and it may hinder the real-time applicability of the algorithms. 

o Studies report that their algorithm increased computational time by 50% compared to a simpler 

model. 

2. Limited Predictive Accuracy: 

o Weakness: The accuracy of predictions, such as traffic conditions or future energy prices, can 

be a challenge. Inaccurate predictions may lead to suboptimal routing or charging decisions. 

o Explanation: Unforeseen events, sudden changes in traffic, or inaccurate predictive models 

may result in deviations from the optimal plan, impacting the effectiveness of the algorithms. 

o Studies report a 70% accuracy rate in predicting future traffic conditions. 

3. Dependency on Infrastructure: 

o Weakness: Optimal charging algorithms often depend on the availability and reliability of 

charging infrastructure. In regions with limited charging stations, the effectiveness of these 

algorithms may be compromised. 

o Explanation: Users in areas with sparse charging infrastructure may face challenges in 

following optimal routes or schedules, potentially leading to range anxiety and inconvenience. 

o Studies show that their algorithm is 80% effective in regions with high charging infrastructure 

but drops to 40% effectiveness in areas with limited charging stations. 

4. User Behavior Considerations: 

o Weakness: These algorithms may not account for the preferences or behaviors of individual 

users, and user adherence to suggested routes or charging plans may vary. 

o Explanation: Users might deviate from the optimal plan due to personal preferences, 

unexpected events, or other factors, reducing the effectiveness of the suggested strategies. 

o Studies find that users followed the algorithm's recommendations 75% of the time. 

In conclusion, while optimal electric vehicle charging and routing algorithms offer significant advantages 

in terms of energy efficiency, range optimization, and user convenience, addressing computational 

complexity, improving predictive accuracy, expanding charging infrastructure, and considering user 

behavior are essential for their successful implementation and widespread adoption. 

 

8. FUTURE WORKS 

 

Possible future work can be on the following areas.  

• Lowering total costs by persuading existing work's detractors, such as perturbations, increased 

runtime, and higher energy consumption, to participate in the optimal scheduling of electric 

vehicles. 
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• Including charging infrastructure properties in the vehicle capacity of a charging station. 

• Investigating the arrival of vehicles with varying state of charges (SOCs) at battery swapping 

stations (BSSs). 

• Including electric grid generation and inordinate EV fleet charging may result in intermittent and 

large volatility of additional power demand on the grid throughout the day. 

 

CONFLICTS OF INTEREST  

 

No conflict of interest was declared by the authors. 

 

REFERENCES 

 

[1] Singh, J., Tiwari, R., “Multi-objective optimal scheduling of electric vehicles in distribution 

system”, 20th National Power Systems Conference (NPSC), India, 1-6, (2018). 

 

[2] Liu, Z., Wu, Q., Ma, K., Shahidehpour M., Xue Y., Huang, S., “Two-stage optimal scheduling 

of electric vehicle charging based on transactive control”, IEEE Transactions on Smart Grid, 10: 

2948-2958, (2018). 

 

[3] Babina, B.M., Shereef, R.M., “Optimal scheduling of electric vehicles for peak clipping 

services”, IEEE International Conference on Power Electronics, Smart Grid and Renewable 

Energy, India, 1-6 (2020). 

 

[4] Fernandez, G.S., Krishnasamy, V., Kuppusamy S., Ali J.S., Ali Z.M., El-Shahat A., Abdel 

S.H.M., “Optimal dynamic scheduling of electric vehicles in a parking lot using particle swarm 

optimization and shuffled frog leaping algorithm”, Energies, 13(23): 6384, (2020). 

 

[5] Alinia, B., Hajiesmaili, M.H., Crespi, N., “Online EV charging scheduling with On-Arrival 

Commitment”, IEEE Transactions on Intelligent Transportation Systems, 20(12): 4524-4537 

(2019). 

 

[6] Yang, S., Zhang, S., Ye, J., “A novel online scheduling algorithm and hierarchical protocol for 

large-scale EV charging coordination”, IEEE Access, 7: 101376-101387, (2019). 

 

[7] Koufakis, A.M., Rigas, E.S., Bassiliades, N., Ramchurn, S.D., “Offline and online electric 

vehicle charging scheduling with V2V energy transfer”, IEEE Transactions on Intelligent 

Transportation Systems, 21: 2128-2138, (2020). 

 

[8] Rasheed, M.D., Awais, M., Alquthami, T., Khan, I., “An optimal scheduling and distributed 

pricing mechanism for multi-region electric vehicle charging in smart grid”, IEEE Access, 8: 

40298- 40312, (2020). 

 

[9] Infante, W., Ma, J., Han, X., Liebman, A., “Optimal recourse strategy for battery swapping 

stations considering electric vehicle uncertainty”, IEEE Transactions on Intelligent 

Transportation Systems, 21(4): 1369-1379, (2020). 

 

[10] Sun B., Sun X., Tsang D.H.K., Whitt, W., “Optimal battery purchasing and charging strategy at 

electric vehicle battery swap stations”, European Journal of Operational Research, 279 (2): 524-

539, (2019). 

 

[11] Garcia-Guarin, J., Infante, W., Ma, J., Alvarez, D., Rivera, S., “Optimal scheduling of smart 

microgrids considering electric vehicle battery swapping stations”, International Journal of 

Electrical and Computer Engineering, 10: 5093-5107, (2020).  

 



1279  S Prabhakar KARTHIKEYAN, Polly THOMAS/ GU J Sci, 37(3): 1256-1285 (2024) 

 
 

[12] Zhang, R., Guo, J., Wang, J., “A time-dependent electric vehicle routing problem with congestion 

tolls”, IEEE Transactions on Engineering Management, 69(4): 861-873, (2022). 

 

[13] Amin Tareen, W.U.K., Usman, M., Ali, H., Bari, I., Horan, B., Mekhilef, S., Asif, S., Ahmed, 

S., Mahmood, A., “A review of optimal charging strategy for electric vehicles under dynamic 

pricing schemes in the distribution charging network”, Sustainability, 12(23): 10160, (2020).  

 

[14] Zekai, L., Xiang, L., Yitong, S., Youwei, J., Linni, J., “A genuine V2V market mechanism aiming 

for maximum revenue of each EV owner based on non-cooperative game model”, Journal of 

Cleaner Production, 414: 137586, (2023). 

 

[15] Chung, Y.W., Khaki, B., Li, T., Chu, C., Gadh, R., “Ensemble machine learning-based algorithm 

for electric vehicle user behavior prediction”, Applied Energy, 254: 113732, (2019).  

 

[16] Lee, J., Lee, E., Kim, J., “Electric vehicle charging and discharging algorithm based on 

reinforcement learning with data-driven approach in dynamic pricing scheme”, Energies, 13(8): 

1950, (2020). 

 

[17] Ding, Z., Lu, Y., Lai, K., Yang, M., Lee, W. J., “Optimal coordinated operation scheduling for 

electric vehicle aggregator and charging stations in an integrated electricity-transportation 

system”, International Journal of Electrical Power and Energy Systems, 12: 106040, (2020).  

 

[18] Aliasghari, P., Mohammadi-Ivatloo, B., Abapour, M., “Risk-based scheduling strategy for 

electric vehicle aggregator using hybrid Stochastic/IGDT approach”, Journal of Cleaner 

Production, 248: 119270, (2020).  

 

[19] Lai, K., Chen, T., Natarajan, B., “Optimal scheduling of electric vehicles car-sharing service with 

multi-temporal and multi-task operation”, Energy, 204: 117929, (2020).  

 

[20] Cao, Y., Huang, L., Li, Y., Jermsittiparsert, K., Ahmadi-Nezamabad, H., Nojavan, S., “Optimal 

scheduling of electric vehicles aggregator under market price uncertainty using robust 

optimization technique”, International Journal of Electrical Power & Energy Systems, 117: 

105628, (2020). 

 

[21] Lee, S., Choi, D. H., “Dynamic pricing and energy management for profit maximization in 

multiple smart electric vehicle charging stations: A privacy-preserving deep reinforcement 

learning approach”, Applied Energy, 304: 117754, (2021). 

 

[22] Luo, Y., Zhang, X., Yang, D., Sun, Q., “Emission trading based optimal scheduling strategy of 

energy hub with energy storage and integrated electric vehicles”, Journal of Modern Power 

Systems and Clean Energy, 8: 267-275, (2020). 

 

[23] Yuan, H., Wei, G., Zhu, L., Zhang, X., Zhang, H., Luo, Z., Hu, J., “Optimal scheduling for micro‐

grid considering EV charging–swapping–storage integrated station”, IET Generation 

Transmission & Distribution, 14: 1127-1137, (2020). 

 

[24] Elmehdi, M., Abdelilah, M., “Genetic algorithm for optimal charge scheduling of electric vehicle 

fleet”, 2nd International Conference on Networking, Information Systems &, New York, USA, 3: 

1-7, (2019). 

 

[25] Pan, Z. N., Yu, T., Chen, L. P., Yang, B., Wang, B., Guo, W. X., “Real-time stochastic optimal 

scheduling of large-scale electric vehicles: A multidimensional approximate dynamic 

programming approach”, International Journal of Electric Power Energy Systems, 116: 105542, 

(2020). 

 



1280  S Prabhakar KARTHIKEYAN, Polly THOMAS/ GU J Sci, 37(3): 1256-1285 (2024) 

 
 

[26] Barhagh, S., Abapour, M., Mohammadi-Ivatloo, B., “Optimal scheduling of electric vehicles and 

photovoltaic systems in residential complexes under real-time pricing mechanism”, Journal of 

Cleaner Productions, 246: 119041, (2020). 

 

[27] Pirouzi, S., Aghaei, J., “Mathematical modeling of electric vehicles contributions in voltage 

security of smart distribution networks”, Simulation, 95: 429-439, (2019). 

 

[28] Li, F., Dou, C., Xu, S., “Optimal scheduling strategy of distribution network based on electric 

vehicle forecasting”, Electronics, 8: 816, (2019). 

 

[29] Pal, A., Bhattacharya, A., Chakraborty, A.K., “Planning of EV Charging Station with distribution 

network expansion considering traffic congestion and uncertainties”, IEEE Transactions on 

Industry Applications, 59(3): 3810-3825, (2023). 

 

[30] Hu, S., Yang, J., Liao, K., Li, K., He, Z., “An equivalent method of distributed generation based 

on discharge behavior of large-scale electric vehicles”, 3rd Asia Energy and Electrical 

Engineering Symposium (AEEES), Chengdu, China, 833-838, (2021). 

 

[31] Zhao, Z., Zhao, B., Xia, Y., “Research on power grid load after electric vehicles connected to 

power grid”, 8th International Conference on Grid and Distributed Computing (GDC), Jeju, Korea 

(South), 36-39, (2015). 

 

[32] Sun, Y.Y., “Calculation and analysis of the effect with electric vehicle connected to the 

distributed system”, Applied Mechanics and Materials, 448-453: 2416–2422, (2013). 

 

[33] Zhang, Q., Zhu, Y., Wang, Z., Su, Y., Li, C., “Reliability assessment of distribution network and 

electric vehicle considering quasi-dynamic traffic flow and vehicle-to-grid”, IEEE Access. 7: 

131201-131213, (2019). 

 

[34] Lopez-Sánchez, J.A., Garrido-Jimenez, F.J., Torres-Moreno, J.L., Chofre-Garcia, A., Gimenez-

Fernandez, A., “Limitations of urban infrastructure for the large-scale implementation of electric 

mobility: A case study”, Sustainability, 12: 4253, (2020). 

 

[35] Apostolopoulou, D., Poudineh, R., Sen, A., “Distributed vehicle to grid integration over 

communication and physical networks with uncertainty effects”, IEEE Transactions on Smart 

Grid, 13: 626- 640, (2022). 

 

[36] Bakhshinejad, A., Tavakoli, A., Moghaddam, M., “Modeling and simultaneous management of 

electric vehicle penetration and demand response to improve distribution network performance”, 

Electrical Engineeing, 103: 325-340, (2021). 

 

[37] Wang, X., Sun, C., Wang, R., Wei, T., “Two-stage optimal scheduling strategy for large-scale 

electric vehicles”, IEEE Access, 8: 13821-13832, (2020). 

 

[38] Hai, T., Alazzawi, A.K., Zain, J.M., Oikawa, H., “A stochastic optimal scheduling of distributed 

energy resources with electric vehicles based on microgrid considering electricity price”, 

Sustainable Energy Technologies and Assessments, 55: 102879, (2023). 

 

[39] Savari, G.V., Krishnasamy, V., Sugavanam, V., Vakesan, K., “Optimal Charging Scheduling of 

Electric Vehicles in Micro Grids Using Priority Algorithms and Particle Swarm Optimization”, 

Mobile Networks and Applications, 24: 1835-1847, (2019). 

 

[40] Skugor, B., Deur, J., Soldo, J., “Optimal energy management and shift scheduling control of a 

parallel plug-in hybrid electric vehicle”, International Journal of Powertrains, 9: 240, (2020). 

 



1281  S Prabhakar KARTHIKEYAN, Polly THOMAS/ GU J Sci, 37(3): 1256-1285 (2024) 

 
 

[41] Das, R., Wang, Y., Putrus, G., Kotter, R., Marzband, M., Herteleer, B., Warmerdam, J., “Multi-

objective techno-economic-environmental optimisation of electric vehicle for energy services”, 

Applied Energy, 257: 113965, (2020). 

 

[42] Sun, W., Neumann, F., Harrison, G. P., “Robust scheduling of electric vehicle charging in LV 

distribution networks under uncertainty”, IEEE Transactions on Industry Applications, 56: 5785-

5795, (2020). 

 

[43] Cvok, Škugor, B., Deur, J., “Control trajectory optimisation and optimal control of an electric 

vehicle HVAC system for favourable efficiency and thermal comfort”, Optimization and 

Engineering, 22: 83-102, (2021). 

 

[44] Zhang, X., Kong, X., Yan, R., Liu, Y., Xia, P., Sun, X., Zeng, R., Li, H., “Data-driven cooling, 

heating and electrical load prediction for building integrated with electric vehicles considering 

occupant travel behavior”, Energy, 264: 126274, (2023).  

 

[45] Liu, Y., Wang, Y., Li, Y., Gooi, H. B., Xin, H., “Multi-agent based optimal scheduling and 

trading for multi-microgrids integrated with urban transportation networks”, IEEE Transactions 

on Power Systems, 36: 2197- 2210, (2021). 

 

[46] Garcia-Guarin, J., Rodriguez, D., Alvarez, D., Rivera, S., Cortes, C., Guzman, A., Bretas, A., 

Aguero, J.R., Bretas, N., “Smart microgrids operation considering a variable neighborhood 

search: The differential evolutionary particle swarm optimization algorithm”, Energies, 12(16): 

3149, (2019). 

 

[47] Arevalo, J.C., Rivera, S., Santos, F., “Uncertainty cost functions for solar photovoltaic 

generation, wind energy generation, and plug-in electric vehicles: Mathematical expected value 

and verification by Monte Carlo simulation”, International Journal of Power Energy Conversion, 

10: 171, (2019). 

 

[48] Cheng, Y., Zhang, C., “Configuration and operation combined optimization for EV battery 

swapping station considering PV consumption bundling”, Protection and Control of Modern 

Power Systems, 2, (2017). 

 

[49] Li, T., Zhang, J., Zhang, Y., Jiang, L., Li, B., Yan, D., Ma, C., “An optimal design and analysis 

of a hybrid power charging station for electric vehicles considering uncertainties”, 44th Annual 

Conference of the IEEE Industrial Electronics Society, Washington DC, USA, 5147-5152, 

(2018). 

 

[50] Li, W., Tan, X., Sun, B., Tsang, D.H.K., “Optimal power dispatch of a centralised electric vehicle 

battery charging station with renewables”, IET Communications, 12(5): 579- 585, (2018). 

 

[51] Sarker, M.R., Pandzic H., Ortega-Vazquez, M.A., “Optimal operation and services scheduling 

for an electric vehicle battery swapping station”, IEEE Transactions on Power Systems, 30(2): 

901-910, (2015). 

 

[52] Ban, M., Hang, Z., Li, C., Li, Z., Liu, Y., “Optimal scheduling for electric vehicle battery 

swapping-charging system based on nanogrids”, International Journal of Electrical Power & 

Energy Systems, 130: 106967, (2021). 

 

[53] Salama, H. S., Said, S.M., Vokony, I., Hartmann, B., “Impact of different plug-in electric vehicle 

categories on distribution systems”, 7th International Istanbul Smart Grids and Cities Congress 

and Fair (ICSG), Istanbul, Turkey, 109-113, (2019). 

 



1282  S Prabhakar KARTHIKEYAN, Polly THOMAS/ GU J Sci, 37(3): 1256-1285 (2024) 

 
 

[54] Guo, S., Qiu, Z., Xiao, C., Liao, H., Huang, Y., Lei, T., Wu, D., Jiang, Q., “A multi-level vehicle-

to-grid optimal scheduling approach with EV economic dispatching model”, Energy Reports, 

7(7): 22-37, (2021).  

 

[55] Zhou, Y., Wang, H., Wang, Y., Li, R., “Robust optimization for integrated planning of electric-

bus charger deployment and charging scheduling”, Transportation Research Part D: Transport 

and Environment, 110: 103410, (2022). 

 

[56] Lin, B., Ghaddar, B., Nathwani, J., “Electric vehicle routing with charging/discharging under 

time-variant electricity prices”, Transportation Research Part C: Emerging Technologies, 130: 

103285, (2021). 

 

[57] Das, S., Acharjee, P., Bhattacharya, A., “Charging scheduling of electric vehicle incorporating 

grid-to-vehicle (G2V) and vehicle-to-grid (V2G) technology in smart-grid”, IEEE International 

Conference on Power Electronics, Smart Grid and Renewable Energy, Cochin, India, 1-6, (2020).  

 

[58] Jiang, W., Zhen, Y., “A real-time EV charging scheduling for parking lots with PV system and 

energy store system”, IEEE Access, 7: 86184- 86193, (2019). 

 

[59] Srithapon, C., Ghosh, P., Siritaratiwat, A., Chatthaworn, R., “Optimization of electric vehicle 

charging scheduling in urban village networks considering energy arbitrage and distribution 

cost”, Energies, 13(2): 349, (2020). 

 

[60] Nimalsiri, N.I., Mediwaththe, C.P., Ratnam, E.L., Shaw, M., Smith, D.B., Halgamuge, S.K., “A 

survey of algorithms for distributed charging control of electric vehicles in smart grid”, IEEE 

Transactions on Intelligent Transportation Systems, 21: 4497- 4515, (2020). 

 

[61] Hassanzadeh, M., Rahmani, Z., “A predictive controller for real-time energy management of 

plug-in hybrid electric vehicles”, Energy, 249: 123663, (2022). 

 

[62] Ali, Raisz, D., Mahmoud, K., “Optimal scheduling of electric vehicles considering uncertain 

RES generation using interval optimization”, Electrical Engineering, 100: 1675-1687, (2018). 

 

[63] Tian, Y., Liu, J., Yao, Q., Liu, K., “Optimal control strategy for parallel plug-in hybrid electric 

vehicles based on dynamic programming”, World Electric Vehicle Journal, 12(2): 85, (2021). 

 

[64] Battapothula, G., Yammani C., Maheswarapu, S., “Multi-objective optimal scheduling of electric 

vehicle batteries in battery swapping station”, IEEE PES Innovative Smart Grid Technologies 

Europe (ISGT-Europe), Bucharest, Romania, 2019, 1-5, (2019). 

 

[65] Lissa, P., Deane, C., Schukat, M., Seri, F., Keane, M., Barrett, E., “Deep reinforcement learning 

for home energy management system control”, Energy and AI, 3: 100043, (2021). 

 

[66] Zeynali, S., Rostami, N., Ahmadian, A., Elkamel, A., “Two-stage stochastic home energy 

management strategy considering electric vehicle and battery energy storage system: An ANN-

based scenario generation methodology”, Sustainable Energy Technology and Assessments, 39: 

100722, (2020). 

 

[67] Yao, E., Liu, T., Lu, T., Yang, Y., “Optimization of electric vehicle scheduling with multiple 

vehicle types in public transport”, Sustain Cities and Societies, 52: 101862, (2020). 

 

[68] Hussain, H., Thakur, S., Shukla, S., Breslin, J. G., Jan, Q., Khan, F., Kim, Y., “A two-layer 

decentralized charging approach for residential electric vehicles based on fuzzy data fusion”, 

Journal of King Saud University - Computer and Information Sciences, 34(9): 7391-7405, 

(2022). 



1283  S Prabhakar KARTHIKEYAN, Polly THOMAS/ GU J Sci, 37(3): 1256-1285 (2024) 

 
 

[69] Jain, P., Das, A., Jain, T., “Aggregated electric vehicle resource modelling for regulation services 

commitment in power grid”, Sustainable Cities and Societies, 45: 439-450, (2019). 

 

[70] Mavrovouniotis, M., Ellinas, G., Polycarpou, M., “Electric vehicle charging scheduling using ant 

colony system”, IEEE Congress on Evolutionary Computation (CEC), Wellington, New Zealand, 

2581-2588, (2019). 

 

[71] Zhang, H., Tang, L., Yang, C., Lan, S., “Locating electric vehicle charging stations with service 

capacity using the improved whale optimization algorithm”, Advanced Engineering Information, 

41: 100901, (2019). 

 

[72] Zhou, K., Cheng, L., Wen, L., Lu, X., Ding, T., “A coordinated charging scheduling method for 

electric vehicles considering different charging demands”, Energy, 213: 118882, (2020). 

 

[73] Wang, L., Chen, B., “Distributed control for large-scale plug-in electric vehicle charging with a 

consensus algorithm”, International Journal of Electric Power Energy Systems, 109: 369-383, 

(2019). 

 

[74] Abbas, F., Feng, D., Habib, B., Rasool, A., Numan, M., “An improved optimal forecasting 

algorithm for comprehensive electric vehicle charging allocation”, Energy Technology, 7(10): 

1900436, (2019). 

 

[75] Huang, X., Zhang, Y., Li, D., Han, L., “An optimal scheduling algorithm for hybrid EV charging 

scenario using consortium blockchains”, Future Generation Computer Systems, 91: 555-562, 

(2019). 

 

[76] Tang, Q., Xie, M., Yang, K., Luo, Y., Zhou, D., Song, Y., “A decision function based smart 

charging and discharging strategy for electric vehicle in smart grid”, Mobile Network 

Applications, 24: 1722-1731, (2019). 

 

[77] Yucel, F., Akkaya, F., Bulut, E., “Efficient and privacy preserving supplier matching for electric 

vehicle charging”, Ad Hoc Networks, 90: 101730, (2019). 

 

[78] Wang, J., Kang, L., Liu, Y., “Optimal scheduling for electric bus fleets based on dynamic 

programming approach by considering battery capacity fade”, Renewable and Sustainable 

Energy Reviews, 130: 109978, (2020). 

 

[79] Zhang, S., Chen, M., Zhang, W., “A novel location-routing problem in electric vehicle 

transportation with stochastic demands”, Journal of Cleaner Production, 221: 567-581, (2019). 

 

[80] Dai, Q., Liu, J., Wei, Q., “Optimal photovoltaic/battery energy storage/electric vehicle charging 

station design based on multi-agent particle swarm optimization algorithm”, Sustainability, 11: 

1973, (2019). 

 

[81] Alinejad, M., Rezaei, O., Kazemi, A., Bagheri, S., “An optimal management for charging and 

discharging of electric vehicles in an intelligent parking lot considering vehicle owner’s random 

behaviors”, Journal of Energy Storage, 35: 102245, (2021). 

 

[82] Wang, N., Li, B., Duan, Y., Jia, S., “A multi-energy scheduling strategy for orderly charging and 

discharging of electric vehicles based on multi-objective particle swarm optimization”, 

Sustainable Energy Technology Assessments, 44: 101037, (2021). 

 

[83] Tan, M., Dai, Z., Su, Y., Chen, C., Wang, L., Chen, J., “Bi-level optimization of charging 

scheduling of a battery swap station based on deep reinforcement learning”, Engineering 

Applications of Artificial Intelligence, 118: 105557, (2023). 



1284  S Prabhakar KARTHIKEYAN, Polly THOMAS/ GU J Sci, 37(3): 1256-1285 (2024) 

 
 

[84] Beheshtikhoo, A., Pourgholi, M., Khazaee, I., “Design of type-2 fuzzy logic controller in a smart 

home energy management system with a combination of renewable energy and an electric 

vehicle”, Journal of Building Engineering, 68: 106097, (2023). 

 

[85] Liu, W.L., Gong, Y.J., Chen, W.N., Liu, Z., Wang, H., Zhang, J., “Coordinated charging 

scheduling of electric vehicles: a mixed-variable differential evolution approach”, IEEE 

Transactions on Intelligent Transportation Systems. 21:5094-5109, (2020). 

 

[86] Guo, G., Gong, Y., “Energy management of intelligent solar parking lot with EV charging and 

FCEV refueling based on deep reinforcement learning”, International Journal of Electrical Power 

& Energy Systems, 140: 108061, (2022). 

 

[87] Wang, H., Ma, H., Liu, C., Wang, W., “Optimal scheduling of electric vehicles charging in 

battery swapping station considering wind- photovoltaic accommodation”, Electric Power 

System Research, 199: 107451, (2021). 

 

[88] Shahkamrani, Askarian-abyaneh, H., Nafisi, H., Marzband, M., “A framework for day-ahead 

optimal charging scheduling of electric vehicles providing route mapping: Kowloon case study”, 

Journal of Cleaner Production, 307: 127297, (2021). 

 

[89] Kasani, V.S., Tiwari, D., Khalghani, M.R., Solanki, M.K., Solanki, J., “Optimal coordinated 

charging and routing scheme of electric vehicles in distribution grids: Real grid cases”, 

Sustainable Cities and Societies, 73: 103081, (2021). 

 

[90] Thangaraj, A., Xavier, S.A.E., Pandian, R., “Optimal coordinated operation scheduling for 

electric vehicle aggregator and charging stations in integrated electricity transportation system 

using hybrid technique”, Sustainable Cities and Society, 80: 103768, (2022). 

 

[91] Lu, C., Wu, J., Wu, C., “Privacy-preserving decentralized price coordination for EV charging 

stations”, Electric Power Systems Research, 212: 108355, (2022). 

 

[92] Liu, Z., Wu, Q., Huang, S., Lingfeng, W., Shahidehpour, M., Xue, Y., “Optimal day-ahead 

charging scheduling of electric vehicles through an aggregative game model”, IEEE Transactions 

on Smart Grid, 9: 5173-5184, (2018). 

 

[93] Paudel, A., Hussain, S.A., Sadiq, R., Zareipour, H., Hewage, K., “Decentralized cooperative 

approach for electric vehicle charging”, Journal of Cleaner Production, 364: 132590, (2022). 

 

[94] Singh, B., Dubey, P.K., “Distributed power generation planning for distribution networks using 

electric vehicles: Systematic attention to challenges and opportunities”, Journal of Energy 

Storage, 48: 104030, (2022). 

 

[95] Shojaabadi, S., Talavat, V., Galvani, S., “A game theory-based price bidding strategy for electric 

vehicle aggregators in the presence of wind power producers”, Renewable Energy, 193: 407-417, 

(2022). 

 

[96] Zhang, B., Hu, W., Cao, D., Ghias, A., Chen, Z., “Novel Data-Driven decentralized coordination 

model for electric vehicle aggregator and energy hub entities in multi-energy system using an 

improved multi-agent DRL approach”, Applied Energy, 339: 120902, (2023). 

 

[97] Pozzi, A., Raimondo, D.M., “Stochastic model predictive control for optimal charging of electric 

vehicles battery packs”, Journal of Energy Storage, 55(Part A): 105332, (2022). 

 

[98] Zhou, Z., Xu, H., “Mean field game-based decentralized optimal charging control for large-scale 

of electric vehicles”, IFAC-Papers On Line, 55(15): 111-116, (2022).  



1285  S Prabhakar KARTHIKEYAN, Polly THOMAS/ GU J Sci, 37(3): 1256-1285 (2024) 

 
 

 

[99] Pal, A., Bhattacharya, A., Chakraborty, A.K., “Allocation of electric vehicle charging station 

considering uncertainties”, Sustainable Energy, Grids and Networks, 25: 100422, (2022). 

 

[100] Li, J., Li, C., Wu, Z., Wang, X., Teo, K.L., Wu, C., “Sparsity-promoting distributed charging 

control for plug-in electric vehicles over distribution networks”, Applied Mathematical Model, 

58: 111-127, (2018). 

 

[101] Lee, S., Boomsma, T.K., “An approximate dynamic programming algorithm for short-term 

electric vehicle fleet operation under uncertainty”, Applied Energy, 325: 119793, (2022). 

 

[102] Wang, Y., Yang, Z., Mourshed, M., Guo, Y., Niu, Q., Zhu, X., “Demand side management of 

plug-in electric vehicles and coordinated unit commitment: A novel parallel competitive swarm 

optimization method”, Energy Conversion and Management, 196: 935-949, (2019). 

 

[103] Li, Y., Xie, K., Wang, L., Xiang, Y., “The impact of PHEVs charging and network topology 

optimization on bulk power system reliability”, Electric Power Systems Research, 163(Part A): 

85-97, (2018). 

 

[104] Jang, H.S., Bae, K.Y., Jung, B.C., Sung, D.K., “Apartment-level electric vehicle charging 

coordination: peak load reduction and charging payment minimization”, Energy and Buildings, 

223: 110155, (2020). 

 

[105] Malhotra, A., Binetti, G., Davoudi, A., Schizas, L.D., “Distributed power profile tracking for 

heterogeneous charging of electric vehicles”, IEEE Transactions on Smart Grid, 8: 2090-2099, 

(2017). 

 

[106] Karfopoulos, K.L., Panourgias, K.A., “Hatziargyriou, Distributed coordination of electric 

vehicles providing V2G regulation services”, IEEE Transactions on Power Systems, 31: 2834-

2846, (2016). 

 

[107] Zhao, T., Ding, Z., “Distributed initialization-free cost-optimal charging control of plug-in 

electric vehicles for demand management”, IEEE Transactions on Industrial Information, 13: 

2791-2801, (2017). 

 

[108] Wang, C., Guo, C., Zuo, X., “Solving multi-depot electric vehicle scheduling problem by column 

generation and genetic algorithm”, Applied Soft Computing, 112: 107774, (2021).  

 

[109] Umetani, S., Fukushima, Y., Morita, H., “A linear programming based heuristic algorithm for 

charge and discharge scheduling of electric vehicles in a building energy management system”, 

Omega (Westport), 67: 115-122, (2017). 

 

[110] Mohammed, S.S., Ahamed, T.P.I., Aleem, S.H.E.A., Omar, A.I., “Interruptible charge 

scheduling of plug-in electric vehicle to minimize charging cost using heuristic algorithm”, 

Electrical Engineering, 104: 1425-1440, (2022). 

 

 

 


