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ABSTRACT This research article deals with analytical solutions to two problems. The first is the (1+1)-coupled
Jaulent-Miodek system of equations, which is associated with the energy-dependent Schrödinger potential,
whereas the second problem, the system of coupled Konno-Oono equations relates to complexity and chaos
in electromagnetic fields. Similarity reductions via Lie-symmetry analysis is performed for the systems to
derive their analytical solutions. Since Lie symmetry involves arbitrary constants in the infinitesimals, this
opens up more possibilities for getting a rich variety of analytical solutions for both real-life problems. The
analytical solutions are supplemented graphically to understand them in a better way. Traveling wave profiles
are obtained eventually. Solution for CKOEs are different from the earlier research (Kumar and Kumar 2022a;
Kumar et al. 2022) as far as the authors are aware.
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INTRODUCTION

During the last few decades, interest in solving nonlinear sys-
tems of partial differential equations has increased. Nonlinear
partial differential equations (NPDEs) are used in many different
scientific disciplines to describe the motion of specific waveforms.
In physics, for example, NPDEs can be used to study complex-
ity in electromagnetic fields, chaos theory (Karaca and Baleanu
2022; Karaca 2023) shallow-water wave propagation, oceanic re-
search and engineering, material science, optics, and many other
fields. The appearance of NPDEs is cause for serious concern when
research numerical results are physically defined. The energy-
dependent Schrödinger potential and electromagnetic fields have
a connection to this occurrence.

An adequate literature review (Jaulent and Miodek 1976; Zhou
1997; Özer and Salihoğlu 2007; Xu et al. 2014) that includes histori-
cal context, various sorts of solutions, and employed methodolo-
gies is presented for the following form of Jaulent-Miodek equa-
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tions (JMEs).
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where the wave components in space are denoted by the variables
u(x, t) and v(x, t), and both of these variables depend on time t as
well. Another form of JMEs is as follows:
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This form of JMEs was also tried by the authors to be solved
analytically by using Lie symmetry, but its reduction could not be
further solved. It opens the door for further research in this field.

Some more literature review for the JMEs (1) is also presented.
The JMEs (1) were first introduced by (Jaulent and Miodek 1976)
using the inverse scattering transform, which associates with the
energy-dependent Scrödinger potential (Özer and Salihoğlu 2007).
The finite-band solution of the JMEs (1) can be obtained through
nonlinearization of the Lax pair (Zhou 1997). Darboux transforma-
tion (Xu et al. 2014) for the JMEs (1) yields some accurate solutions
like a kink- and bell-type solitons. These results are based on the
Lax pair of the JMEs spectral issue.
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In this research, second problem i.e. coupled Konno-Oono
Equations (CKOEs) is also solved by employing Lie-symmetry
analysis (Konno and Oono 1994). The general form of the CKOEs
is represented by
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= 0,
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where the wave components in space are denoted by the variables
u(x, t), v(x, t) and w(x, t), all of these variables depend on x and
time t, while α, β and γ are parameters. The CKOEs are classified
as Coupled Integrable Dispersionless (CID) equations (Pan and
Yan 2010; Souleymanou et al. 2012). The CKOEs describe how
a string moves in a three-dimensional space when interacting
with a magnetic field surrounding it. Each point on the curve
along the time direction appears to be transiting in parallel in a
magnetic-field (Konno and Oono 1994; Konno and Kakuhata 1995;
Souleymanou et al. 2012).

Another particular forms of the CKOEs (3) are discussed in (Pan
and Yan 2010; Souleymanou et al. 2012; Konno and Kakuhata 1995)
and derived assuming particular values of α and β as zero while
γ = 1 and recasts as:
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Under the conditions u takes value u0 when v tends to 0 and |x|
tends to ∞, this kind of CKOEs can be resolved by the inverse scat-
tering method (ISM) and satisfies the conservation law (Konno and
Oono 1994; Kakuhata and Konno 1996; Konno and Kakuhata 1996).
As these requirements are satisfied with the proper conversion in
(5), the solution of CKOEs gradually resembles as Sine-Gordon’s
solutions and Pohlmeyer-Lund-Regge equations (Pan and Yan
2010; Konno and Kakuhata 1996; Hirota and Tsujimoto 1994).

Furthermore, a form of CKOEs in which only u and v appears
can be discussed as

∂u
∂t
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∂v
∂x

= 0, and
∂2v
∂x∂t

− 2uv = 0, (5)

Konno and Oono (1994) derived the system (5) after replacing Rx,
S, T, α, β and γ by −iu, iv, iv, 0, 0, 1 respectively into the following
integrable PDEs

i
∂2R
∂x∂t

+ (2αR + γT)
∂S
∂x

+ (2β + γ)S
∂T
∂x

= 0,

i
∂2S
∂x∂t

+ 2(2βR + γB)
∂R
∂x

− 2(αS − βT)
∂S
∂x

= 0, and

i
∂2T
∂x∂t

+ 2(2βR + γT)
∂R
∂x

− 2(αT − βS)
∂T
∂x

= 0. (6)

Furthermore, the stochastic form of CKOEs (Mohammed et al.
2021) is given by

∂u
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+ 2v
∂v
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= 0, and
∂2v
∂x∂t

− 2uv = σF(ν), (7)

where the noise term, F(ν) is a function of strength (σ) of noise.
CKOEs (5) can be obtained by Eq. (7) if σ vanishes.

Some tools/methods such as ISM (Konno and Oono 1994;
Kakuhata and Konno 1996), classical Lie-symmetry (Khalique
2012), G′/G-expansion and tanh (Abdullah et al. 2023), and some
others (Khan and Akbar 2013; Alam and Belgacem 2016; Yel et al.
2017; Mohammed et al. 2021) are used for solving CKOEs (3) in
their various forms.

Khalique (2012) used similarity reduction to solve the CKOEs
(3), and obtained kink type solutions. Abdullah et al. (2023) de-
rived rational, trigonometric and hyperbolic solutions. Zahran and
Bekir (2023) got W-shaped, singular dark solitons type solutions.
Mohammed et al. (2021) and Wang and Liu (2022) obtained soli-
tary wave type solutions, whereas in our previous contributions
(Kumar and Kumar 2022a; Kumar et al. 2022) optimal sub-algebra
utilizing killing form is exploited and derived some initial travel-
ing wave solutions for the same form of the CKOEs (3). Besides the
work of (Khalique 2012), and authors (Kumar et al. 2022) a group
of researchers (Bashar et al. 2016; Khan and Akbar 2013) has solved
some specific forms of the CKOEs (5) and obtained more traveling
wave solutions.

The research conducted by Torvattanabun et al. (2018) derived
both trigonometric and hyperbolic solutions. The hyperbolic,
trigonometric, and rational types were obtained by Alam and
Belgacem (2016), whereas Khater et al. (2018) derived travelling
and solitary wave type solutions. The hyperbolic and trigonomet-
ric wave types were derived by Mirhosseini-Alizamini et al. (2020).
The results of Manafian et al. (2018) were hyperbolic, elliptic, and
solitons. Solitons were obtained by Yel et al. (2017), whilst solutions
in the form of travelling waves were obtained by Koçak et al. (2016).
In addition, CKOEs (5) are solved by Abdelrahman and Alkhidhr
(2020) that contain solitary type solutions.

Above reviews motivate to derive some novel variety of solu-
tions for JMEs (1), and CKOEs (3).

INFINITESIMALS VIA LIE-SYMMETRY ANALYSIS

In this section, infinitesimals of the JMEs (1) and CKOEs (3) are de-
rived by using one parameter Lie group similarity transformations
method (STM). Such transformations can be treated as:

x∗ → x + ϵ ξ(Ξ) + o(ϵ2), t∗ → t + ϵ τ(Ξ) + o(ϵ2),

u∗ → u + ϵ η(u)(Ξ) + o(ϵ2), v∗ → v + ϵ η(v)(Ξ) + o(ϵ2), and

∂u∗

∂x∗
→ ∂u

∂x
+ ϵ [η

(u)
x ] + o(ϵ2) etc. (8)

where ξ, τ, η(u) and η(v) are the infinitesimals for x, t, u and v
respectively and (Ξ) ≡ (u, v, x, t).

Let u = θ(u)(x, t), and v = θ(v)(x, t) be the solutions for JMEs
(1), then its invariance conditions are

[η
(u)
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(u)
x θ(u) + 3 u [η

(u)
x ]− 2[η(v)

x ] = 0, and

2[η(v)
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(u)
x θ(v) + 4v [η(u)

x ]− 2θ
(v)
x θ(u) − 2u [η

(v)
x ]− [η

(u)
xxx] = 0.

(9)

One can follow the textbooks (Bluman and Cole 1974; Olver 1993)
and research articles (Kumar and Kumar 2022a,b; Kumar et al. 2023)
for getting the values of the extensions [η(1)

x ], [η(1)
xx ], and [η

(1)
xxx] etc.

Making use of Eq. (1) into Eq. (9) which gives

τu = τv = τx = 0, τtt = 0, ξu = ξv = ξt = 0, 2ξx = τt, ξxx = 0,

2η
(1)
u = −uτt, and η

(2)
v = −vτt. (10)
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The resulting infinitesimal generators for Eq. (1) can be derived by
solving the above determining Eqs. (10).

ξ = a1x + a2, τ = 2a1t + a3, η(u) = −a1u, and η(v) = −2a1v.
(11)

where all a′is are arbitrary constants.
Similarly for CKOEs (3), the infinitesimals are as follows:

ξ = 2c1x + c2, τ = −c1t + c3, η(u) = c1u, η(v) = c1v, and

η(w) = c1w. (12)

where c′is are arbitrary constants.

SIMILARITY REDUCTIONS AND INVARIANT SOLUTIONS

Jaulent-Miodek equations
Case 1: For a1 ̸= 0, the Eq. (11) provides,

dx
x + A1

=
dt

2t + A2
= − du

u
= − dv

2v
, (13)

On solving above, similarity variable is given as X1 = (x +

A1) (2t+ A2)
−

1
2 and similarity functions u = (2t+ A2)

−
1
2 F1(X1),

and v = (2t + A2)
−1G1(X1), where A1 =

a2
a1

, and A2 =
a3
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. Treat-

ing G1 = F1, similarity reduction of JMEs (1) yield the following
ODE:

¯̄̄F1 − 6F2
1 F̄1 + 9X1F1 F̄1 + F2

1 − 2X2
1 F̄1 − 2X1F1 − 4C1 F̄1 = 4C1,

(14)

where C1 is an integration constant.
On solving Eq. (14), one can find

F1 = X1 ±
√

X2
1 + 4C1, (15)

So, the first solution of JMEs (1) is

u1 =
1

(2t + A2)

[
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√
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]
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2(2t + A2)2

[
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√
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]
+

4C1
(2t + A2)

. (16)

Case 2: For a1 = 0 and a3 ̸= 0, Lagrange’s characteristic equations
for the Eq. (11) recasts as

dx
B

=
dt
1

=
du
0

=
dv
0

, (17)

where B =
a2
a3

. On integrating, one can get similarity forms as

X2 =
1
B
(x − t) and u = F2(X2), and v = G2(X2).

Hence, similarity reduction of JMEs (1) is represented by the
following ODE (for F2 = G2).

¯̄̄F2 − B4 F̄2 + 6B3F2 F̄2 − 6B2F2
2 F̄2 − 2B2C2F2 = 0, (18)

where integration constant is C2.
Eq. (18) is satified by
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So, another solution of JMEs (1) is given by

u2 =
1
2

B ± 1
2

√
B2 − 4C2 tanh

(
± C3 +

1
2

√
B2 − 4C2 BX2

)
and

v2 = − 9
16

B2 +
3
16

(B2 − 4C2) tanh2 (
± C3 +

1
2

√
B2 − 4C2 BX2

)
− 3

8
B
√

B2 − 4C2 tanh
(
± C3 +

1
2

√
B2 − 4C2 BX2

)
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(20)

where C3 is an integration constant.

Coupled Konno-Oono equations

The Lie algebra L3 can be generated by Lis (1 ≤ i ≤ 3) in which

L1 =
∂

∂x
, L2 =

∂

∂t
, and L3 = 2x

∂

∂x
− t

∂

∂t
+ u

∂

∂u
+ v

∂

∂v
+ w

∂

∂w
.

Thus symmetry reductions of the CKOEs (3) are as follows.
Case 1: The symmetry generator µ1L1 + L2 gives rise to the

group-invariant solution u = U(X), v = V(X), and w = W(X);
in which X = x − µ1t is an invariant of the symmetry µ1L1 + L2,
where µ1 is an arbitrary constant. Substituting these values into (3)
yields the system of ODEs as

µ1U′′ + 2αV′U + 2βW ′U − γV′W − γW ′V = 0,

µ1V′′ + 2αV′V − 4βU′U − 2βV′W + 2γU′V = 0, and

µ1W ′′ − 4αU′U − 2αW ′V + 2βW ′W + 2γU′W = 0. (21)

After solving the above system of reduction, following variety of
solutions can be obtained

u1 = 0, v1 = tanh C1α(x − µ1t), w1 = 0. (22)

u2 =
γ

2α

(
C1(x − µ1t) + C2

)
, v2 =

β

α

(
C1(x − µ1t) + C2

)
,

w2 = C1(x − µ1t) + C2. (23)
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γ

µ1α2(γ2 + 4αβ)
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(1
2

C3(x − µ1t) + C2

)
C3,

v3 = −1
2

γ2
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(1
2
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)
C3,

w3 =
2

µ1α(γ2 + 4αβ)
tanh

(1
2

C3(x − µ1t) + C2

)
C3. (24)

Case 2: The symmetry operator µ2L1 + L2 + µ3L3 (where µ2 and
µ3 are arbitrary constants) provides group-invariant solution of the
form u = U(X) + µ3γt, v = V(X) + 2µ3βt, w = W(X) + 2µ3αt
where X = x − µ2t is an invariant of µ2H1 + H2 + µ3H3 and the
functions U, V and W satisfy the same reductions as given in Eq.
(21), but solutions are different due to different similarity forms.

So, solution is given by

u4 = 0, v4 = tanh (x − µ2t)C1α + 2µ2γt, w4 = 0. (25)

u5 =
γC1
2α

+ µtγt, v5 = C1 + 2µ2βt, w5 = C1 + 2µ2αt. (26)

u6 =
γ

2α
{C1(x − µ2t) + C2}+ 2µ2αt,

v6 =
β

α
{C1(x − µ2t) + C2}+ 2µ2βt,

w6 = C1(x − µ2t) + C2 + µ2γt. (27)
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γ
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2
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)
C3 + µ2γt,
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2µ2α2(γ2 + 4αβ)
tanh

(1
2
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)
C3 + 2µ2βt,

w7 =
2

µ2α(γ2 + 4αβ)
tanh

(1
2

C3(x − µ2t) + C2

)
C3 + 2µ2αt. (28)
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PHYSICAL ANALYSIS AND DISCUSSION

Two analytic solutions for the JMEs (1) are represented by the
expressions (16) and (20) while seven analytic solutions for the
CKOEs (3) are expressed by Eqs. (22)–(28). The solution profiles are
shown which have different animation behaviour. The stationary-
progressive profile of the JMEs is shown via the Figs. (1) and
progressive, traveling and stationary-progressive profiles for the
CKOEs (3) are given by Figs. (2)-(4). A progressive wave is a
wave that conveys energy and momentum from one region of
space to another. The numerical simulation is performed with
the help of MATLAB. The space and the time ranges are taken as
−25 ≥ x ≤ 25 and 0 < t ≤ 50 respectively for each profile. For all
profiles of the CKOEs (3), the arbitrary constants involved in the
solutions are chosen as C = C1 = C2 = C3 = µ1 = µ2 = 1.25 and
α = 0.95, and β = γ = 1.50. For all the JMEs profiles, the arbitrary
constants are taken as a1 = 0.4387, a2 = 0.3816, a3 = 0.7655, and
A1 = 0.3804, A2 = 0.4217 and A3 = 0.7537.

Figure 1 Stationary-progressive profile for the solution (16)
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Figure 2 Progressive profile for the solution (22)
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Figure 3 Traveling wave profile for the solution (25)
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Figure 4 Stationary-progressive profile for the solution (28)

CONCLUSION

The Lie-symmetry analysis is successfully explored to obtain seven
analytic solutions for the CKOEs (3) and two analytic solutions for
the JMEs (1). Solutions of JMEs are given by Eqs. (16) and (20),
while solutions to CKOEs (3) are represented by Eqs. (22)- (28).
Mathematical expressions are explored physically as stationary-
progressive and progressive profiles for the solutions (16) and (20)
are depicted in Figure 1 and Figure 2 respectively. The progressive,
traveling and stationary-progressive profiles for the CKOEs (3) are
given by Figures (2)-(4). The solutions established here can explore
some more applications in the fields of chaos and the complexities
of the magnetic field since they provide a realistic perspective.
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