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Abstract 

Bin packing problem (BPP) is a combinatorial NP-hard problem that has variations including one, 

two and three dimensional packing, variable sized packing and packing with constraints. In the 

literature, exact and approximation algorithms have been mostly used to solve bin packing problems. 

Genetic Algorithms are meta-heuristic methods that have been applied to a vast majority of well-

known optimization problems including the bin packing problems. In this paper, a variant of bin-

packing problem for variable bins is addressed. The capacity constraints including volume and weight 

are given; moreover, to avoid item conflicts is defined as an additional constraint. A decision support 

model utilizing the genetic algorithm is introduced for this variant of the BPP. The performance of 

the model is tested with sample input, the results obtained are presented and discussed in the results 

section. 
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I. INTRODUCTION 

Bin Packing Problem (BPP) is one of the classical combinatorial optimization problems and 

has received a great deal of attention in the literature due to its various application areas. In the 

classical BPP, a set of items must be assigned to a finite number of bins of fixed capacity in a way 
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that minimizes the number of bins used. Besides classical one-dimensional BPP, there are many 

variations of BPP such as variable sized (Friesen & Langston, 1986; Kang & Park, 2003; Haouari & 

Serairi, 2009), two-dimensional (Li, Liu, Wu, & Xu, 2014), three dimensional (Martello, Pisinger, & 

Vigo, 2000), online (Kinnersley & Langston, 1988) and so on.  

The problem addressed in this paper includes different categories of bins and each one 

contains limited and/or unlimited number of identical bins with the same capacity and cost. In 

addition, it contains different item categories; each involves finite number of identical and/or non-

identical items. As we consider variable sized bin categories, our problem falls into the variable sized 

bin-packing problem (VSBPP) class with additional constraints that are considering volume 

capacities of bins in addition to weight capacities and conflicts between items.  

VSBPP was first investigated by Friesen & Langston (1986). VSBPP is a generalization of 

the classical BPP and formally defined (Correia, Gouveia, & Saldanha-da-Gama, 2008) as follows: 

Given a set J of n items where each item j (1 ≤ j ≤ n) has a weight wj and m different bin types. Each 

bin type k (k=1, …, m) includes an infinite number of identical bins, each having a capacity Wk and 

a fixed cost ck. The objective is to minimize the total cost of bins used to pack all items. 

Even though the classical BPP has been widely investigated in the literature, the VSBPP has 

received scant attention (Haouari & Serairi, 2011). Kang & Park (2003) addressed the VSBPP with 

two greedy algorithms they proposed to solve three particular cases of the problem. Correia et al. 

(2008) studied the VSBPP using a discretized model and obtained good linear programming bounds 

to solve instances including up to 1000 items. Bang-Jensen & Larsen (2012) investigated real life 

instances of the VSBPP with a construction and a local search heuristic with the aim of obtaining 

high quality solutions for large number of bin sizes and adapting fast to online changes in data. Maiza, 

Labed, & Radjef (2013) analyzed VSBPP with the aim of minimizing the total cost of bins by 

applying four heuristics they proposed. Dokeroglu & Cosar (2014) analyzed the one-dimensional 

BPP and applied bin-oriented heuristics in island parallel grouping genetic algorithms. 

In the literature, there have also been studies addressing the BPP and VSBPP with item 

conflicts. Jansen (1999), Epstein & Levin (2008), Sadykov & Vanderbeck (2013) and Bodis (2015) 

have studied the BPP with conflicts. Epstein, Favrholdt, & Levin (2011) analyzed the online VSBPP 

with conflicts between items, which express that if there is a conflict on a pair of items, they cannot 

be assigned to the same bin and investigated online algorithms using mainly the asymptotic 

competitive ratio.  
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The BPP is an NP-hard problem (Korte & Vygen, 2006) and thus, the VSBPP is NP-hard 

as well. In the literature, exact and approximation algorithms are used to solve this problem. 

Monaci (2003) applied a branch-and-bound procedure to solve instances with 3 or 5 types of bins 

and up to 500 items. Alves and Valerio de Carvalho (2008) presented a branch-and-price-and-cut 

algorithm and used the instances of Belov & Scheithauer (2002) and Monaci (2003). Haouari & 

Serairi (2009) proposed a branch and bound algorithm to solve the test instances including three 

bin types, up to 500 items and randomly generated weights from discrete uniform distribution. 

Since the VSBPP is NP-hard these exact methods might require excessive computing time to 

solve large-scale instances. Many heuristic and meta-heuristic algorithms have been applied to 

the BPP and its extensions in the literature. In this paper, we proposed a genetic algorithm (GA) 

to solve the analyzed VSBPP. 

GA is one of the most popular meta-heuristics that has been applied to a vast majority of 

well-known optimization problems including the BPP and its variants successfully. Falkenauer 

(1996) addressed the BPP by applying the Grouping GA of Falkenauer (1994). The Grouping GA 

is a group-oriented approach and it focuses on bins instead of items. Reeves (1996) used an 

approach hybridizing the GA with existing simple heuristics to solve the BPP. Iima & Yakawa 

(2003) proposed a new design of GA to solve one-dimensional BPP focusing on the item 

combinations in a bin. They designed a GA in a way that offspring inherit the combination of 

items. They solved 1210 benchmark instances to test the performance of their GA. According to 

their results, their GA performed better than Variable Neighborhood Search and BISON that is 

an approach combining the tabu search method and the branch-and-bound method in terms of 

accuracy of solutions. Mohamadi (2010) addressed the one dimensional BPP applying the GA 

with a new representation scheme. This scheme was constructed by combining the strong features 

of bin-based, object-based and group-based representation schemes. Quiroz-Castellanos, Cruz-

Reyes, Torres-Jimenez, Gomez, Huacuja, & Alvim (2015) handled the one dimensional BPP with 

a method based on a grouping GA. Their method, which is referred to as the Grouping Genetic 

Algorithm with Controlled Gene Transmission, aimed the transmission of the best genes in the 

chromosomes with balancing the selective pressure and population diversity. Their approach 

improved the performance of grouping GA and was comparable to the best state of the art 

algorithms.  
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The paper is organized as follows. In Section 2, we present the formulation of the problem. 

Our solution algorithm is given in Section 3. Results of computational experiments are provided 

in Section 4. In Section 5, we discuss the results and draw conclusions. 

II. FORMULATION OF THE PROBLEM 

The problem analyzed can be defined as a VSBPP with conflicts including assignment of 

items to the variable sized bin categories considering weight and volume capacity of heterogenous 

bins while avoiding co-existence of conflicting item categories. The objective is to minimize the 

total cost of bins used to assign all items.  

Indices, parameters, variables and formulation of the model are as follows: 

Indices: 

j, i= 1,2,…,n   Index of items 

m, r =1,2,…,M  Index of item categories 

k=1,2,…,K   Index of bin types 

Parameters: 

ck:  Cost of bin type k 

wmj:  Weight of item j in m category   

vmj:  Volume of item j in m category  

Wk:  Weight capacity of bin type k 

Vk:  Volume capacity of bin type k 

lmr :   A parameter used to avoid joint assignment of item categories m and r which are in 

conflict. It equals to 1 if item category m and r can be placed into the same bin, 0 otherwise 

Decision Variables 

yk:  �1    if bin type k is used 
0    otherwise                  

 

xmjk :  �1    if item j in category m is assigned to bin type k 
0    otherwise                                                                       
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Mathematical Model 

    Min ∑ yk ∗ ckK
k=1                       (1) 

     s.t.  ∑ ∑ wmj
n
j=1

M
m=1 xmjk ≤Wkyk            k = {1, … , K}                                    (2) 

           ∑ ∑ vmjn
j=1

M
m=1 xmjk ≤Vkyk               k = {1, … , K}                                    (3) 

           ∑ xmjk = 1m
k=1                                  m={1, … , M}; j={1, … , n}             (4) 

           lmr ≥xmjk+ xrik − 1                         for all m; r; i; j; k; m≠r                           (5) 

xmjk   ∈ [0,1]                         m={1, … , M}; j={1, … , n}; k={1, … , K}   (6) 

𝑦𝑦𝑘𝑘   ∈ [0,1]                      k = {1, … , K}     (7) 
 

This formulation includes volume capacity and item categories’ conflict constraints in 

addition to classical VSBPP formulation of Correia et al. (2008). The objective function (1) is to 

minimize the cost of the bins used for packing all the items. Constraints (2) and (3) ensure that 

items are always assigned to bins without violating the weight and volume capacity of bins. 

Constraint (4) guarantees that each item is packed and assigned to only one bin. Constraint (5) 

ensures that when item category m and r are in conflict, the items in these categories can not be 

in the same bin. Constraints (6) and (7) are domain constraints.   

Since the problem is NP-Hard, obtaining optimal results using exact algorithms may not 

be possible within a reasonable time due to those problems’ size and complexity. For complex 

variable sized bin packing problems, approximation algorithms and many metaheuristic 

approaches have been used (Delorme, Iori, & Martello, 2016). From this point of view, Genetic 

Algorithm, one of the most successful metaheuristics, is applied in this paper.   

III. SOLUTION MODEL 

III.I. Genetic Representation for VSBPP 

Genetic algorithms are discovered as useful tools for search an optimization problems; 

such algorithms are classified as stochastic since randomness has an essential role (Sivanandam, 

& Deepa, 2008). In genetic algorithms, the term ‘chromosome’ refers to a candidate solution to 

a problem; the chromosomes are populated, selected according to fitness, and crossed over to 

generate new offspring of chromosomes (Mitchell, 1998). 

In a VSBPP problem, the solution is essentially an arrangement of items into bins. Since 

the bins have limited capacity, each arrangement must satisfy the capacity constraints. Moreover, 
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each item appears exactly once in a valid chromosome (Falkenauer, 1996). The genetic model 

developed for VSBBP problems should utilize a genetic representation that can formulate any 

valid solution that conforms to the constraints. 

Given an input that consists of m bins and n items, the genetic representation of VSBPP 

can be generalized as a chromosome that consists of m x n genes. Since the bin capacity can be 

hypothetically large enough to contain all of the items, such a genetic representation is sufficient 

to represent every feasible solution. Table-I exhibits a chromosome that formulates the genetic 

representation of a VSBBP with an input of two bins and five items. 

Table I. The Genetic Representation of a VSBBP for 2 Bins & 5 Items 

 Item#1  Item#4  Item#3 Item#5   Item#2 
BIN #1 BIN #2 

 

According to the genetic representation above, a random solution would be a random 

distribution of items into the slots in the chromosome. Such a distribution would result in a vast 

number of permutations, since the value of permutation (n, m x n) is huge as the values of m and 

n get considerably larger. However, such permutations often represent the same solution. For 

instance, swapping Item #3 and Item #5 would change the genetic representation in the sample 

chromosome exhibited in Table I; however, such a modification in the chromosome would 

represent exactly the same solution. Minimization of redundancy is an important design principle 

for constructing genetic representations; in this regard, each solution should be represented by as 

few distinct chromosomes as possible (Falkenauer, 1996). 

III.II. Initial Population Generation 
In genetic algorithms, the initial population usually consists of valid individuals generated 

at random (Falkenauer & Delchambre, 1992). In VSBPP, the validity criteria consist of the 

problem capacity constraints defined for the bins. Moreover, as shown in problem formulation, a 

valid individual should contain an arrangement of all items into the bins. 

The solution model involves the initial population generation at random. This step requires 

a random distribution of items into the bins. Each random chromosome is evaluated according to 

the constraints specified in the input. In our problem, the capacity constraints are separately 

defined in terms of volume and weight. Furthermore, the existence of item conflicts requires 

additional controls on the individuals. As an example, one might define a rule such as “Items of 

food category should not be placed in a bin that has already contained chemicals”. The model 
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also takes account of such rules as constraints. The randomly generated valid chromosomes that 

satisfy all constraints are included in the initial population. 

III.III. Crossover and Offspring Generation 
A new generation of chromosomes is formed through crossover in each iteration. 

Population diversity is crucial to the genetic algorithm’s ability to continue fruitful exploration 

(Nsakanda, Price, Diaby, & Gravel, 2007). In this regard, selection of crossover operators is 

important. Various strategies are employed for crossover, such as single-point crossover, two-

point crossover, multi-point crossover, uniform crossover, three parent crossover, shuffle 

crossover, ordered crossover, etc. (Sivanandam & Deepa, 2008). In single-point, two-point or N-

point crossover strategies the new individuals are generated with chunks of genes copied from 

the parents. On the other hand, each gene is inherited randomly from one of the parents in uniform 

crossover strategy. In our study, a uniform crossover strategy was used to promote population 

diversity. 

The objective of the crossover is to generate a number of healthy individuals in the new 

offspring. In our study, tests were executed with population sizes of 50, 100 and 200. Each test 

includes a random population of individuals and 50 consecutive crossovers. The newly bred 

chromosomes are checked against capacity constraints, conflict criteria, and finally checked to 

avoid redundancy. Before the next iteration, the ancestors and newly populated offspring is 

combined, and the individuals with the minimum cost are selected for the next crossover phase. 

III.IV. Fitness Function 
In a bin-packing problem, the quality of a solution can be intuitively expressed in terms 

of the number of bins used. Burke, Hyde, Kendall, & Woodward (2012) argued that using simply 

the number of bins lead to problem of plateaus in the search space. However, the assumptions of 

our problem involve that the cost of the bins varies as well as bin capacity. Since the objective of 

the problem is to find solutions with minimum cost, the fitness of a solution is formulated as the 

total cost of bins used. 

III.V. Input Data and Criteria 
The input consists of sample data with 50 items of seven categories. The inputs vary in 

terms of weight and volume. As an assumption, item category is used to define the item conflicts. 

The weight, volume and category of items are listed in Table II. 
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Table II. Weight, Volume and Category of the Items 

Item  

No 
Category 

Weight  

(kg) 

Volume  

(cm3) 

Item  

No 
Category 

Weight  

(kg) 

Volume  

(cm3) 

Item  

No 
Category 

Weight  

(kg) 

Volume  

(cm3) 

0 1 1100 500 17 4 440 200 34 5 45 1500 

1 1 240 450 18 4 100 200 35 5 300 600 

2 1 200 500 19 4 1600 400 36 6 100 200 

3 1 300 600 20 4 80 125 37 6 115 100 

4 2 1300 2000 21 4 160 275 38 6 635 100 

5 2 260 500 22 4 1600 200 39 6 120 110 

6 3 250 350 23 4 40 100 40 6 310 170 

7 3 200 600 24 4 90 225 41 6 90 120 

8 3 440 200 25 4 100 600 42 6 500 200 

9 3 300 200 26 5 150 430 43 6 220 100 

10 3 520 800 27 5 145 1000 44 6 145 600 

11 3 230 400 28 5 90 160 45 6 600 100 

12 3 600 400 29 5 560 750 46 7 300 180 

13 3 300 590 30 5 220 1270 47 7 180 90 

14 3 400 500 31 5 140 1500 48 7 200 225 

15 3 600 300 32 5 180 200 49 7 380 400 

16 4 210 200 33 5 120 400     

 
Table III exhibits the bins with variable sizes that differ in capacity and cost. 

Table III. Constraints for Bins and Bin Costs 

Bin 
Type 

Available 
Number 

Cost 
(units) 

Maximum 
Volume (cm3) 

Maximum 
Weight (kg) 

1 4 350 16000 7000 
2 4 250 7000 4500 
3 4 180 4800 2200 
4 4 525 26330 19000 

 

Since the VSBP problem addressed has item conflicts, a list of rules that define the co-

existence of items is required. It is assumed that the items conflicts exist among item categories. The 

conflict constraints across item categories is exhibited in Table IV. 

Table IV. Item Conflicts Defined In Terms of Categories 

Category 1 2 3 4 5 6 7 
1  X      
2 X      X 
3        
4        
5        
6        
7  X      
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IV. EXPERIMENTAL RESULTS AND DISCUSSION 

In order to test the genetic model presented, an application has been developed using C# in 

Microsoft Visual Studio 2015. Sample data provided in Table I, Table II, Table III were used in order 

to generate results. At the end of each iteration, the software provides a copy of the population as well 

as the duration of the calculations in a file. The application is designed to use the population size and 

iteration count provided as parameters. In addition, all tests are executed without the item conflicts. 

Initially, the model was used to generate results with 50 items 16 bins. In the initialization and 

offspring generation phases, the number of individuals was supplied as 50, 100 and 200. For each of 

the population size, 100 tests were carried out. In addition, the items and bins were simply duplicated 

to perform the tests for larger scale. Resultantly, 600 tests were performed with various combinations 

of inputs and population sizes. Test results with conflicts are included in Table V. 

Table V. Results of Tests for Various Population Sizes (With Conflicts) 

  50 Items, 16 Bins, With Conflicts 100 Items, 32 Bins, With Conflicts 
Population Size 50 100 200 50 100 200 
Min. Cost Obtained (units) 1650 1300 1050 3465 2400 2080 

Min. Cost Avg. (units) 2173 1712 1404 4857 3284 2378 

Avg. # of Iteration for Min. Cost 19,18 22,47 24,41 23,08 28,37 29,95 
Avg. Duration / Iteration (ms) 74 144 294 379 897 2559 

 

In order to compare the effect of conflicts on the results, all tests were performed without the 

conflicts. The results are given in Table VI. 

Table VI. Results of Tests for Various Population Sizes (Without Conflicts) 

  50 Items, 16 Bins, No Conflicts 100 Items, 32 Bins, No Conflicts 
Population Size 50 100 200 50 100 200 
Min. Cost Obtained (units) 1550 1050 1050 2760 2330 2080 

Min. Cost Avg. (units) 2078 1645 1318 4225 2870 2376 

Avg. # of Iteration for Min. Cost 19,61 22,99 25,63 24,60 27,70 31,56 

Avg. Duration / Iteration (ms) 72 106 230 257 674 5128 

 

In a typical optimization problem, an increase in costs can be expected, as the constraints get 

tighter. Therefore, it can be argued that the tests executed without conflicts must result in average 

smaller costs. Indeed, the average minimum costs obtained in tests without conflicts are smaller in 

both input scales and all population sizes. Moreover, the tests without item conflicts mostly performed 
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faster. Exceptionally, tests with 100 items and population size of 200 performed faster with conflicts. 

The subsequent tests to check the consistency of this finding evaluated in similar results. A possible 

explanation of this finding is that the conflicts lead to more separately arranged items where the fail 

possibility due to capacity constraints is lower. 

In Table V and Table VI, it can be noticed that in most tests the minimum score is obtained at 

iterations between 20 and 30. Due to preliminary tests, each test was planned with 50 consecutive 

crossovers after the initialization. It can be claimed that in the tests with a higher population size, the 

results improve in more iterations. 

In the results given in Table V and Table VI, it is noticeable that the minimum costs are 

obtained in the tests with largest population size. On the other hand, the time required to complete 

better results are significantly longer. In fact, it was predictable to notice trade-offs between minimum 

costs obtained in the tests and average duration of iterations. Such a relationship is exhibited in 

Figures I and II. 

 

Figure I. Tradeoff between best cost with duration (50 Items, 16 Bins, With Conflicts) 
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Figure II. Tradeoff between best cost with duration (100 Items, 32 Bins, With Conflicts) 

Each test consists of an initialization phase and 50 offspring generated with consecutive 

crossovers. As each offspring is generated, it is aimed to obtain individuals with better fitness score. 

In our model, it can be observed that the minimum costs decrease in further crossovers.  

 

Figure III. Min. Cost by Iteration (50 Items, 16 Bins, With Conflicts) 

In Figure III and Figure IV, the graph of minimum costs achieved in each iteration are 
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Figure IV. Min. Cost by Iteration (100 Items, 32 Bins, With Conflicts) 

To demonstrate the performance of the genetic approach in our problem, each attempt to 
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In Table VII, it can be noticed that the count of attempts required to generate the same number 

of valid individuals is dramatically lower in the crossover phase. Accordingly, the success rate of 
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individuals is dramatically higher, while the conflict rate and failure rate is significant lower in 

crossovers. 

Another prominent finding is that the failure rate due to capacity is higher when the input 

scale is larger. When the item count is scaled up by two, the complexity of the problem greatly 

increases due to the permutation of twice number of items into twice number of bins. 

V. CONCLUSION 

VSBP problems have various application areas including packing, cutting, loading and 

scheduling (Haouari & Serairi, 2009). In this paper, a model based on GA was proposed for a VSBP 

problem with item conflicts. The genetic model was tested on a sample case. Tests were executed 

with various input scales and population sizes. Additionally, the problem is solved without item 

conflicts to observe the behavior of the genetic model in both scenarios. 

The findings mostly overlap with previous GA and VSBP studies. As expected, the test results 

indicated that iterations with crossovers generate offspring with better fitness scores than brute force 

approach. Mostly, the fitness scores improve over 20-30 iterations. Figures III and IV demonstrate 

the improvement through consecutive iterations with crossover for different population sizes. 

The scalability of the model was tested with two different sets of inputs. For the first sample 

input that consists of 50 items and 16 bins, the best result was a minimum of 1050. As the input was 

duplicated, the best result obtained was 2080 resulting in a slight improvement on the cost per item. 

Both scores were obtained in the tests with largest population size. In general, it has been noticed that 

larger population sizes lead to individuals with better fitness scores. However, the decline in cost was 

accompanied with an increase in calculation time. The tradeoff between the time of computation and 

costs obtained was exhibited in discussion. 

It has been noticed that the existence of conflicts in the constraints mostly increases the 

duration of the iterations. Besides, with a decent population size and sufficient iterations for 

crossover, the model helped to obtain the same results without the conflicts. Considering the 

limitations of the study, it can be claimed that such a finding is limited for the inputs in our case. 

The genetic algorithms mostly rely on the use of selection, crossover and mutation operators 

(Sivanandam & Deepa, 2008). Various crossover strategies have been proposed including Simplex 

crossover (Tsutsui, Yamamura, & Higuchi, 1999), multi-parent partially mapped crossover (Ting, Su, 

& Lee, 2010). In further studies, GA solutions for VSBP problems with conflicts can be reinforced 
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with mutation operators, and tested with adoption of different crossover operators. Furthermore, the 

efficiency of genetic models for VSBP problems can be enhanced with the use of heuristics. 
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