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Abstract 

A control chart is an essential tool in Statistical Quality Control for monitoring the production process. It provides a visual means 

of identifying process irregularities. In this study, we focus on the Shewhart control chart based on the rk-deviance residuals, 

namely rk-Shewhart control charts to examine the Conway–Maxwell–Poisson (COM-Poisson) profile, which is used to model 

the count data with varying degrees of dispersion. The primary goal of this study is to identify the biasing parameter that 

produces the best result among newly presented biasing parameters developed based on existing ones. It provides a short 

overview of the COM-Poisson distribution, its modeling, and rk parameter estimation in the case of multicollinearity, as well as 

the construction of the deviance-residual-based Shewhart chart. To evaluate the performance of the rk-Shewhart, we conduct an 

analysis using a real-life data set, considering various shift sizes. By employing different biasing parameters, we examine the 

effectiveness of the rk-Shewhart control chart. The performance evaluation outcomes of the rk-Shewhart charts are compared to 

the ML-deviance-based Shewhart chart and within themselves based on the biasing parameters. The results demonstrate the 

advantage of the rk-Shewhart charts over the ML-deviance-based control chart in detecting out-of-control signals. Among the 

considered biasing parameters, the rk-Shewhart chart utilizing the adjusted biasing parameter 𝑘4 shows the best performance 

based on the ARL metric. 
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1. Introduction 

Statistical process control covers a range of tools to examine the production process. One such tool is the control 

chart. Control charts allow visual inspection and quick identification of the irregularities in the process. The 

simplicity of the approach has made it attractive to researchers looking to develop new techniques to perform profile 

monitoring. The profile itself represents the quality of the product/process through a relationship between the 

response and one or more producers. An extreme similarity of profiles with regression models allows the 

implementation of the modeling methods into the monitoring. In cases with count response, the data from the 

process is generally regarded as the Poisson profile. Several studies are dedicated to monitoring Poisson profiles 

with predictors independent of each other [1] – [7] and with collinear relationship [8] – [10]. But Poisson 

distribution comes with the specific characterization of the data being equidispersed, in other words, having an equal 

mean-variance structure. The real-life data do not always fit under this structure by showing a higher mean than 

variance or vice versa. In the early 1960s, Conway and Maxwell [11] introduced the Conway – Maxwell – Poisson 

distribution, which can represent the count data with various levels of dispersion. The COM-Poisson distribution is 

reviewed in the generalized linear models (GLMs) framework by Guikema and Coffelt [12], Lord et al. [13], 

Jowaheer and Khan [14], and Sellers and Shmueli [15].   

The possibility of modeling data with dispersed count response as GLM has led to the emergence of new studies 

in the context of process monitoring, as well. Inspired by Marcondes Filo and Sant'Anna [8], Park et al. [16] 

proposed an R-control chart based on the combination of regression modeling and principal component analysis, 

assuming the existence of interrelation among predictors. Later, Park et al. [17] introduced a randomized quantile 

residual-based control chart. Both studies are focused on monitoring process data with count response that follows 

Poisson, Negative Binomial, or COM-Poisson distributions. Mammadova and Özkale [9] adopted a different 

approach. For monitoring Poisson and COM-Poisson profiles, the authors used ridge estimation to lessen the effect 

of multicollinearity and proposed ridge-deviance-based Shewhart, cumulative sum (CUSUM), and exponentially 

weighted moving average (EWMA) charts. Jamal et al. [18] took a similar approach and studied deviance and 

randomized quantile residual-based CUSUM and EWMA charts for COM-Poisson process data and applied them to 

real-time highway safety surveillance. Mammadova and Özkale [9, 19, 20] also investigated COM-Poisson profile 

monitoring under multicollinearity by incorporating principal component regression (PCR), Liu, and rk 

estimation methods. Liu – deviance – based control charts proved to be better than the maximum likelihood (ML) 

and ridge deviance-based control charts, while rk deviance-based control charts outperformed ML, ridge, and PCR 

deviance-based control charts. 

In this study, we mainly focused on the Shewhart control chart based on the rk-deviance residuals (rk-Shewhart). 

Unlike other methods, biased estimation methods require an optimal biasing parameter that provides an effective 

estimate without deviating far from its actual value. Since the rk estimation method combines PCR and ridge 

estimators, its value is also affected by the biasing parameter. In this paper, we evaluated the effect of the eight 

different biasing parameters of k on the overall performance of the control chart. The study aims to determine the 

best biasing parameter among considered ones that results in a good performance.  

The rest of the paper is organized as follows: Section 2 covers detailed information about COM-Poisson 

modeling, an alternative estimation method of rk estimation, deviance residuals, and adjusted biasing parameters 

for the rk estimator as well. Monitoring with a residual-based Shewhart control chart is presented in Section 3. An 

illustrative example is included in Section 4, where the performance of the rk-Shewhart control chart with various 

biasing parameters is compared both among each other and to the performance of the ML-deviance-based Shewhart 

(ML-Shewhart) chart in general. Lastly, Section 6 covers the summary and conclusions regarding the study. 

2. Conway-Maxwell-Poisson model 

The probability density function for the COM-Poisson distribution is defined by 
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𝑓(𝑦𝑖) =
𝜇𝑖

𝑦𝑖

(𝑦𝑖!)
𝑣

1

𝑍(𝜇𝑖 , 𝑣)
, 𝑖 = 1,2,3, … , 𝑛                                                                                                       #(1)  

 

where 𝑦 = 0,1,2, …, 𝑣  is the dispersion parameter, and 𝑍(𝜇𝑖, 𝑣) = ∑ (𝜇𝑖
𝑠 (𝑠!)𝑣⁄ )∞

𝑠=0  is a normalization parameter.  

𝜈 > 1 indicates an underdispersion and 𝜈 < 1 shows that data is overdispersed. 𝜈 = 1 is the equidispersed case.  

The distribution is known to have three special cases, which are Geometric (when 𝜈 = 0, 𝜇𝑖 < 1), Poisson (when 

𝜈 = 1), and Bernoulli (when 𝜈 → ∞) distributions. According to Shmueli et al. [21], the normalization parameter 

𝑍(𝜇𝑖 , 𝜈) does not converge when 𝜈 = 0 and 𝜇𝑖 ≥ 1. Consequently, the distribution is undefined in that case.  

As GLM, data with COM-Poisson distributed response is commonly modeled through the log-link function [12, 

14, 15]. The log-link function of 𝜇𝑖 = 𝑒𝑥𝑝 (𝑥𝑖𝛽) involves ith observation 𝑥𝑖 = [𝑥𝑖1, 𝑥𝑖2 , … , 𝑥𝑖𝑝]  of 𝑋𝑛×𝑝 =
[𝑥1, 𝑥2, … , 𝑥𝑛]′ predictor matrix and unknown 𝛽 = [𝛽1, 𝛽2, … , 𝛽𝑝]′ parameters. In the case of independent predictors, 

these unknown parameters can be estimated iteratively by using the ML estimation technique as 

 

𝛽̂𝑀𝐿
(𝑡) = (𝑋′𝑉̂𝑀𝐿

(𝑡−1)
𝑋)

−1
𝑋′𝑉̂𝑀𝐿

(𝑡−1)
𝑢̂𝑀𝐿

(𝑡−1)
                                                                                                             #(2)  

 

where t indicates the iteration step,  𝑢̂𝑀𝐿
(𝑡−1)

= 𝑋𝛽̂𝑀𝐿
(𝑡−1)

+ (𝑉̂𝑀𝐿
(𝑡−1)

)
−1

(𝑦 − 𝜇̂𝑀𝐿
(𝑡−1)

) is the working response, and 𝑉̂𝑀𝐿
  is 

the weight matrix evaluated at 𝛽̂𝑀𝐿
(𝑡−1)

. The ML estimator at convergence is 𝛽̂𝑀𝐿
 = (𝑋′𝑉̂𝑀𝐿

 𝑋)
−1

𝑋′𝑉̂𝑀𝐿
 𝑢̂𝑀𝐿

  . Francis et 

al.  [22] presented a general form of the weight matrix  𝑉̂𝑀𝐿
  for ML estimation, initially given by Sellers and 

Shmueli [15]. It can be calculated as in Appendix A.  

The presence of the correlation among predictors requires the utilization of alternative estimation methods. One 

such method is the rk estimation. Initially, the rk estimator was proposed by Baye and Parker [23] for linear models 

and later modified for GLMs by Abbasi and Özkale [24]. To obtain the rk estimator first, we perform singular value 

decomposition to determine the principle components as follows: 

Let 𝑋∗ = 𝑋𝑇 and 𝛼 = 𝑇′𝛽 , where 𝑇 = [𝑡1, 𝑡2, … , 𝑇𝑝] is the 𝑝 × 𝑝  orthogonal matrix through 𝑇′𝑋′𝑉̂𝑀𝐿𝑋𝑇 = 𝛬. 
𝛬 = 𝑑𝑖𝑎𝑔(𝜆𝑖), 𝑖 = 1,2, … , 𝑝 , and 𝜆𝑖  are the eigenvalues of the 𝑋′𝑉̂𝑀𝐿𝑋  matrix. While 𝜆1  is equivalent to the 

maximum eigenvalue, 𝜆𝑝 is the minimum.  Then linear predictor in canonical form can be written as 𝜂 = 𝑋𝛽 =
𝑋𝑇𝑇′𝛽 = 𝑋∗𝛼 and 𝑋∗ = [𝑋𝑟

∗ 𝑋𝑝−𝑟
∗ ] where 𝑋𝑟

∗ = 𝑋𝑇𝑟 (𝑟 ≤ 𝑝) is the matrix of principal components that corresponds 

to the large eigenvalues and 𝑟  is the number of principal components that will be in the model. Accordingly, 

𝜔, 𝑇, and Λ can be partitioned as 𝛼 = [𝛼𝑟 𝛼𝑝−𝑟], 𝑇 = [𝑇𝑟  𝑇𝑝−𝑟], and Λ = [
Λ𝑟 0
0 Λ𝑝−𝑟

], where Λ𝑟 = 𝑇𝑟
′𝑋′𝑉̂𝑀𝐿𝑋𝑇𝑟 and 

Λ𝑝−𝑟 = 𝑇𝑝−𝑟
′ 𝑋′𝑉̂𝑀𝐿𝑋𝑇𝑝−𝑟, respectively.  

The number of principal components can be determined via the metric proposed by Jollife [25] called the 

percentage of the total variance (PTV). In this study, we adopted the adjusted version of this metric for GLMs, 

introduced by Aguilera [26], where 𝑃𝑇𝑉 = (∑ 𝜆̂𝑖
𝑟
𝑖=1 ∑ 𝜆̂𝑖

𝑝
𝑖=1⁄ ) × 100%. 

Mammadova and Özkale [20] obtained rk estimator for COM-Poisson model as  

 

𝛽̂𝑟𝑘
(𝑡) = 𝑇𝑟(𝑇𝑟

′𝑋′𝑉̂𝑀𝐿 
(𝑡−1)

𝑋𝑇𝑟 + 𝑘𝐼𝑟)
−1

𝑇𝑟𝑋
′𝑉̂𝑀𝐿

(𝑡−1)
𝑢̂𝑟𝑘

(𝑡−1)
 (3) 

 

where 𝑘 is the biasing parameter and 𝑢̂𝑟𝑘
(𝑡−1)

= 𝑋𝑇𝑟𝑇𝑟
′𝛽̂𝑟𝑘

(𝑡−1)
+ (𝑉̂𝑀𝐿

(𝑡−1)
)
−1

(𝑦 − 𝜇̂𝑟𝑘
(𝑡−1)

)  is the working response. The 

𝛽̂𝑟𝑘
  estimator at convergence is as 𝛽̂𝑟𝑘

 = 𝑇𝑟(𝑇𝑟
′𝑋′𝑉̂𝑀𝐿 

 𝑋𝑇𝑟 + 𝑘𝐼𝑟)
−1

𝑇𝑟𝑋
′𝑉̂𝑀𝐿

 𝑢̂𝑟𝑘
 . When 𝑘 = 1, 𝛽̂𝑟𝑘

  is the same as 

PCR estimator.  

Once parameters are estimated, we can calculate deviance residuals. Sellers and Shmueli [15] defined the ith 

deviance-residual (ML-deviance) formula for the COM-Poisson model where the ML estimation method is utilized 

as 
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𝑑𝑀𝐿,𝑖 = ± [2 (𝐿(𝑦𝑖 , 𝑦𝑖 ; 𝑣) − 𝐿(𝜇̂𝑀𝐿,𝑖 , 𝑦𝑖 ; 𝑣))]
1 2⁄

 (4) 

 

where 𝐿(𝑦𝑖 , 𝑦𝑖 ; 𝑣) = ∑ 𝑦𝑖 𝑙𝑜𝑔(𝑦𝑖)
𝑛
𝑖=1 − 𝜈 ∑ 𝑙𝑜𝑔(𝑦𝑖!)

𝑛
𝑖=1 − ∑ 𝑙𝑜𝑔(𝑍(𝑦𝑖 ; 𝜈))𝑛

𝑖=1   is the log-likelihood function of the 

saturated model, and 𝐿(𝜇̂𝑀𝐿,𝑖 , 𝑦𝑖 ; 𝑣) = ∑ 𝑦𝑖 log(𝜇̂𝑀𝐿,𝑖)
𝑛
𝑖=1 − 𝜈 ∑ log(𝑦𝑖!)

𝑛
𝑖=1  − ∑ log (𝑍(𝜇̂𝑀𝐿,𝑖; 𝜈))𝑛

𝑖=1  is the log-

likelihood of the fitted model. When 𝑦𝑖 < 𝜇̂𝑀𝐿,𝑖 the sign of the residual is negative, otherwise it is positive. 

Mammadova and Özkale [20] modified Eq. (4) and obtained the ith rk-deviance residual as follows 

 

𝑑𝑟𝑘 = ± [2 (𝐿(𝑦𝑖 , 𝑦𝑖 ; 𝑣) − 𝐿(𝜇̂𝑟𝑘,𝑖 , 𝑦𝑖 ; 𝑣))]
1 2⁄

 (5) 

 

where 𝐿(𝜇̂𝑟𝑘,𝑖 , 𝑦𝑖 ; 𝑣) = ∑ 𝑦𝑖 𝑙𝑜𝑔(𝜇̂𝑟𝑘,𝑖)
𝑛
𝑖=1 − 𝜈 ∑ 𝑙𝑜𝑔(𝑦𝑖!)

𝑛
𝑖=1 − ∑ 𝑙𝑜𝑔 (𝑍(𝜇̂𝑟𝑘,𝑖; 𝜈))𝑛

𝑖=1  is the log-likelihood of the 

fitted model where the rk estimation method is applied. Similarly, the sign of the residual is negative if 𝑦𝑖 < 𝜇̂𝑟𝑘,𝑖 

and positive when 𝑦𝑖 ≥ 𝜇̂𝑟𝑘,𝑖. 

2.1. Biasing parameter k 

The possibility of obtaining the rk estimator simply by adjusting ridge biasing parameters was mentioned by Abbasi 

and Özkale [24]. The literature contains numerous studies on the choice of the biasing parameter k for ridge 

estimation. Hoerl and Kennard [27] and Hoerl et al. [28] presented the early biasing parameters. Several studies 

focused on the 𝑘 parameters for linear ridge regression [29] – [34] and eventually, the biasing parameters proposed 

in these studies adapted to GLMs. [9], [10], [35] –[39] examined the 𝑘 parameters of models with count response 

and carried out comparative studies to determine the optimal k. One of the recent studies, Kibria [40] reviewed more 

than a hundred bias parameters for GLM.  

Here we present some of the biasing parameters adjusted for the rk estimation of COM-Poisson model 

parameters considered in this paper: 

 

𝑘1 =
𝑣

(max(𝛼̂𝑖))
2
 (6) 

 

𝑘2 =
𝑟𝑣

∑ 𝛼𝑖
2𝑟

𝑖=1

 (7) 

 

𝑘3 = max(1/√𝑣  𝛼̂𝑖
2⁄ ) 

(8) 

 

𝑘4 = 𝑚𝑒𝑑𝑖𝑎𝑛 (√𝑣  𝛼̂𝑖
2⁄ ) 

(9) 

 

𝑘5 = max(
𝑣

𝛼̂𝑖
2 +

1

𝜆𝑖

) 
(10) 

 

𝑘6 = median (
𝑣

𝛼̂𝑖
2 +

1

𝜆𝑖

) 
(11) 
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𝑘7 = min (1/√
𝑚𝑎𝑥(𝜆𝑖𝑣)

(𝑛 − 𝑟 − 1)𝑣 + 𝜆𝑚𝑎𝑥𝛼̂𝑖
2) 

(12) 

 

𝑘8 = median (1/√
𝑚𝑎𝑥(𝜆𝑖𝑣)

(𝑛 − 𝑟 − 1)𝑣 + 𝜆𝑚𝑎𝑥𝛼̂𝑖
2) 

(13) 

 

where 𝜆𝑖 is the eigenvalue of the 𝑇𝑟
′𝑋′𝑉𝑀𝐿𝑋𝑇𝑟  matrix.  

The formulations for 𝑘1 and 𝑘2 in Eqs. (6) and (7) are based on the biasing parameters introduced by Hearl and 

Kennard [27] and Hearl et al. [28], respectively. These biasing parameters, known for their simplicity and 

adaptability, represent the earliest contributions to the literature, establishing a foundation for the development of 

new biasing parameters for more thorough analysis. 𝑘3 and 𝑘4 are obtained based on the recommendations of Muniz 

and Kibria [31]. Kibria et al. [36] stated that the earlier version of the 𝑘3  is particularly efficient when high 

correlation is present among predictors for Poisson ridge estimation. The biasing parameters donated as 𝑘5 and 𝑘6 

derived from the two biasing parameters presented by Alkhamisi and Shukur [30] for linear models. They have 

proven to produce the best results for Poisson profile monitoring by Mammadova and Özkale [10] in the framework 

of process control. The final two biasing parameters originated from the biasing parameters for COM-Poisson 

regression model presented by Sami et al. [39]. The authors suggested using those biasing parameters to overcome 

the multicollinearity issue based on the findings of the extensive simulation study.  

3. Monitoring procedure 

In the 1920s, the Shewhart control chart was introduced to the literature as a method to detect abnormalities in 

the production process caused by various factors [41]. In the following years, these control charts have undergone 

modifications and adjustments to be able to monitor different process data. In the profile monitoring framework, 

residuals derived from profiles are monitored through the Shewhart control chart to detect process irregularities 

assuming that residuals follow the normal distribution. Since deviance residuals derived from GLMs are proven to 

be closer to the normal distribution than Pearson residuals [42] – [43], most of the studies employed deviance 

residuals for monitoring generalized linear profiles with Shewhart control charts.  

Shewhart control chart based on the deviance residuals can be constructed by using the following control limits 

 

𝐿𝐶𝐿 = 𝜇𝑀𝐿,0 − 𝐿𝜎𝑀𝐿,0 
 

(14) 

𝑈𝐶𝐿 = 𝜇𝑀𝐿,0 + 𝐿𝜎𝑀𝐿,0 (15) 

 

where LCL is the lower and UCL is the upper control limit, 𝐿 is the width of the limits, 𝜇𝑀𝐿,0 and 𝜎𝑀𝐿,0 are the mean 

and standard deviation of the ML-deviance residuals under an in-control state, respectively. Any observation outside 

of the control limits indicates an out-of-control state. Following the same approach, Mammadova and Özkale [44] 

obtained control limits for the rk-Shewhart control chart as 

 

𝑳𝑪𝑳 = 𝝁𝒓𝒌,𝟎 − 𝑳𝝈𝒓𝒌,𝟎 (16) 

 

𝑼𝑪𝑳 = 𝝁𝒓𝒌,𝟎 + 𝑳𝝈𝒓𝒌,𝟎 (17) 

 

where 𝜇𝑟𝑘,0 and 𝜎𝑟𝑘,0 are the in-control mean and standard deviation of the rk-deviance residuals, respectively. 



 Mammadova U., (2024) / Journal of Scientific Reports-A, 57, 121-132  

126 

 

The 𝐿 value in the control limits for the Shewhart control chart may differ slightly depending on the data set. It is 

typically selected based on the desired in-control average run length (ARL), which is the average number of data 

points until the first out-of-control signal. It is usually set to 𝐴𝑅𝐿0 ≈ 370. This choice ensures a minimal false alarm 

rate of 0.0027. 

4. Illustrative example 

4.1. Data set and its initial examination 

The comprehensive evaluation of the performances of the control charts is carried out through the SECOM data 

set [45]. The SECOM data set involves a collection of sensor readings, corresponding test results obtained from the 

production line, and a precise date-time stamp for each data point. While data from 590 sensors is considered a 

predictor matrix, test results act as the response.  

To ensure that the data set fit the presumptions of the study, we performed data cleaning procedures. These 

include addressing missing values by replacing them with the previous value and reducing the number of predictors 

by removing non-continuous variables. Also, given that the response variable is binary (-1 for Pass, 1 for Failure), 

we rearranged the whole data set to be able to model it with the COM-Poisson regression model. The strategy for 

rearrangement is given below: 

a) Following the cleaning, the initial predictor matrix became 𝑋1567×444. 

b) Based on the time stamp, the 24 hours are divided into eight distinct time intervals, referred to as time frames 

(TF). Time frames are 

 

1 → 00:00-02:59,  2 → 03:00-05:59, 

3 → 06:00-08:59,   4 → 09:00-11:59, 

5 → 12:00-14:59,   6 → 15:00-17:59, 

7 → 18:00-20:59,   8 → 21:00-23:59. 

 

A new date-time-frame (DTF) column was created by joining TF with the date information. For instance, the 

DTF of "20-5-2008-2" is the category of the observations for 20th May of 2008 and the time period between 

03:00-05:59. 

c) A rearranged response is created by summing the number of passes in the respective DTF. Similarly, the 

corresponding predictors are calculated by averaging each predictor variable within the corresponding DTF. 

Consequently, the data set became consist of 𝑋476×444 predictor matrix and a 𝑌476×1 response vector of counts. 

d) Lastly, to ensure the presence of multicollinearity, predictors with the absolute pairwise correlation value 

between [0.744, 0.756] are selected to be included in the analysis. Only 30 predictors met this condition. The 

final data set is a matrix of 𝑋476×30 and vector of 𝑌476×1. 

A further application is performed following the workflow given by Figure 1. 
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Figure 1. Application process workflow. 

Prior to the analysis, we standardized the X matrix such that each column has a zero mean and unit variance. The 

estimation of the dispersion is carried out using the "COMPoissonReg" package [46], where 𝜈 = 0.7772  is 

obtained, reflecting overdispersion.  

Next, we model the relationship between the overdispersed response and predictors through the log-link function. 

The ML estimator is obtained iteratively, with the initial value being the ordinary least squares estimator. The 

convergence criterion is set as ||𝛽̂(𝑡) − 𝛽̂(𝑡−1)|| ≤ 10−6. In the final iteration, we calculated the weight matrix 𝑉̂𝑀𝐿 

together with the ML estimator. Then condition number donated as CN is calculated by taking the square root of the 

maximum eigenvalue divided by the minimum eigenvalue of the scaled information matrix to assess collinearity 

among predictors. The result 𝐶𝑁 = 237.2906 > 10 indicates the presence of severe collinearity among the 

predictors according to Mackinnon and Puterman [47]. 

4.2. Monitoring and performance evaluation 

For the monitoring process, first, we computed 𝑑𝑀𝐿  and 𝑑𝑟𝑘  residuals. The 𝑑𝑟𝑘  residuals are obtained from 

models where the model parameters are estimated using rk estimation with the respective biasing parameter. These 

estimators are calculated iteratively by setting 𝑃𝑇𝑉 = 95% ,  𝛽̂0 = 𝑇𝑟𝑇𝑟
′(𝑋′𝑋)−1𝑋′𝑦  as the initial value, and 

||𝛽̂(𝑡) − 𝛽̂(𝑡−1)|| ≤ 10−6 as convergence criterion. The biasing parameters are calculated according to Eqs. (6) - (13) 

and obtained as  𝑘1 = 9.4355, 𝑘2 = 23.1216, 𝑘3 =  0.00042, 𝑘4 = 77.3809, 𝑘5 = 170.9183, 𝑘6 = 68.2304, 𝑘7 =
2.3757, and 𝑘8 = 2.9525.  

Next, we conducted a preliminary analysis because of the absence of information regarding the state of the data 

set. A control area is established using the estimated mean and standard deviation of residuals to identify potential 

out-of-control data points outside 3𝜎 control area. The control area is determined based on the estimated standard 

deviation of the monitored observations using the control limits in Eqs. (14)-(17). Resulted control charts are 

presented in Figure 2.  
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Figure 2. Initial analysis of the SECOM data set with ML-Shewhart and rk-Shewhart control charts. 

Four unique data points (302nd, 424th, 442nd, 445th) fall outside the control area of all control charts. These 

observations are eliminated from the data matrix to create an in-control data set. Afterward, the model is refitted 

using the updated data set. New biasing parameters are obtained as 𝑘1 = 11.9482, 𝑘2 = 25.9485, 𝑘3 =  0.00039,
𝑘4 = 58.6119, 𝑘5 = 133.3645, 𝑘6 = 53.6406,  𝑘7 = 2.4283  and 𝑘8 = 2.9115 . Then, the model parameters are 

estimated using the same settings, and residuals are calculated accordingly. Lower and upper control limits for the 

ML-Shewhart and rk-Shewhart control charts are obtained as in Eqs. (14) - (17) through simulation using these 

residuals such that they met the condition of 𝐴𝑅𝐿0 ≈  370.   
The simulation-derived control limits are included in Table 1. 

Table 1. Control limits of the ML-Shewhart and rk-Shewhart control charts obtained through simulation. 

Control 

chart 

L

CL 

U

CL 

ML-

Shewhart 

-

3.425 

2.

870 

rk-

Shewhart(𝑘1) 

-

3.228 

2.

660 

rk-

Shewhart(𝑘2) 

-

3.282 

2.

710 

rk- - 2.
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Shewhart(𝑘3) 3.027 724 

rk-

Shewhart(𝑘4) 

-

3.267 

2.

747 

rk-

Shewhart(𝑘5) 

-

3.138 

2.

830 

rk-

Shewhart(𝑘6) 

-

3.286 

2.

904 

rk-

Shewhart(𝑘7) 

-

3.286 

2.

779 

rk-

Shewhart(𝑘8) 

-

3.408 

2.

848 

 

To be able to evaluate the performance of the control charts, we generate a shifted response 𝑦 ~ 𝐶𝑂𝑀 −
𝑃𝑜𝑖𝑠𝑠𝑜𝑛(𝜇1, 𝑣),  where 𝜇1 = 𝑒𝑥𝑝(𝑥𝑖𝛽̂𝑀𝐿 + 𝛿𝜎̂𝑀𝐿,0) , 𝛿  represents the shift size, and  𝜎̂𝑀𝐿,0   donates the standard 

deviation of the in-control 𝑑𝑀𝐿 . The 𝛿 = 0.5,1,1.5,2,2.5,3 is considered for a detailed evaluation of the effect of the 

biasing parameters on the monitoring process. Once the shifted response is generated, we modeled the relationship 

between predictors and response, estimated the model parameters using the same biasing parameters, and calculated 

the residuals. Then we compared these residuals to the control limits and calculated 𝐴𝑅𝐿1  following [48]. The 

results are presented in Table 2.  

According to Table 2, regardless of the shift size, the rk-Shewhart control chart outperformed the ML-Shewhart 

control chart in terms of 𝐴𝑅𝐿1. The rk-Shewhart control chart with biasing parameter 𝑘4 is the best-performing 

control chart among rk – deviance – based charts. It is followed by rk-Shewhart(𝑘2) when 𝛿 > 0.5. Also, with an 

increase in shift size, the control chart performances show noticeable improvements.  

Table 2. Performance of the ML-Shewhart and rk-Shewhart control charts. 

Control chart 𝛿 = 0 𝛿 = 0.5 𝛿 = 1 𝛿 = 1.5 𝛿 = 2 𝛿 = 2.5 𝛿 = 3 

ML-Shewhart 370.746 202.478 54.540 17.329 7.050 3.605 2.242 

rk-Shewhart(𝑘1) 370.628 194.907 52.437 16.874 6.898 3.558 2.215 

rk-Shewhart(𝑘2) 372.410 179.159 45.839 15.083 6.235 3.275 2.057 

rk-Shewhart(𝑘3) 371.176 197.257 52.023 16.754 6.868 3.546 2.201 

rk-Shewhart(𝑘4) 371.969 169.111 44.550 14.728 6.058 3.213 2.035 

rk-Shewhart(𝑘5) 370.591 176.780 48.756 15.782 6.478 3.365 2.117 

rk-Shewhart(𝑘6) 370.059 190.232 51.820 16.661 6.816 3.508 2.186 

rk-Shewhart(𝑘7) 369.995 177.014 47.400 15.420 6.356 3.315 2.091 

rk-Shewhart(𝑘8) 370.460 186.037 50.242 16.296 6.645 3.453 2.152 

5. Conclusions 

This research focuses on the variations of the rk-Shewhart control chart for detecting unexpected deviations in 

the COM-Poisson profile. This monitoring method employs deviance residuals derived from a model with 

parameters estimated via the rk estimation method. Given that the rk estimation method integrates PCR and ridge 

estimators, the choice of biasing parameter influences its performance. In this study, we aimed to investigate the 

impact of the set of biasing parameters on the performance of the rk-Shewhart control chart and determine the one 

that yields optimal performance of the control chart.  
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We reviewed eight distinct biasing parameters from the literature and adjusted them to the COM-Poisson profile 

for rk estimation. The impact of biasing parameters for the COM-Poisson profile is evaluated using a real-life data 

set. It is modified to reflect the study's assumptions, and shifts in various sizes are added for a thorough comparison. 

The performance of each rk-Shewhart control chart is evaluated and in addition to being compared among 

themselves, the performance of the rk-Shewhart charts is also compared to that of the ML-Shewhart chart. 

Findings revealed that the rk-Shewhart control chart consistently outperforms the deviance-based Shewhart 

control chart, regardless of the chosen biasing constant. The superiority of the rk-Shewhart control chart indicates an 

elevated sensitivity in detecting deviations in the process mean. In particular, the rk-Shewhart chart based on the 

biasing parameter 𝑘4, as proposed by Muniz and Kibria [31], demonstrates the best performance among all control 

charts regarding the ARL metric.  

In conclusion, the study highlights the superior performance of the rk-Shewhart control chart, particularly when 

adapted to the COM-Poisson profile with adjusted biasing parameters. The findings show the importance of 

modifying statistical procedures for best performance in a variety of data scenarios.  

For future research an investigation of additional biasing parameters to improve the effectiveness of the control 

charts utilizing the rk estimation method may be considered. Furthermore, the implementation of advanced 

statistical techniques and machine learning algorithms can provide more comprehensive and effective process 

monitoring. 
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