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ABSTRACT The partial differential equation (PDE)-based models are widely used to remove additive Gaussian
white noise and preserve edges, and one of the most widely used methods is the total variation denoising
algorithm. Total variation (TV) denoising algorithm-based time-dependent models have seen considerable
success in the field of image-denoising and edge detection. TV denoising algorithm is based on that signals
with spurious detail have a high total variation and reduction of unwanted signals to achieve noise-free images.
It is a constrained optimization-type algorithm. The Lagrange multiplier and gradient descent method are used
to solve the TV algorithm to reach the PDE-based time-dependent model. To eliminate additive noise and
preserve edges, we investigate a class of weighted time-dependent model in this study. The proposed method
is investigated in a well-balanced flow form that extends the time-dependent model with an adaptive fidelity
element. Adaptive function is fusing into the regularization term of the classical time-dependent model which
successfully enhances the intensity of the regularizer function. We maintain the ability of the time-dependent
model without any oscillation effects. Furthermore, we want to prove the viscosity solution of our weighted
and well-balanced time-dependent model, demonstrating its existence and uniqueness. The finite difference
method is applied to discretize the nonlinear time-dependent models. The numerical results are expressed
as a statistic known as the peak signal-to-noise ratio (PSNR) and structural similarity index metric (SSIM).
Numerical experiments demonstrate that the proposed model yields good performance compared with the
previous time-dependent model.
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INTRODUCTION

Noise degraded the visual quality of images, and image lost their
significant features due to these random signals. An image be-
comes noisy during the acquisition, transmission, and processing
steps. However, noise occurs randomly but sometimes it may
be data dependent. Artifacts do not originate from the original
images produced due to the noise. There are two types of noise
additive noise and multiplicative noise. Additive noise are random
signals that depend on the state of the system like Gaussian noise.
Multiplicative noise is random signals that depend on the state of
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the system like speckle noise. Gaussian additive noise is added
to the original signal during the acquisition of the image and this
noise is distributed uniformly all over the image.
The additive noisy image as u0 : Ω → R, Ω is a bounded region of
R2 and it can be defined as

u0(x) = u(x) + n(x). (1)

Here u(x), x ∈ Ω signifies the true image, the noisy image repre-
sented by u0(x), and Gaussian white noise n(x) which contains
zero mean and σ2 represent variance.

Rudin et al. (1992) for the first time, introduced total variation
functional with static constraint to reduce the additive Gaussian
white noise and edge preservation and can be represented by the
ROF model. The total-variation-based model was impressive in
the preservation of geometrical boundaries. The denoising prob-
lem can be seen as a minimization problem from a variational
perspective. The minimization problem consists of two terms first
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one measures the fidelity of the observed image; the second term
is the regularizer parameter which is used to reduce the noise
from the image. The Euler Lagrange multiplier and gradient de-
scent method to steady state to ROF model for image denoising
and edge detection. The fixed-point algorithm to optimize the
energy functional was given by Vogel and Oman (1996) for im-
age denoising. Chan et al. (1999) introduced a two-dimensional
non-linear primal-dual algorithm for image restoration. They used
the Tikhonov regularizer instead of the image gradient term in
the time-dependent model. To overcome the computational dif-
ficulty of the term ∇u

|∇u| they replaced the denominator term by√
| ∇u |2 +β in the time-dependent model, where β is a parame-

ter. These models achieved better results in image denoising, but
computational cost is high in the case of deblurring. Marquina
and Osher (2000) introduced the time-dependent model for im-
age restoration. They multiplied the magnitude of the gradient in
the ROF model for image denoising and deblurring. They have
discussed Roe’s explicit scheme to check the convergence rate of
their model. El-Shorbagy et al. (2023) presented an analysis of
the general fractional derivative function with the Mittag-Leffler
kernel and ABC operator at various fractional orders. Haidong
et al. (2023) presented an analysis of the four-dimensional Chaotic
system in consideration of the Mittag-Leffler kernel. XU et al. (2022)
introduced a study of numerical analysis of a two-dimensional
torus chaotic system with a power-law kernel. Qu et al. (2022)
proposed a novel approach for solving the non-linear fractional
order diffusion equation with the neural network method. A class
of hyperbolic and parabolic models for image denoising and edge
detection are proposed by Kumar and Alam (2021a,b).

Barcelos et al. (2005, 2003) proposed a nonlinear anisotropic
parabolic model for the elimination of the noise and also discussed
the well-balanced flow in the parabolic model. They have used an
adaptive parameter to maintain the balance between the forcing
term and data fidelity term in the anisotropic diffusion model. The
improved image fidelity term for image denoising is proposed
by Smolka (2008). Prasath and Vorotnikov (2014) generalized the
PM model with a weighted and well-balanced flow equation and
obtained better results comparatively. To make the PM model
in terms of weighted and well-balanced, they used the diffusion
function which depends on the magnitude of the image gradient
and spatial variable. A weighted total variation-based model using
mean curvature as a regularizer function was recently introduced
by Phan (2020). They used the split Bergman method to obtain a
fast convergence rate. Li and Li (2021) introduced a weighted total
variation model using the exponential regularizer function. Many
other researchers introduced the well-balanced model inspired by
mean curvature motion and biased, see reference, (El-Fallah and
Ford 1998; Chen et al. 1999).

In this study, we propose a weighted and well-balanced time-
dependent model to minimize the energy functional by evolving
the Euler-Lagrange equation. This model is related to a variational
model with the diffusivity linked to the regularizer. The Charbon-
nier diffusivity is used in the time-dependent model, it is related
to non-convex regularization (Charbonnier et al. 1994; Weickert
1997). An adaptive function ξ is fused in the regularizer term of
the weighted and well-balanced time-dependent model. Experi-
ments on many different gray-scale images are conducted to show
the advantage of the weighted and well-balanced time-dependent
model over the old model. Quantitative analysis shows that the
proposed model is very effective and efficient in both noise re-
duction and edge detection. Furthermore, we want to prove the
viscosity solution of a weighted and well-balanced time-dependent

model.
This paper is organized as follows: The weighted and well-

balanced denoising techniques are given in section 2. The viscosity
solution of the weighted and well-balanced time-dependent model
is given in section 3. The explicit scheme of the weighted and well-
balanced model is given in section 4. In Section 5, the results are
given in Figures 2-6, and Table 1, last, the conclusion is in Section
6.

TV-BASED WEIGHTED AND WELL-BALANCED TIME-
DEPENDENT MODEL FOR DENOISING ALGORITHM

Rudin et al. (1992) introduced a TV-based regularisation functional
for image denoising and edge detection. The restricted regularisa-
tion functional can be expressed as:

minimize
∫
Ω

|∇u| dx =
∫
Ω

√
u2

x + u2
y dx, (2)

subject to ||u − u0||2L2 = |Ω|σ2.

Using the definition of Euler-Lagrange and applying the equa-
tion (2). Then it can be expressed as:

0 = −∇.
(

∇u
|∇u|

)
+ λ(u − u0). (3)

The value of ∇u = 0 then the equation (3) is not well defined.
Then the TV-based functional can be extended in another form:∫

Ω

|∇u|γ dx =
∫
Ω

√
u2

x + u2
y + γ dx. (4)

Here γ > 0 as given in see reference (Chang and Chern 2003).

In the TV model diffusion takes place along the gradient orthog-
onal direction so that edges can be preserved during smoothing of
the image. This model approximates the flat areas by considering
the piece-wise constant surface and emerges the staircase artifacts.
The equation (3) can be written as a time-dependent model given
by (Rudin et al. 1992):

∂u
∂t

= ∇.
(

∇u
|∇u|

)
− λ(u − u0), (5)

with homogeneous Neumann boundary conditions ∂u
∂⃗n = 0 and

u(x, 0) = u0(x) and scale parameter λ > 0. The left-hand side of
the equation (5) is the regularization term that denotes the prior
constraint and (u − u0) data fidelity term and λ is the Lagrange
multiplier used to adjust the regularization term and data fidelity
term. u0 approaches u at a larger value of λ and the image lost its
important details for a much larger value of λ.

The improved TV-based time-dependent model for image
restoration is proposed by Marquina and Osher (2000):

∂u
∂t

= |∇u|∇.
(

∇u
|∇u|

)
− |∇u|λ(u − u0), (6)

with the same boundary conditions above.
Gilboa et al. (2006) introduced the spatially adaptive balance

term parameter λ and it can be made flexible. The well-balanced
flow may also be further generalized. For instance, it is possible
to make the diffusion coefficient depend on the picture u and the
results in various diffusion flows and be constructed to have an
impact on the restoration procedure. To extend the model (6) into
weighted and well-balanced flow model:
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∂u
∂t

= ξ |∇u|∇.
(

∇u
|∇u|

)
− (1 − ξ)|∇u|λ(u − u0). (7)

Here ξ = ξ(|∇Gσ ∗ u|), Gσ is represent as low pass filter or Gaus-
sian kernel and Gσ ∗ u is a convolution and the diffusivity function
ξ such as:

ξ(s) =
1√

1 + (|s|2/K2)
, (8)

where ξ(s) ≥ 0 is a decreasing function and satisfying ξ(0) = 1
and ξ(s) → 0 as s → ∞ and K is the diffusivity parameter. It is
related to the convex regularizer, see references (Charbonnier et al.
1994; Weickert 1997).

Motivated by Álvarez et al. (1992); Prasath and Vorotnikov
(2014), we want to show the theoretical considerations and vis-
cosity solution of the weighted and well-balanced time-dependent
model as given in the next section.

THEORETICAL CONSIDERATIONS

We describe the mathematical formulation as the viscosity solution
of the weighted and well-balanced time-dependent model (7). It
can be written as:

∂u
∂t

= ξ(∇Gσ ∗ u)aij(∇u)uxi xj − λ|∇u|(1 − ξ(∇Gσ ∗ u))

(u − u0), x ∈ R2, t ∈ R+.
(9)

Here
aij(p) = δij −

pi pj

|p|2 ,

Gσ ∈ C1,1(R2, R), Gσ(p) > 0 for all p in R2, (10)

and u0 is continuous on R2.

The equation (9) represents the PDE-based diffusion equation
with possible high degeneracy and a quasilinear term aij(∇u)uxi xj ,
nonlocal term ξ(∇Gσ ∗ u) and data and fidelity term is λ(1 −
ξ(∇Gσ ∗ u))|∇u|(u − u0).

Definition. A function u is a viscosity sub-supersolution of
equation (9) from the space

u ∈ C(R2 × [0, T]) ∩ L∞(0, T; W1,∞(R2)) (11)

if for any ϕ∈C2(R2 × R) and any point (x0, t0) ∈ R2 × (0, T] of
local maxima/minima of the function u − ϕ has

∂ϕ

∂t
(x0, t0)− ξ(∇Gσ ∗ u(x0, t0))aij(∇ϕ(x0, t0))ϕxi xj (x0, t0)+

λ(1 − ξ(∇Gσ ∗ u(x0, t0)))|∇ϕ(x0, t0)|(u − u0)(x0, t0) ≤ 0,

if ∇ϕ(x0, t0) ̸= 0,
(12)

∂ϕ

∂t
(x0, t0)− ξ(∇Gσ ∗ u(x0, t0))limsup

p→0
aij(p)ϕxi xj (x0, t0) ≤ 0,

if ∇ϕ(x0, t0) = 0.
(13)

The viscosity solution of function is a viscosity sub and super
solution.

Theorem. (i) The equation (9) has a viscosity solution in class
(11) for every T > 0 . Moreover,

inf
R2

u0 ≤ u(x, t) ≤ sup
R2

u0.

(ii) For any two viscosity solution u and v of (9),

sup
0≤t≤T

||u(x, t)− v(x, t)||L∞(R2) ≤ C||u0 − v0||L∞(R2). (14)

Here u0 and v0 are Lipschitz continuous functions in R2 for every
positive T and C is positive constant.

Proof. The viscosity solution u which is satisfied the inequality
such that

inf
R2

u0 ≤ u(x, t) ≤ sup
R2

u0, on R2 × R+. (15)

We put ϕ = sup
R2

u0 + δt(δ> 0), then at the point (x0, t0), of the

local maxima of u − ϕ, (12) gives ∂ϕ
∂t (x0, t0) ≤ 0 if ∇ϕ(x0, t0) = 0.

So we get a contradiction ∂ϕ
∂t (x0, t0) ≡ δ > 0 on R2 × [0, ∞).

attains a local maximum at (x0, t0) with t0 > 0, then ∇ϕ(x0, t0) = 0
and from (12), ∂ϕ

∂t (x0, t0) ≤ 0. This contradicts ∂ϕ
∂t (x0, t0) ≡ δ > 0

on R2 × [0, ∞).
At t0 = 0, the function u − ϕ have maximum value. So we can
write
u − ϕ≤sup(u0 − sup u0

R2
), then u ≤ sup

R2
u0 + δt.

Similarly, we can write
u ≥ inf

R2
u0 − δt, as δ→ 0, we can get (15).

In the starting, we demonstrate a uniform estimate for the equa-
tion (9).

||Du(t, .)||L∞(R2) ≤ eCt||Du0||L∞(R2). (16)

Here C is the constant number and it is depends on
u0, sup|p|≤R|∇2gϵ(p)| and supp|aϵ

ij(P)| with R =

||w||L∞(R2)||∇G||L1(R2).
Let uϵ be the smooth solution and it is given by

∂uϵ

∂t
= ξϵ(∇Gσ ∗ uϵ)aϵ

ij(∇uϵ)uϵ
xi xj

−

λ(1 − ξϵ(∇Gσ ∗ uϵ))bϵ(|∇uϵ|)(uϵ − uϵ
0), x ∈ R2, t ∈ R+,

(17)

uϵ(x, 0) = uϵ
0(x), x ∈ R2.

We establish an a priori estimate for ∇u. At that level, this estimate
will become formal, and it will later be supported. In reality, we
take a smooth solution concerning ϵ

∂uϵ

∂t
= ξϵ(∇Gσ ∗ w)aϵ

ij(∇uϵ)uϵ
xi xj

−

λ(1 − ξϵ(∇Gσ ∗ uϵ))bϵ(|∇uϵ|)(uϵ − uϵ
0), x ∈ R2, t ∈ R+,

(18)

uϵ(x, 0) = uϵ
0(x), x ∈ R2,

where,
0 < ϵ < 1,

aϵ
ij(p) = (ϵ+1)δij −

pi pj

|p|2 + ϵ2 , (19)

bϵ(p) =
√
|p|2 + ϵ, ξϵ = ξ + ϵ, w ∈ L∞(R2 × (0, ∞]),

uϵ
0(x) ∈ C∞(R2) (antireflective) such that uϵ

0 → u0 uniformly and
||∇uϵ

0||L∞(R2) ≤ ||∇u0||L∞(R2) and uϵ
0 can be write ||uϵ

0||L∞(R2) ≤
||u0||L∞(R2).

The problems (17)-(19) admit a smooth solution uϵ ∈ C∞(R2 ×
R+) by the definition of of the quasi-linear uniformly. According to
equation (14), we can say that any smooth solution of a function is a
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viscosity solution. For any positive number M and it is dependent
on u0, then it satisfies the condition |uϵ| ≤ M.

The differentiating equation (18) w.r.to xk, after that we multi-
plying 2uϵ

xk
, a summation w.r.to k is given by

∂|∇uϵ|2
∂t

− ξϵ(∇Gσ ∗ w)aϵ
ij(∇uϵ)

∂2|∇uϵ|2
∂xi∂xj

−

ξϵ(∇Gσ ∗ w)
∂aϵ

ij

∂l
(∇uϵ)uϵ

xi xj

∂|∇uϵ|2
∂xl

+

λ
∂bϵ(∇uϵ)

∂m
(1 − ξϵ(∇Gσ ∗ w))(uϵ − uϵ

0)
∂|∇uϵ|2

∂xm

= −2ξϵ(∇Gσ ∗ w)aϵ
ij(∇uϵ)uϵ

xk xi
uϵ

xk xj
+

2
∂ξϵ

∂l
(∇Gσ ∗ w).(Gσxl xk ∗ w)aϵ

ij(∇uϵ)uϵ
kuϵ

xi xj
−

2λbϵ(∇uϵ)(1 − ξ)uϵ
xk

uϵ
xk
+ 2λbϵ(∇uϵ)(1 − ξ)((u0)

ϵ
xk
)uϵ

xk
+

2λbϵ(∇uϵ)∇ξ(∇Gσ ∗ u) ·
(

u ∗ ∂∇Gσ

∂xk

)
(u − u0)uxk .

(20)

From the definitions of aϵ
ij, bϵ, gϵ and h, we have

|aϵ
ij(∇uϵ)uϵ

xi xj
| ≤ C(aϵ

ij(∇uϵ)uϵ
xk xi

uϵ
xk xj

)
1
2 , sup

R2
h ≤ C,

sup
R2

|Dbϵ(s)| ≤ C, |Gσxl xk ∗ w| ≤ C,

| ∂ξϵ

∂l
(∇Gσ ∗ w)| ≤ C(ξϵ(∇Gσ ∗ w))

1
2 .

Here C is a positive constant number and it is depend only sup|w|,
ξϵ and M.

Using Cauchy’s inequality the equation (20) estimates by

∂|∇uϵ|2
∂t

− ξϵ(∇Gσ ∗ w)aϵ
ij(∇uϵ)

∂2|∇uϵ|2
∂xi∂xj

−

ξϵ(∇Gσ ∗ w)
∂aϵ

ij

∂l
(∇uϵ)uϵ

xi xj

∂|∇uϵ|2
∂xl

+ λ
∂bϵ(∇uϵ)

∂m
(1 − ξϵ(∇Gσ ∗ w))(uϵ − uϵ

0)
∂|∇uϵ|2

∂xm

≤ C(|∇uϵ|2 + 1) in R2 × R+.

(21)

Next, use the maximal principle (Brezis 1987) to deduce clearly
(16). We just need to approximate (17), and we may get smooth
solutions to draw this conclusion. Using the a priori estimate
mentioned above, we get the valid approximate solutions.

Applying the maximization rule (Brezis 1987), the equation (21)
yields ||∇uϵ(., t)||L∞(R2) ≤ eCt we can defined ||∇(u0)

ϵ||L∞(R2) ≤
eCt to reached to ||∇(u0)||L∞(R2) ≤ CT . This inequality can be
reached to

|uϵ(x, t)− uϵ(y, t)| ≤ CT |x − y|,

it is satisfy for every x, y ∈ R2, for all t ∈ [0, T] and CT represent
the independent constant parameters it is depend on ϵ, t, x, y.
Now for every x ∈ R2 and s, t ∈ [0, T]. A similar argument has led
us to

|uϵ(x, s)− uϵ(x, t)| ≤ CT |s − t|
1
2 .

Using the Ascoli-Arzela theorem, a subsequence uϵk of uϵ exists,
then

uϵk → u as ϵk → 0, (22)

is locally uniformly. So easily get the inequality (16).
Second, we’ll demonstrate the presence of a viscosity solution.

From equation (22), we can say that u is the viscosity solution of
the weighted and well-balanced model (9) in the sense of equations
(12)-(13). Let ϕ∈C2(R2 × R+) be the result. Initially, we suppose
that for a location (x0, t0) ∈ R2 × R+ has a strict local maximum.
When uϵk → u is consistently close to (x0, t0), There is a local
maximum for u − ϕ at the position (xk, tk) with
.

(xk, tk) → (x0, t0), k → ∞ (23)

and

∇uϵk = ∇ϕ,
∂uϵk

∂t
=

∂ϕ

∂t
, aϵk

ij (∇uϵk )uϵk
xi xj ≤ aϵk

ij (∇ϕ)ϕxi xj .

Therefore, (17) implies that at (xk, tk),

∂ϕ

∂t
− ξϵk (∇Gσ ∗ uϵk )aϵk

ij (∇ϕ)ϕxi xj+

bϵk (∇ϕ)(1 − ξϵk (∇Gσ ∗ uϵk ))(uϵk − (uϵk
0 )) ≤ 0.

(24)

(1) If ∇ϕ(x0, t0) ̸= 0, according to (23), ∇ϕ(xk, tk) ̸= 0 for largest
value of k and applying the limits to (24), we get

∂ϕ

∂t
− ξ(∇Gσ ∗ u)aij(∇ϕ)ϕxi xj+

b(∇ϕ)(1 − ξ(∇Gσ ∗ u))(u − (u0)) ≤ 0, at (x0, t0),
(25)

It is similar to equation (9).
(2) If ∇ϕ(x0, t0) = 0, according to (23), ∇ϕ(xk, tk) → 0, ϵ→ 0 as
k → 0. The equation (24) reached to another form

∂ϕ

∂t
− (ξ(∇Gσ ∗ u) + ϵk)

(
(ϵk + 1)δij −

(∇ϕ)i(∇ϕ)j

|∇ϕ|2 + ϵ2

)
ϕxi xj

+ bϵk (∇ϕ)(1 − ξ(∇Gσ ∗ u))(uϵk − (uϵk
0 )) ≤ 0, at (xk, tk).

(26)
If bϵk (∇ϕ(xk, tk)) → 0 to (26), we get

∂ϕ

∂t
− ξ(∇Gσ ∗ u)

(
δij −

(∇ϕ)i(∇ϕ)j

|∇ϕ|2 + ϵ2

)
ϕxi xj ≤ 0, at (x0, t0).

If u − ϕ has a local maximum at (x0, t0). The method of proof is
consistent i.e., u is a sub-solution of (13). Similarly, it can be proven
that u is a super-solution. Hence, u is a viscosity solution of (9).
.

DISCRETE SCHEME

The explicit scheme of the time dependent models (6) and (7):

ut =
uxx(u2

y + γ)− 2uxyuxuy + uyy(u2
x + γ)

(u2
x + u2

y + γ)
−√

u2
x + u2

y + γ λ(u − u0).

(27)

ut = ξ
uxx(u2

y + γ)− 2uxyuxuy + uyy(u2
x + γ)

(u2
x + u2

y + γ)
−

(1 − ξ)
√

u2
x + u2

y + γ λ(u − u0).

(28)

We define the derivative terms as,

ux
ij =

un
i+1,j − un

i−1,j

2∆x
; uy

ij =
un

i,j+1 − un
i,j−1

2∆x
;
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uxx
ij =

un
i+1,j − 2un

i,j + un
i−1,j

∆x2 ; uyy
ij =

un
i,j+1 − 2un

i,j + un
i,j−1

∆x2 ;

uxy
ij =

un
i+1,j+1 − un

i−1,j+1 − un
i+1,j−1 + un

i−1,j−1

4∆x∆x
; ut

ij =
un+1

i,j − un
i,j

∆t
.

Here un
ij is the approximation value of u(xi, yj, tn), xi = i∆x, yj =

j∆x, i, j = 1, 2, ......., N, ∆x spatial step and tn = n∆t, n ≥ 1, ∆t is
the time step size.

Let

rn
ij = uxx

ij ((u
y
ij)

2 + γ)− 2uxy
ij ux

iju
y
ij + uyy

ij ((u
x
ij)

2 + γ), (29)

and
pn

ij = ((ux
ij)

2 + (uy
ij)

2 + γ). (30)

Then (27) reads as follows:

ut
ij =

rn
ij

pn
ij
−
√
((ux

ij)
2 + (uy

ij)
2 + γ) λ (un

ij − u0
ij). (31)

Then (28) reads as follows:

ut
ij = ξij

rn
ij

pn
ij
− (1 − ξij)

√
((ux

ij)
2 + (uy

ij)
2 + γ) λ (un

ij − u0
ij). (32)

The function ξ(|∇u|2) can be discretised by,

ξn
ij = ψ

′

(un
i+1,j − un

i−1,j

∆x

)2

+

(
un

i,j+1 − un
i,j−1

∆x

)2
 .

For ∆t
∆x2 ≤ 0.5, the explicit technique is stable and convergent

(Lapidus and Pinder 1983).

NUMERICAL EXPERIMENTS

The weighted and well-balanced time-dependent model for remov-
ing additive noise and preserving edges is proposed and applied
to many 2-dimensional noisy grayscale images with different lev-
els of noise parameters, we get the smooth images for denoising
techniques. The original grayscale images of the size 256 × 256
with pixel values of [0, 255] such as Lena images, Boat images,
and Figure 4(a). For numerical experiments, firstly to reduce the
intensities of images lies in [0, 1]. To add the noise, we use the
function imnoise (I, ‘Gaussian’, M, σ2) in Matlab [MATLAB, 2022
version 9.12.0 (R2022a)], σ2, and M are variance and mean zero
respectively. The parameters K = 5 and λ = 0.85 are used in our
numerical experiments (Catté et al. 1992; Chan et al. 1999).

We’ll utilize the PSNR as a criterion for restoration which can
be defined as:

PSNR = 10log10

(
R2

1
mn ∑n

i,j(ui,j − xi,j)2

)
, (33)

where {ui,j − xi,j} are the differences in the pixel values between
the original and denoised images. R is the maximum pixel value
of the images.

The structural similarity index metric (SSIM) is used to compare
the contrast and structure of the denoised image to the original
image. The SSIM is formulated as:

SSIM(x, y) =
(2 × µxµy + D1)× (2 × σxy + D2)
(µ2

x + µ2
y + D1)(σ2

x + σ2
y + D2)

, (34)

where µx and µy are the mean of x and y, respectively, and
x and y represent the local windows of the original image and

denoised image, respectively. σxy denotes the covariance of x and
y. D1=(0.01 × L)2 and D2=(0.03 × L)2 where L is the dynamic
range of pixel values. SSIM value lies between 0 and 1. The higher
value of SSIM gives a good visual quality of the denoised image
and the lower value presents a poor visual quality of denoised
image.

The proposed model is compared to a time-dependent model
based on removing additive noise from the literature. Figure 1
represents the original Lena and Boat images. Figure 2(a-c) rep-
resents the noisy Lena images with (σ2 = 0.006, 0.008, 0.010) re-
spectively. Figure 2(d-f) represents the denoised images by the
model (6) and Figure 2(g-i) represents the denoised images by the
model (7). Figure 3(a-c) represents the noisy Boat images with
(σ2 = 0.006, 0.008, 0.010) respectively. Figure 3(d-f) represents the
denoised images by the model (6) and Figure 3(g-i) represents the
denoised images by the model (7). The numerical results are given
in Figure 2-6 and Table 1 and achieve higher PSNR values by a
weighted and well-balanced time-dependent model corresponding
to the old model. The numerical results confirm that a weighted
and well-balanced time-dependent model is very efficient in ob-
taining the solution.

Figure 1 (a-b) Left side original Lena image and right side origi-
nal Boat image.

(a)   

 

 

 

 
 

                      (a)                                                   (b)                                                        (c)                            

                                                 

(d) (e) (f)  

 

 

 

 

 

 

 
 

 

 

(g) (h) (i) 

Figure 2 (a-c) Noisy images with (σ2 = 0.006, 0.008, 0.010); (d-f)
corresponding denoised image by(6); (g-i) Denoised image by(7)
respectively.
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Figure 3 (a-c) Noisy images with (σ2 = 0.006, 0.008, 0.010); (d-f) corresponding denoised image by (6); (g-i) Denoised image by (7)
respectively.

Figure 4 (a) Represent the original image; (b) Noisy image with σ2 = 0.010 with PSNR and SSIM values are 20.13 and 0.6147 respec-
tively; (c) Corresponding denoised image by model (6) with PSNR and SSIM values are 22.26 and 0.6825 respectively, at 5 iteration
numbers; (d) Corresponding denoised image by model (7) with PSNR and SSIM values are 23.68 and 0.7769 respectively, at 5 iteration
numbers.

■ Table 1 The comparison results.

Image PSNR of noisy image SSIM of noisy image PSNR by (6) SSIM by (6) PSNR by (7) SSIM by (7)

σ2 = 0.006 22.41 0.4731 25.31 0.7645 28.15 0.8136

Lena σ2 = 0.008 21.16 0.4274 25.19 0.7543 27.74 0.7943

σ2 = 0.010 20.27 0.3914 25.08 0.7454 27.22 0.7743

σ2 = 0.006 22.32 0.4566 24.24 0.6839 27.20 0.7725

Boat σ2 = 0.008 21.06 0.4454 24.20 0.6735 26.89 0.7590

σ2 = 0.010 20.17 0.4059 24.07 0.6633 26.56 0.7401

No. of iterations 10 10
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Figure 5 This graph is represented by Lena images, the results
are given in terms of PSNR values in Table 1 for the weighted
and well-balanced time-dependent model and the old model.

Figure 6 This graph is represented by Boat images, the results
are given in terms of PSNR values in Table 1 for the weighted
and well-balanced time-dependent model and the old model

CONCLUSION

In this paper, we proposed a total variation-based weighted and
well-balanced time-dependent model for additive white noise re-
duction and preserved edges. The total-variation algorithm-based
time-dependent model performs a good trade between noise reduc-
tion and edge preservation. A weighted function ξ is incorporated
into the regularizer term of the time-dependent model to make it
more effective and efficient for image denoising. The finite differ-
ence method is used to discretize the proposed model. To check
the performance of the denoised images, we used the peak signal-
to-noise ratio (PSNR) and structural similarity index metric (SSIM).
The larger values of PSNR and SSIM present better results. Our
model contains the larger PSNR and SSIM values corresponding to
the old model. So the weighted and well-balanced time-dependent
model improves the quality of the denoised images as well as bet-
ter edges preserved corresponding to the old model at the same
iteration numbers. The proposed model may be applied to image
problems, such as deblurring, image segmentation, etc.
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