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Abstract
Functional regression has been a hot topic in statistical research. However, not much
work has been done when response variables are cross-sectionally dependent variables
and explanatory variables contain a real-valued scalar variable and a functional-valued
random variable. In this paper, we consider a new functional partially linear spatial
autoregressive model. Based on the functional principal components analysis and basis
function approximation, we obtain the estimators of the unknown parameter and functions
through the instrumental variables estimation method. The asymptotic normality and
convergence rates of estimators are proved under some mild conditions. In addition,
we illustrate the finite sample performance of the proposed estimation method through
simulation study and a real data analysis.
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1. Introduction
Functional data analysis has received widespread attention due to its application in

multiple disciplines, including chemistry, biology, medicine, and economics, etc. There
have been amounts of significant work on functional data analysis [3, 7, 9, 10, 24]. With
the development of nonparametric technology, partially linear models are widely used. A
good deal of researches have been done on the combination of partially linear models and
functional data. For example, Shin [26] proposed a partially functional linear model. Feng
and Xue [8] studied a partially functional linear varying coefficient model. Kong et al. [17]
studied a new partially functional linear model and established the consistency and oracle
properties of the proposed method under some mild conditions. Yu et al. [32] discussed
the estimators of a single-index partially functional linear regression model by B-spline
approximation. Further, functional partially linear models have been proposed because
of their flexibility and interpretability. Based on the functional principal components
analysis (FPCA) and kernel estimation method, Lian [20] discussed the parametric and
nonparametric estimators of the functional partially linear model, and proved the asymp-
totic properties of the estimators. Tang [30] studied the estimators of functional partially
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linear models through FPCA and B-spline approximation method. Zhou and Chen [34]
approximated the slope function and nonparametric function with polynomial splines for a
semi-functional linear model. All of the aforementioned functional partially linear models
have a limitation that the response variables are cross-sectionally independent.

However, the response variables may be cross-sectionally dependent, which are fre-
quently encountered in economic, finance, and environment, etc. There has been con-
siderable work about cross-sectionally dependent response variables [1, 4, 5]. Su and Jin
[29] applied the quasi-maximum likelihood for partially linear spatial autoregressive mod-
els. Malikov and Sun [23] considered the case where spatial autoregressive parameters
can vary across units, and proposed several nonparametric GMM estimators for a flexible
semiparametric spatial autoregressive model. Du et al. [6] developed a partially linear ad-
ditive spatial autoregressive model and studied the asymptotic properties of the proposed
estimators.

When the response variables are cross-sectionally dependent and explanatory variables
contain a real-valued scalar variable and a functional-valued random variable, typical
methods developed for the aforementioned functional partially linear models will be in-
valid. Therefore, it is necessary to develop a new method to deal with the spatial depen-
dency. In this paper, we consider the combination of the functional partially linear model
and spatial autoregressive model, and propose a new functional partially linear spatial
autoregressive model with the following form:

Yi = λ
N∑

j=1
wijYj +

∫
T

γ(t)Xi(t)dt + g(Zi) + Vi. (1.1)

Yi is the ith observation of the real-valued dependent variable, λ is a scalar parameter, wij

is the (i, j)th element of the matrix W N which is a known N×N spatial weight matrix
with zero diagonal elements. The spatial weight matrix W N is defined according to the
distance between individuals. The distance here is generalized and not just the distance
between geographical locations, such as economic distance and so on. Xi(t) be zero mean
stochastic process belonging to L2(T ), for the sake of simplicity, we suppose throughout
that T =[0, 1]. γ(t) is an unknown square integrable slope function on [0, 1]. Zi is the ith
observation of covariate Z, and for simplicity, Z is assumed to distribute on the compact
interval [c, d]. Without loss of generality, the interval [c, d] can be assumed to be [0, 1].
g(z) is an unknown smooth function on [0, 1] with the assumption that E[g(Z)] = 0, in
order to ensure the identifiability of the nonparametric function. Vi are independent and
identically distributed random errors with zero mean and finite variance σ2.

To the best of our knowledge, the above functional partially linear spatial autoregressive
model has not yet been studied in the scientific literature. The model is flexible in practice
and can deal with functional data and cross-sectionally dependent data. In this paper,
our purpose is to develop the theories and methods for estimating the parameter λ, the
nonparametric function g(z), and the slope function γ(t) of model (1.1). Specifically, γ(t)
is processed based on the FPCA, g(z) is approximated by the B-spline basis function, and
then the estimators of parametric and nonparametric components are obtained utilizing
the instrumental variable methods. Under some regularity conditions, the asymptotic
properties of the estimators are established.

The remainder of the paper is structured as follows. In Section 2, we introduce the
estimation method. In Section 3, we investigate the asymptotic properties of the estima-
tors. The results of the simulation study are presented in Section 4. Section 5 gives a real
data analysis. We conclude the paper and propose some interesting directions for future
research in Section 6. Lastly, technical proofs are given in Appendix.
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2. Estimation procedures
In order to fit the functional data, we consider FPCA. Denote the covariance function

of X(t) by KX(s, t) = Cov(X(s), X(t)). If KX(s, t) is continuous on T × T , Mercer’s
theorem implies that KX(s, t) =

∑∞
k=1 τkϕk(s)ϕk(t) with

∑∞
k=1 τk < ∞, where {ϕk(t)} is

a complete orthogonal basis sequence in L2(T ) and {τk} is a non-increasing sequence of
non-negative eigenvalues.

By the Karhunen-Loève expansion, Xi(t) can be represented as

Xi(t) =
∞∑

k=1
Uikϕk(t),

where Uik = ⟨Xi(t), ϕk(t)⟩ are uncorrelated random variables with mean zero and variances
E(U2

ik) = τk, and ⟨·, ·⟩ represents the L2(T ) inner product. Expanded on the orthogonal
eigenbasis {ϕk(t)}, the slope function can be represented as

γ(t) =
∞∑

k=1
γkϕk(t),

where γk = ⟨γ(t), ϕk(t)⟩.
In practice, ϕk are unknown. Therefore, it is necessary to find the estimators. For this

purpose, we consider the empirical version of KX(s, t) as follows

K̂X(s, t) = 1
N

N∑
i=1

(Xi(s) − X̄(s))(Xi(t) − X̄(t)) =
∞∑

k=1
τ̂kϕ̂k(s)ϕ̂k(t),

where the (τ̂k, ϕ̂k) are pairs of eigenvalue and eigenfunction for the covariance operator
associated with K̂X and τ̂1 ≥ τ̂2 ≥ · · · ≥0. We use (τ̂k, ϕ̂k) as the estimators of (τk, ϕk).

Thus, Model (1.1) can be well-approximated by

Yi ≈ λ
N∑

j=1
wijYj +

m∑
k=1

γk⟨Xi(t), ϕ̂k(t)⟩ + g(Zi) + Vi, (2.1)

where m is sufficiently large.
Let Y N = (Y1, · · · , YN )T , ZN = (Z1, · · · , ZN )T , γ = (γ1, · · · , γm)T , V N = (V1, · · · , VN )T ,

and UN = (⟨Xi, ϕ̂k⟩)N×m is an N × m matrix with the (i, k)th element is ⟨Xi, ϕ̂k⟩. Then,
Model (2.1) can be written as matrix notation

Y N ≈ λW N Y N + UN γ + g(ZN ) + V N . (2.2)

The estimator of nonparametric function g(z) is obtained by the method of spline
approximation. Let B(z) = (B1(z), · · · , BKN +l+1(z)) be a set of B-spline basis functions
with order l +1, and 0 = z0 < z1 < · · · < zKN −1 < zKN

< 1 are the quasi-uniform internal
knots. Therefore, g(z) can be approximated by a linear combination of normalized B-
spline basis functions g(z) ≈

∑KN +l+1
j=1 Bj(z)αj = B(z)α where α = (α1, · · · , αKN +l+1)T

is called the spline coefficient vector. Furthermore, invoking E[g(Z)] = 0, we let Bj =
1
N

∑N
i=1 Bj(Zi), πj(z) = Bj(z) − Bj , and g(z) ≈ gN (z) =

∑KN +l+1
j=1 πj(z)αj = Π(z)α,

where Π(z) = (π1(z), · · · , πKN +l+1(z)). It is obvious that
∑N

i=1 gN (Zi) = 0.
With the B-spline approximation, Model (2.2) can be rewritten as follows:

Y N ≈ λW N Y N + UN γ + Π(ZN )α + V N

= λW N Y N + UN γ + Πα + V N , (2.3)

where Π = (π1(ZN ), · · · , πKN +l+1(ZN )) and πj(ZN ) = (πj(Z1), · · · , πj(ZN ))T , j =
1, · · · , KN + l + 1.
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Let P = UN (UN
T UN )−1UN

T denote the projection matrix onto the space spanned
by UN , we have

(I − P )Y N ≈ (I − P )λW N Y N + (I − P )Πα + (I − P )V N . (2.4)

Let Q = (W N Y N , Π), and θ = (λ, αT )T . Applying the two stage least squares proce-
dure proposed by [15], we proposed the estimator as shown below:

θ̂ = (QT (I − P )M(I − P )Q)−1QT (I − P )M(I − P )Y N , (2.5)

where M = H(HT H)−1HT and H is a matrix of instrumental variables. Therefore, we
have λ̂ = ξT θ̂, where ξ = (1, 0, · · · , 0)T is a (KN + l + 2)-dimensional column vector. We
also can obtain an estimator of g(z) by ĝ(z) = Π(z)α̂. Formula (2.5) leads to an estimator
of γ as

γ̂ = (γ̂1, · · · , γ̂m)T = (UN
T UN )−1UN

T (Y N − Qθ̂).
Consequently, we can use γ̂(t) =

∑m
k=1 γ̂kϕ̂k(t) as the estimator of γ(t).

We often assume that the instrumental variables are given in the estimation procedure.
In practice, we need to discuss that how to construct an appropriate instrumental variables
matrix H. According to the result of [18], the best instrumental variables matrix should
be constructed as

Hbest = E(Q|Π, UN ) =
(
W N (I − λ0W N )−1(UN γ0 + Πα0), Π

)
,

where λ0, γ0 and α0 are the corresponding true values. However, the true values λ0, γ0
and α0 are unknown. Therefore, we refer to the two-step iterative method suggested by
[33] to obtain the initial estimators. In the first step, the following instrumental variables
are obtained

H̃ =
(
W N (I − λ̃W N )−1(UN γ̃, Π), Π

)
,

where λ̃ and γ̃ are obtained by simply regressing Y N on pseudo regressor variables
W N Y N , UN and Π. In the second step, we obtain the estimators λ̄, γ̄ and θ̄ by H̃,
and then construct the final instrumental variables as follows:

H =
(

W N

(
I − λ̄W N

)−1
(UN γ̄ + Πᾱ) , Π

)
.

3. Asymptotic properties
In this section we discuss the asymptotic normality of λ̂ and the convergence rates of

γ̂(t) and ĝ(z) based on the following assumptions. Denote λ0, γ0(·) and g0(·) be the true
values of λ, γ(·) and g(·) respectively. Accordingly, γ0 and α0 are the true values of γ
and α respectively. The Euclidean norm is represented by ∥ · ∥ and ∥f(t)∥2

2 =
∫
T f2(t)dt

for all f(t) ∈ L2(T ). It’s worth noting that C denotes a positive constant that may be
different at each appearance throughout this paper.

Assumption 3.1. The matrix I − λW N is nonsingular for any λ ∈ (−dn, dn), where
0 < dn, dn < ∞.

Assumption 3.2. The row and column sums of the matrices W N and (I − λ0W N )−1

are bounded uniformly in absolute value.

Assumption 3.3. It is assumed that random function X(t) and random variables Uk

satisfy E ∥X(t)∥4
2 < ∞ and E

(
U4

k

)
≤ Cτ2

k , k ≥ 1.

Assumption 3.4. There exists some constants a > 1 and b > a/2+1 such that C−1j−a ≤
τj ≤ Cj−a, τj − τj+1 ≥ Cj−a−1 and |γ0j | ≤ Cj−b, j ≥ 1, where γ0j = ⟨γ0(t), ϕj(t)⟩.

Assumption 3.5. g(·) is r times continuously differentiable on [0, 1] for some r ≥ 2.
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Assumption 3.6. trace
(

KN
N Q̃

T (I − P )M(I − P )Q̃
)−1

is bounded in probability, where
Q̃ =

(
W N (I − λ0W N )−1 (η0 + g0(ZN )) , Π

)
= (S(η0 + g0(ZN )), Π) and

η0 =
(∫ 1

0
γ0(t)X1(t)dt, · · · ,

∫ 1

0
γ0(t)XN (t)dt

)T

.

Assumption 3.7. ξT

(
ΛT Λ
N

)−1

ξ converges to a positive constant in probability, where

ΛT = Q̃
T (I − P )M .

Assumption 3.8. For matrix Q̃ = (S(η0 + g0(ZN )), Π), there exists a constant λc such
that λcI − KN

N Q̃Q̃
T is positive semidefinite matrix.

Assumption 3.9. The distribution of Z is absolutely continuous and its density is bounded
away from zero and infinity on [0, 1].

Remark 3.10. Assumption 3.1 defines the parameter space of λ as a general interval
(−dn, dn) around zero such that I −λW N is nonsingular. In practical applications, W N is
often row-normalized such that

∑N
j=1 ωij = 1 for i = 1, · · · , N . In that case, it can be guar-

anteed that I −λW N is nonsingular for any λ ∈ (−1, 1). For a general W N , we define the
interval (−dn, dn) to be a subset of (−1/µn, 1/µn), where µn = min{max1≤i≤N

∑N
j=1 |ωij |,

max1≤j≤N
∑N

i=1 |ωij |}. According to Lemmas 1 and 2 of [16], I − λW N is nonsingular for
any λ ∈ (−1/µn, 1/µn). If Assumption 3.2 holds, there exists a constant C independent of
N such that CI − SST is positive semi-definite. Assumptions 3.3-3.4 consist of regularity
assumptions for functional data [10–12, 26]. For example, Assumption 3.4 ensures that
the slope function γ0(t) is identifiable and it is sufficiently smooth relative to the covari-
ance function. Assumptions 3.5-3.6 are required to realize the optimal convergence rate
of g(·). Assumption 3.7 is used to represent the asymptotic variance of λ̂. Assumption
3.8 is required to ensure the identifiability of parameter θ0. Assumption 3.9 requires a
boundedness condition on the covariate, which is often assumed in asymptotic analysis of
nonparametric regression problems (see Condition 1 of [28]).

The following Theorem 3.11 states the convergence rates of the estimators of the slope
function and nonparametric function.

Theorem 3.11. Suppose that Assumptions 3.1-3.9 hold, m ∼ N1/(a+2b), KN ∼ N1/(2r+1),
then

∥γ̂(t) − γ0(t)∥2
2 = Op

(
N− 2b−1

a+2b

)
+ Op

(
N− 2r−1

2r+1 + N− 2r
2r+1 + 1

a+2b

)
,

∥ĝ(z) − g0(z)∥2
2 = Op

(
N− 2r

2r+1
)

+ Op

(
N− a+2b−1

a+2b

)
.

Remark 3.12. If we assume that Assumptions 3.1-3.9 hold, and take m ∼ KN ∼
N1/(a+2b) ∼ N1/(2r+1), then

∥γ̂(t) − γ0(t)∥2
2 = Op

(
N− 2b−1

a+2b

)
,

∥ĝ(z) − g0(z)∥2
2 = Op

(
N− 2r

2r+1
)

.

We can see that the convergence rate of γ̂(t) is the same as the rate established by [10],
and it is optimal in the sense of minimax. Nonparametric function estimator ĝ(z) has the
same optimal convergence rate established by [27].
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Theorem 3.13. Suppose that Assumptions 3.1-3.9 hold, m ∼ N1/(a+2b) = o(KN ), N/K2r+1
N =

o(1) and KN /N = o(1), then
√

N(λ̂ − λ0) D−→ N(0, σ2ς),

where ς = plimN→∞ ξT

(
ΛT Λ
N

)−1 ΛT (I − P )Λ
N

(
ΛT Λ
N

)−1

ξ and “ D−→” denotes conver-

gence in distribution.

4. Simulation study
4.1. Choosing the smoothing parameters

We know that the selection of the truncation parameter m and the knot number KN

is crucial. In general, we choose smoothing parameters based on some data-driven ap-
proaches, for example, Yao et al. [31] used CV and AIC criterions to determine the
truncation parameter m, Ma [22] selected the knot number KN for the B-spline basis
according to BIC criterion. In this paper, we consider cubic splines (i.e., l=3) and employ
the BIC and AIC criterions to choose the smoothing parameters as follows:

Specifically, we define

RSS =
N∑

i=1

Yi − λ̂
N∑

j=1
wijYj −

m∑
k=1

γ̂k⟨Xi(t), ϕ̂k(t)⟩ −
KN +l+1∑

j=1
πj(Zi)α̂j

2

,

where λ̂, γ̂k and α̂j are the estimators in Section 2.
Method I : the truncation parameter m and the knot number KN can be selected by

the BIC criterion. Specifically, we minimize

BIC(m, KN ) = logRSS

N
+ log(N)

N
{m + (KN + l + 1)} .

Method II : We choose the truncation parameter m and the knot number KN in two
steps:

Step 1. m is selected by the cumulative proportion of the principal component analysis.
The cumulative proportion is defined as follows:

Q =
∑m

j=1 τ̂j∑∞
k=1 τ̂k

.

We choose m with a cumulative proportion of over 0.9.
Step 2. KN is selected according to the BIC criterion. Specifically, we minimize

BIC(KN ) = logRSS

N
+ log(N)

N
(KN + l + 1).

Method III : Similar to Method II, we choose m based on the cumulative proportion.
The knot number KN is selected by the AIC criterion. Specifically, we minimize

AIC(KN ) = logRSS

N
+ 2

N
(KN + l + 1).

We will compare the performances of the proposed estimators based on the above three
methods in simulations.
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4.2. Analysis of simulation results
In this subsection, we will compare the differences in the selection of smoothing parame-

ters by the above three methods. Further, we will evaluate the finite sample performances
of the estimators given in the previous section by conducting 500 Monte Carlo simulation
studies. The data {Yi} are generated from the following model

Y N = λW N Y N +
∫ 1

0
γ(t)XN (t)dt + g(ZN ) + V N , (4.1)

where ZN = (Z1, Z2, · · · , ZN )T , and Zi following the uniform distributions on [0, 1], γ(t) =√
2 sin(πt/2)+3

√
2 sin(3πt/2) and g(z) = 8(z −1/3)2 −1, VN ∼ N(0, σ2IN ). Similar to [2]

and [19], we take W N = IR ⊗ Bp, where Bp = (lplT
p − Ip)/(p − 1), lp is the p-dimensional

vector with all elements being 1 and ⊗ is a Kronecker product. That means we focus on
the spatial scenario with R number of districts, where in each district, there are p members
with each neighbor of a member giving equal weight. The sample size is N = Rp.

We assume the functional predictors can be expressed as Xi(t) =
∑50

j=1 Uijϕj(t), where
ϕj(t) =

√
2 sin((j −0.5)πt) and Uij are independently distributed as the normal with mean

zero and variance τj = ((j − 0.5)π)−2. In addition, we assume that the actual observation
values are realized by {Xi(·)} at an equally spaced grid of 100 points in [0, 1].

The simulation studies are realized by different numerical values of R for 40 and 70, p for
3, 5, and 8, and σ2 for 0.25 and 1. To compare the effects of different spatial dependence, we
consider λ = 0.2, 0.5, 0.8 for the simulation studies, where λ = 0.2 represents the relatively
weak spatial dependence, λ = 0.5 indicates a moderate degree of spatial dependence, and
the relatively strong spatial dependence is represented by λ = 0.8.

Throughout the simulations, for scalar parameter λ, we evaluate the accuracy of the
parameter estimator by average Bias and standard deviation (SD). We evaluate the per-
formances of the estimators of the slope function γ(t) and the nonparametric function by
the square root of average squared errors (RASE). The RASE of γ̂(t) is defined as

RASE(γ̂(t)) =

 1
N1

N1∑
q=1

[γ̂(tq) − γ(tq)]2


1/2

.

In our simulation, N1 = 200 and {tq, q = 1, · · · , N1} are the regular grid points at which
the function γ̂(t) is evaluated. The RASE of ĝ(z) is defined as

RASE(ĝ(z)) =

 1
N2

N2∑
l=1

[ĝ(zl) − g(zl)]2


1/2

,

where {zl, l = 1, · · · , N2} are grid points which are chosen to be equally spaced in [0, 1]
and N2 = 200 is used. To further evaluate the performances of the estimators of γ(t) and
g(z), we consider the SDs of γ̂(t)∗ and ĝ(z)∗, where γ̂(t)∗ and ĝ(z)∗ represent square root
of average squared errors of γ̂(t) and ĝ(z) respectively.

The simulation results based the three methods of smoothing parameters choosing are
listed in Tables 1–3. Tables 1–3 listed the average Bias, average RASEs of γ̂(t) and ĝ(z),
and SDs of λ̂, γ̂(t)∗ and ĝ(z)∗. Comparing the simulation results of the three model
selection methods, we find that the performances of the proposed estimators are similar.

The following three conclusions can be drawn from the simulation results: (1) The
average Bias of λ̂ is small in all simulations, in other words, the parameter estimator is
nearly unbiased. (2) The average RASEs of γ̂(t) and ĝ(z) are small for all cases and
decrease as N increases or σ2 decreases, and it can be concluded that the estimate curves
fit well to the corresponding true curves. (3) The SD of λ̂ decreases as R increases or σ2

decreases, and the SDs of γ̂(t)∗ and ĝ(z)∗ decrease as N increases or σ2 decreases. Figure
1 shows the simulation effect when the spatial effect coefficient and sample size are the
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smallest but the variance is the largest in the case of the smooth parameters selected by
Method II. It can be observed that the estimate curves approximate the true curves.
Therefore, the simulation results show that the proposed estimation method is effective.

Table 1. Simulation results for λ = 0.2.

σ2 = 0.25 σ2 = 1
Bias RASE SD Bias RASE SD

Method R p λ̂ γ̂(t) ĝ(z) λ̂ γ̂(t)∗ ĝ(z)∗ λ̂ γ̂(t) ĝ(z) λ̂ γ̂(t)∗ ĝ(z)∗

3 −8.8 × 10−4 0.372 0.127 0.028 0.151 0.060 −0.010 0.630 0.240 0.094 0.421 0.073
40 5 −8.5 × 10−4 0.276 0.117 0.029 0.087 0.056 −0.008 0.462 0.197 0.092 0.290 0.061

8 7.7 × 10−5 0.216 0.113 0.033 0.073 0.047 −0.007 0.363 0.170 0.100 0.255 0.046
I 3 −1.6 × 10−4 0.269 0.119 0.018 0.094 0.054 −0.003 0.441 0.197 0.066 0.256 0.059

70 5 8.4 × 10−4 0.210 0.112 0.022 0.071 0.046 −9.0 × 10−4 0.339 0.164 0.067 0.178 0.043
8 −6.9 × 10−4 0.166 0.110 0.023 0.049 0.040 −0.008 0.262 0.144 0.069 0.123 0.038
3 −1.2 × 10−3 0.361 0.127 0.028 0.122 0.060 −0.010 0.617 0.239 0.094 0.292 0.074

40 5 −9.0 × 10−4 0.277 0.117 0.029 0.088 0.056 −0.008 0.476 0.197 0.092 0.238 0.060
8 −9.3 × 10−5 0.218 0.113 0.033 0.069 0.047 −0.008 0.377 0.170 0.100 0.171 0.046

II 3 −2.1 × 10−4 0.266 0.119 0.018 0.084 0.054 −0.004 0.467 0.197 0.066 0.221 0.059
70 5 7.6 × 10−4 0.209 0.112 0.022 0.066 0.046 −1.1 × 10−3 0.351 0.164 0.067 0.166 0.043

8 −7.8 × 10−4 0.168 0.110 0.023 0.050 0.040 −0.008 0.276 0.145 0.069 0.120 0.038
3 −1.1 × 10−3 0.361 0.129 0.028 0.123 0.059 −0.008 0.619 0.255 0.093 0.296 0.080

40 5 −7.6 × 10−4 0.277 0.119 0.029 0.088 0.055 −0.007 0.477 0.210 0.091 0.238 0.064
8 6.5 × 10−5 0.218 0.115 0.033 0.069 0.047 −0.007 0.377 0.184 0.099 0.170 0.047

III 3 −1.6 × 10−4 0.266 0.121 0.018 0.084 0.053 −0.004 0.467 0.210 0.066 0.221 0.062
70 5 8.7 × 10−4 0.209 0.113 0.022 0.066 0.045 −6.8 × 10−4 0.352 0.174 0.067 0.166 0.046

8 −6.4 × 10−4 0.168 0.111 0.023 0.050 0.040 −0.008 0.276 0.152 0.069 0.120 0.041

Table 2. Simulation results for λ = 0.5.

σ2 = 0.25 σ2 = 1
Bias RASE SD Bias RASE SD

Method R p λ̂ γ̂(t) ĝ(z) λ̂ γ̂(t)∗ ĝ(z)∗ λ̂ γ̂(t) ĝ(z) λ̂ γ̂(t)∗ ĝ(z)∗

3 −5.7 × 10−4 0.373 0.127 0.020 0.152 0.060 −0.007 0.656 0.241 0.067 0.468 0.074
40 5 −6.1 × 10−4 0.275 0.117 0.019 0.086 0.056 −0.006 0.461 0.198 0.062 0.283 0.061

8 2.4 × 10−5 0.216 0.113 0.021 0.073 0.047 −0.005 0.368 0.170 0.065 0.263 0.046
I 3 −1.3 × 10−4 0.269 0.119 0.013 0.093 0.053 −0.003 0.450 0.198 0.047 0.268 0.060

70 5 5.5 × 10−4 0.210 0.112 0.015 0.071 0.046 −7.8 × 10−4 0.343 0.165 0.045 0.185 0.043
8 −4.7 × 10−4 0.166 0.110 0.015 0.049 0.040 −0.006 0.262 0.145 0.045 0.123 0.039
3 −9.4 × 10−4 0.361 0.127 0.020 0.122 0.060 −0.008 0.621 0.241 0.068 0.297 0.074

40 5 −6.5 × 10−4 0.277 0.117 0.019 0.088 0.056 −0.006 0.478 0.197 0.062 0.238 0.061
8 −9.7 × 10−5 0.218 0.113 0.021 0.069 0.047 −0.005 0.377 0.170 0.065 0.172 0.046

II 3 −1.9 × 10−4 0.266 0.119 0.013 0.084 0.054 −0.003 0.469 0.198 0.047 0.221 0.060
70 5 4.8 × 10−4 0.209 0.112 0.015 0.066 0.046 −9.3 × 10−4 0.352 0.165 0.045 0.167 0.043

8 −5.2 × 10−4 0.168 0.110 0.015 0.050 0.040 −0.006 0.276 0.145 0.045 0.120 0.039
3 −7.9 × 10−4 0.360 0.129 0.020 0.123 0.059 −0.006 0.624 0.255 0.067 0.301 0.079

40 5 −5.3 × 10−4 0.277 0.119 0.019 0.088 0.055 −0.005 0.479 0.211 0.061 0.239 0.064
8 2.1 × 10−5 0.218 0.115 0.022 0.069 0.047 −0.004 0.377 0.184 0.064 0.171 0.047

III 3 −1.0 × 10−4 0.266 0.121 0.013 0.084 0.053 −0.002 0.470 0.210 0.047 0.221 0.062
70 5 5.7 × 10−4 0.209 0.113 0.015 0.066 0.045 −3.2 × 10−4 0.353 0.174 0.045 0.168 0.046

8 −4.3 × 10−4 0.168 0.111 0.015 0.050 0.040 −0.005 0.276 0.153 0.045 0.120 0.041
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Table 3. Simulation results for λ = 0.8.

σ2 = 0.25 σ2 = 1
Bias RASE SD Bias RASE SD

Method R p λ̂ γ̂(t) ĝ(z) λ̂ γ̂(t)∗ ĝ(z)∗ λ̂ γ̂(t) ĝ(z) λ̂ γ̂(t)∗ ĝ(z)∗

3 −2.7 × 10−4 0.373 0.127 0.009 0.148 0.060 −0.003 0.667 0.243 0.030 0.468 0.074
40 5 −2.7 × 10−4 0.276 0.118 0.008 0.087 0.056 −0.002 0.461 0.198 0.027 0.245 0.061

8 −4.0 × 10−6 0.216 0.114 0.009 0.073 0.047 −0.002 0.370 0.170 0.027 0.265 0.045
I 3 −6.9 × 10−5 0.269 0.119 0.006 0.093 0.053 −0.001 0.471 0.199 0.021 0.305 0.060

70 5 2.2 × 10−4 0.210 0.112 0.006 0.071 0.046 −3.8 × 10−4 0.348 0.165 0.019 0.187 0.044
8 −2.0 × 10−4 0.166 0.110 0.006 0.049 0.040 −0.002 0.264 0.145 0.019 0.124 0.039
3 −4.6 × 10−4 0.361 0.127 0.009 0.123 0.060 −0.004 0.629 0.243 0.031 0.305 0.075

40 5 −2.9 × 10−4 0.277 0.118 0.008 0.088 0.056 −0.003 0.481 0.198 0.027 0.237 0.061
8 −5.5 × 10−5 0.218 0.113 0.009 0.069 0.047 −0.002 0.379 0.171 0.027 0.173 0.046

II 3 −1.0 × 10−4 0.266 0.119 0.006 0.084 0.053 −0.002 0.474 0.199 0.021 0.222 0.060
70 5 1.9 × 10−4 0.209 0.112 0.006 0.066 0.046 −5.0 × 10−4 0.354 0.165 0.019 0.169 0.044

8 −2.2 × 10−4 0.168 0.110 0.006 0.050 0.040 −0.002 0.277 0.145 0.019 0.121 0.039
3 −3.6 × 10−4 0.361 0.129 0.009 0.123 0.059 −0.003 0.632 0.259 0.030 0.308 0.080

40 5 −2.4 × 10−4 0.277 0.119 0.008 0.088 0.056 −0.002 0.483 0.212 0.026 0.239 0.063
8 −6.2 × 10−6 0.218 0.115 0.009 0.069 0.047 −0.002 0.379 0.184 0.027 0.172 0.047

III 3 −5.5 × 10−5 0.266 0.121 0.006 0.084 0.053 −0.001 0.474 0.212 0.021 0.223 0.062
70 5 2.3 × 10−4 0.209 0.114 0.006 0.066 0.045 −1.6 × 10−4 0.355 0.174 0.019 0.169 0.046

8 −1.8 × 10−4 0.168 0.111 0.006 0.050 0.040 −0.002 0.277 0.153 0.019 0.121 0.040

Figure 1. Simulation result of γ̂(t) and ĝ(z) when λ = 0.2, R = 40, p = 3, σ2 = 1.
The solid curve denotes the true curve, the dash curve denotes its estimate.

4.3. Comparative study of spatial data processing with spatial model and
non-spatial model

We will study the results of deliberately ignoring the inherent spatial structure of the
spatially dependent data. Specifically, the data is still generated as described in Section
4.2 but the following model is considered

Y i =
∫ 1

0
γ(t)Xi(t)dt + g(Zi) + V i, (4.2)

which is a functional partially linear model.



Estimation in FPLSAR model 1205

Same as the previous estimation process, we use FPCA to deal with functional data,
and for nonparametric function, we approximate it by linear combinations of B-spline
basis. Then, we have

Y N ≈ UN γ + Πα + V N .

Because there is no endogeneity, ordinary least squares method can be used directly. Then,
we have α̂ = (ΠT (I − P )Π)−1ΠT (I − P )Y N and γ̂ = (UN

T UN )−1UN
T (Y N − Πα̂). As

we discussed before, the results of the three methods of smoothing parameters choosing
are not significantly different. Therefore, we select the smoothing parameters according
to Method II directly.

Table 4 shows the results of 500 Monte Carlo simulations. Compared with Tables 1–
3 we can see that, when the spatial structure is ignored, the RASEs of γ̂(t) and ĝ(z)
become larger and the SDs of γ̂(t)∗ and ĝ(z)∗ increase, which also coincides with what was
discovered from Figure 2 and Figure 3. Moreover, as the spatial dependence increases, the
difference between the two models in terms of RASEs and SDs increases rapidly. These
results demonstrate that, compared with the traditional econometric model, the spatial
autoregressive model can effectively solve the spatial dependence.

Table 4. Simulation results of the functional partially linear model (4.2).

λ = 0.2 λ = 0.5 λ = 0.8
RASE SD RASE SD RASE SD

σ2 R p γ̂(t) ĝ(z) γ̂(t)∗ ĝ(z)∗ γ̂(t) ĝ(z) γ̂(t)∗ ĝ(z)∗ γ̂(t) ĝ(z) γ̂(t)∗ ĝ(z)∗

3 0.397 0.135 0.136 0.058 0.839 0.265 0.343 0.080 3.823 1.190 1.351 0.299
40 5 0.292 0.121 0.090 0.055 0.507 0.184 0.188 0.060 2.246 0.725 0.767 0.195

8 0.228 0.115 0.072 0.047 0.357 0.145 0.132 0.045 1.454 0.463 0.521 0.126
0.25 3 0.298 0.127 0.096 0.052 0.760 0.252 0.277 0.067 3.793 1.168 1.028 0.236

70 5 0.223 0.114 0.068 0.046 0.450 0.171 0.158 0.046 2.187 0.701 0.647 0.153
8 0.176 0.111 0.052 0.040 0.292 0.135 0.101 0.038 1.337 0.435 0.400 0.095
3 0.643 0.247 0.315 0.075 1.042 0.367 0.550 0.119 4.050 1.300 1.709 0.390

40 5 0.487 0.200 0.245 0.060 0.671 0.259 0.342 0.079 2.381 0.807 0.995 0.236
8 0.387 0.171 0.178 0.046 0.494 0.201 0.255 0.054 1.560 0.520 0.707 0.152

1 3 0.493 0.204 0.240 0.061 0.897 0.319 0.433 0.099 3.914 1.241 1.347 0.318
70 5 0.361 0.166 0.175 0.044 0.559 0.218 0.268 0.061 2.285 0.745 0.824 0.196

8 0.283 0.145 0.125 0.038 0.377 0.166 0.181 0.045 1.381 0.458 0.525 0.120

5. Real data analysis
In this section, we will validate the procedure proposed in this paper by analyzing an

econometric dataset. The data originate from the National Bureau of Statistics of the
People’s Republic of China and are collected according to the 30 provincial administrative
regions in hinterland of China, excluding Tibet. The used variables are described in Table
5. Specifically, DOP, which is defined as the ratio of total import and export of goods
to GDP, is observed from 1995 to 2015, whereas all other variables are observed in 2015.
ICP is defined as the ratio of industrial added value to carbon dioxide emissions. ER
is the ratio of pollutant charge to GDP. The proposed functional partially linear spatial
autoregressive model is used to analyze the data, where ICP is the response variable, DOP
is the functional variable and ER is the real-valued explanatory variable.
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Figure 2. Simulation result of the functional partially linear spatial autoregres-
sive model when λ = 0.8, R = 70, p = 8, σ2 = 0.25.

Figure 3. Simulation result of the functional partially linear model (4.2) when
λ = 0.8, R = 70, p = 8, σ2 = 0.25.

Table 5. The variables used in the data analysis.

Variable Description
ICP Industrial carbon productivity
DOP Degree of opening to the outside worldP
ER Environmental regulation

Similar to [21], we use Moran test to verify whether the dependent variable has spatial
correlation. The Moran’s I statistic is defined as follows:

Moran′s I =
N
∑N

i=1
∑N

j=1 ωij(Yi − Ȳ )(Yj − Ȳ )
(
∑N

i=1
∑N

j=1 ωij)
∑N

j=1(Yj − Ȳ )2
,
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where Yi and Yj represent the index value of province i and j respectively, N is the number
of provinces, ωij is the (i, j) element of the spatial weight matrix W N , representing the
connection relation between provinces. Here, we use geographical distance to construct
the spatial weight matrix W N , and the row of W N is standardized. After the calculation,
Moran’s I statistic is 0.196 and p-value is 0.009. Therefore, it is necessary to construct a
spatial autoregressive model.

Initially, we use B-splines basis to extend the discrete data of DOP to smooth curves,
as shown in Figure 4.

Figure 4. Curves of DOP for 30 provinces in mainland China.

According to the estimation approach proposed in this paper, we obtain the estimated
value of the spatial coefficient λ is 0.62, which is consistent with the result of Moran test.
And the estimated curves of slope function γ(t) and non-parametric function g(z) are
shown in Figure 5.

From the left panel of Figure 5, we found that the impact of DOP on ICP gradually
decreases over time. In the mid-1990s, due to the relatively low productivity level in
China, the impact of DOP on ICP was very significant. With the continuous improvement
of China’s productivity level, the impact of DOP on ICP is gradually decreasing, which
is also a foreseeable result. Due to the global economic crisis around 2010, we can also
observe that the impact of DOP on ICP reached its lowest point at that time. From the
right panel of Figure 5, we can find that ER and ICP do not always show an reverse
relationship. Appropriate environmental regulations can promote industrial enterprises to
optimize resource allocation, thereby improving production efficiency. Therefore, how to
formulate reasonable environmental regulatory rules is an important issue.

Next, we will compare some models to prove the effectiveness of our proposed model.
We use the average residual sum of squares (ARSS) to evaluate the performances of the
models, which is defined as

ARSS = 1
N

N∑
i=1

(Yi − Ŷi)2,

where Ŷi is corresponding fitting values. The four models and their corresponding ARSS
values are shown in Table 6.
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Figure 5. The estimated curves of γ(t) and g(z).

Table 6. The ARSSs for different models.

Model ARSS

Yi = λ
∑30

j=1 wijYj + g(Zi) + Vi 0.023

Yi =
∫ 2015

1995 γ(t)Xi(t)dt + g(Zi) + Vi 0.037

Yi = λ
∑30

j=1 wijYj +
∫ 2015

1995 γ(t)Xi(t)dt + Vi 0.025

Yi = λ
∑30

j=1 wijYj +
∫ 2015

1995 γ(t)Xi(t)dt + g(Zi) + Vi 0.013

From Table 6, we can verify that it is useful to analyze industrial carbon productivity by
considering the spatially dependent structures and the nonlinear effects of environmental
regulation.

6. Conclusions
In this paper, we propose the estimators of a functional partially linear spatial au-

toregressive model, where the estimation method mainly relies on instrumental variables
and two-stage least squares method. The slope function and nonparametric function are
approximated by functional principal component analysis and B-spline basis respectively,
and the theoretical properties of the resulting estimators are established under some mild
conditions. The simulation and real data analysis show that the proposed estimation
method is effective.

There are many interesting directions for future research. In this paper, we only consider
the estimators of the spatial coefficient, slope function, and nonparametric function, but
do not take into account another important aspect of statistical analysis, which is testing
the effects of predictors. In the future, we hope to be able to identify model structures
by testing the major effects of the scalar predictor and functional predictor. Another
interesting question is to find some robust estimators for the proposed model.
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Appendix
Lemma .1. Under the conditions of Theorem 3.11, one has

∥θ̂ − θ0∥2 = Op

(
KN (KN + m)

N

)
.

Proof. Let eN = η0 − UN γ0 and εN = g0(ZN ) − Πα0, then

Y N = λ0W N Y N + η0 + g0(ZN ) + V N

= λ0W N Y N + eN + UN γ0 + εN + Πα0 + V N

= Qθ0 + UN γ0 + eN + εN + V N .



Estimation in FPLSAR model 1211

By the definition of θ̂, we have

θ̂ − θ0 = (QT (I − P )M(I − P )Q)−1QT (I − P )M(I − P )Y N − θ0

= (QT (I − P )M(I − P )Q)−1QT (I − P )M(I − P ) [(I − P )Y N ] − θ0

= (QT (I − P )M(I − P )Q)−1QT (I − P )M(I − P )(Qθ0 + eN + εN + V N ) − θ0

= (QT (I − P )M(I − P )Q)−1QT (I − P )M(I − P )(eN + εN + V N ).

First, consider QT (I −P )M(I −P )Q. Recall that Y N = (I −λ0W N )−1(η0+g0(ZN )+
V N ), it has

Q = (W N Y N , Π)
= (W N (I − λ0W N )−1(η0 + g0(ZN ) + V N ), Π)
= (W N (I − λ0W N )−1(η0 + g0(ZN )), Π) + (W N (I − λ0W N )−1V N , 0)
, Q̃ + ẽ,

where Q̃ = (S(η0 + g0(ZN )), Π), ẽ = (SV N , 0), S = W N (I − λ0W N )−1. Hence, one
has

QT (I − P )M(I − P )Q = Q̃
T (I − P )M(I − P )Q̃ + ẽT (I − P )M(I − P )ẽ

+ Q̃
T (I − P )M(I − P )ẽ + ẽT (I − P )M(I − P )Q̃

, R11 + R12 + R13 + R14,

where

R11 = Q̃
T (I − P )M(I − P )Q̃,

R12 = ẽT (I − P )M(I − P )ẽ,

R13 = Q̃
T (I − P )M(I − P )ẽ,

R14 = ẽT (I − P )M(I − P )Q̃.

By the properties of projection matrix and Assumption 3.2, we have

E
[
V N

T ST (I − P )M(I − P )SV N

]
=E

[
trace

{
V N

T ST (I − P )M(I − P )SV N

}]
=E

[
trace

{
V N

T ST (I − P )H(HT H)−1HT (I − P )SV N

}]
=E

[
trace

{
(HT H)− 1

2 HT (I − P )SV N V N
T ST (I − P )H(HT H)− 1

2
}]

≤Cσ2E
[
trace

{
(HT H)− 1

2 HT (I − P )H(HT H)− 1
2
}]

≤Cσ2E
[
trace

{
(HT H)− 1

2 HT H(HT H)− 1
2
}]

=O(KN ).

Hence, we have

V N
T S(I − P )M(I − P )SV N = Op(KN ).
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Thus, R12 = Op(KN ). By straightforward algebra, one has E(R13) = 0. In addition,
based on Assumption 3.2 and Assumption 3.8, we have

E

(∥∥∥Q̃T (I − P )M(I − P )SV N

∥∥∥2)
=E

[
trace

{
Q̃

T (I − P )M(I − P )SV N V N
T ST (I − P )M(I − P )Q̃

}]
≤Cσ2E

[
trace

{
Q̃

T (I − P )M(I − P )M(I − P )Q̃
}]

≤Cσ2E
[
trace

{
Q̃

T (I − P )M(I − P )Q̃
}]

≤Cσ2E
[
trace

{
(HT H)− 1

2 HT (I − P )Q̃Q̃
T (I − P )H(HT H)− 1

2
}]

≤Cλcσ
2 N

KN
E
[
trace

{
(HT H)− 1

2 HT H(HT H)− 1
2
}]

=O(N).

Therefore, we have R13 = Op(
√

N). Similarly, we have R14 = Op(
√

N). Combining the
convergence rates of R12, R13 and R14, we have

QT (I − P )M(I − P )Q = R11 + Op(
√

N).

Now, we consider QT (I − P )M(I − P )eN . Obviously,

QT (I − P )M(I − P )eN =Q̃
T (I − P )M(I − P )eN + ẽT (I − P )M(I − P )eN

,R21 + R22,

where

R21 = Q̃
T (I − P )M(I − P )eN ,

R22 = ẽT (I − P )M(I − P )eN .

We have

∥eN ∥ =

∥∥∥∥∥∥
∞∑

j=1
γ0j⟨XN , ϕj⟩ −

m∑
j=1

γ0j⟨XN , ϕ̂j⟩

∥∥∥∥∥∥
=

∥∥∥∥∥∥
m∑

j=1
γ0j⟨XN , ϕj − ϕ̂j⟩ +

∞∑
j=m+1

γ0j⟨XN , ϕj⟩

∥∥∥∥∥∥
≤

∥∥∥∥∥∥
m∑

j=1
γ0j⟨XN , ϕj − ϕ̂j⟩

∥∥∥∥∥∥+

∥∥∥∥∥∥
∞∑

j=m+1
γ0j⟨XN , ϕj⟩

∥∥∥∥∥∥ .

By Lemma 1(b) of [17] with the help of Assumption 3.3 and Assumption 3.4, we have∥∥∥ϕ̂j − ϕj

∥∥∥ = Op(jN− 1
2 ).

By Assumption 3.3 and Assumption 3.4, one has∥∥∥∥∥∥
m∑

j=1
γ0j⟨Xi, ϕj − ϕ̂j⟩

∥∥∥∥∥∥
2

≤ ∥Xi(t)∥2
2

∥∥∥∥∥∥
m∑

j=1
(ϕj − ϕ̂j)γ0j

∥∥∥∥∥∥
2

= Op(
m∑

j=1
j−bjN− 1

2 )2

= Op(N−1m4−2b).
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By Assumption 3.5, we have

E

 ∞∑
j=m+1

γ0j⟨Xi, ϕj⟩

 = 0,

Var

 ∞∑
j=m+1

γ0j⟨Xi, ϕj⟩

 =
∞∑

j=m+1
γ2

0jτj ≤ C
∞∑

j=m+1
j−(a+2b) = O(N−1m).

Therefore, we have ∥∥∥∥∥∥
∞∑

j=m+1
γ0j⟨Xi, ϕj⟩

∥∥∥∥∥∥
2

= Op(N−1m).

Further, we have

∥eN ∥2 ≤ N ·

∥∥∥∥∥∥
m∑

j=1
γ0j⟨Xi, ϕj − ϕ̂j⟩

∥∥∥∥∥∥
2

+ N ·

∥∥∥∥∥∥
∞∑

j=m+1
γ0j⟨Xi, ϕj⟩

∥∥∥∥∥∥
2

= Op(m4−2b) + Op(m)
= Op(m).

Combining this with Assumption 3.9, we have

E(∥R21∥2) = E
[
trace

{
eN

T (I − P )M(I − P )Q̃Q̃
T (I − P )M(I − P )eN

}]
≤ λc

N

KN
E
[
trace

{
eN

T (I − P )M(I − P )eN

}]
≤ λc

N

KN
E
[
trace

{
eN

T eN

}]
= O(Nm

KN
).

Thus, we can get R21 = Op(
√

Nm
KN

). Similarly, we have R22 = op(
√

N).
Then we consider QT (I − P )M(I − P )εN . Obviously,

QT (I − P )M(I − P )εN =Q̃
T (I − P )M(I − P )εN + ẽT (I − P )M(I − P )εN

,R31 + R32,

where

R31 = Q̃
T (I − P )M(I − P )εN ,

R32 = ẽT (I − P )M(I − P )εN .

By Assumption 3.5 and Lemma 1 of [13], we have ∥εN ∥ = Op(
√

NK−r
N ). Combining this

with KN = O(N
1

2r+1 ), we have

E(∥R31∥2) = E
[
trace

{
εN

T (I − P )M(I − P )Q̃Q̃
T (I − P )M(I − P )εN

}]
≤ λc

N

KN
E
[
trace

{
εN

T (I − P )M(I − P )εN

}]
≤ λc

N

KN
E
[
trace

{
εN

T εN

}]
= O(N).

Thus, we can get R31 = Op(
√

N). Similarly, we have R32 = op(
√

N).
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Then, one has
√

N(θ̂ − θ0) =
√

N(QT (I − P )M(I − P )Q)−1QT (I − P )M(I − P )(eN + εN + V N )

=
(

R11
N

+ op(1)
)−1

(
QT (I − P )M(I − P )√

N
(eN + εN + V N )

)
.

Next, we consider

(
R11
N

)−1
(

QT (I − P )M(I − P )εN√
N

)

=
(

R11
N

)−1
Q̃

T (I − P )M(I − P )εN√
N

+
(

R11
N

)−1
(

ẽT (I − P )M(I − P )εN√
N

)

=
(

R11
N

)−1 (R31√
N

)
+
(

R11
N

)−1 (R32√
N

)
,A11 + A12.

By Assumption 3.6, we have

E
(
∥A11∥2

)
=E

[
trace

{(
R11
N

)−1 RT
31R31
N

(
R11
N

)−1
}]

≤CE

[
trace

{(
R11
N

)−2
}]

≤CE

[
trace

{(
R11
N

)−1
}]2

=O(K2
N ).

Then, we have A11 = Op(KN ). Similarly, combining Assumption 3.6 and ∥R32∥2 = op(N),
we have E

(
∥A12∥2

)
= o(K2

N ). Hence, we have A12 = op(KN ). Further, we have

(
R11
N

)−1
(

QT (I − P )M(I − P )εN√
N

)
= Op(KN ).

Similarly, we have

(
R11
N

)−1
(

QT (I − P )M(I − P )eN√
N

)
= Op(

√
KN m) + op(KN ),

(
R11
N

)−1
(

QT (I − P )M(I − P )V N√
N

)
= op(KN ).

Thus, we have ∥∥∥θ̂ − θ0
∥∥∥2

= Op

(
KN (KN + m)

N

)
.

�
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Proof of Theorem 3.11. We have

∥γ̂(t) − γ0(t)∥2 =

∥∥∥∥∥∥
m∑

j=1
γ̂jϕ̂j −

∞∑
j=1

γ0jϕj

∥∥∥∥∥∥
2

≤ 2

∥∥∥∥∥∥
m∑

j=1
γ̂jϕ̂j −

m∑
j=1

γ0jϕj

∥∥∥∥∥∥
2

+ 2

∥∥∥∥∥∥
∞∑

j=m+1
γ0jϕj

∥∥∥∥∥∥
2

≤ 4

∥∥∥∥∥∥
m∑

j=1
(γ̂j − γ0j)ϕ̂j

∥∥∥∥∥∥
2

+ 4

∥∥∥∥∥∥
m∑

j=1
γ0j(ϕ̂j − ϕj)

∥∥∥∥∥∥
2

+ 2
∞∑

j=m+1
γ2

0j

, 4B1 + 4B2 + 2B3.

According to the
∥∥∥ϕ̂j − ϕj

∥∥∥2
= Op(N−1j2) and orthogonality of ϕ̂j , we have

B2 =

∥∥∥∥∥∥
m∑

j=1
γ0j(ϕ̂j − ϕj)

∥∥∥∥∥∥
2

≤ m
m∑

j=1

∥∥∥ϕ̂j − ϕj

∥∥∥2
γ2

0j ≤ m

N
Op

 m∑
j=1

j2γ2
0j


= Op

N−1m
m∑

j=1
j2−2b

 = Op

(
N−1m

)
= op

(
N− 2b−1

a+2b

)
,

and

B3 =
∞∑

j=m+1
γ2

0j ≤ C
∞∑

j=m+1
j−2b = O

(
m−(2b−1)

)
= O

(
N− 2b−1

a+2b

)
.

For B1, a simple calculation yields

B1 =

∥∥∥∥∥∥
m∑

j=1
(γ̂j − γ0j)ϕ̂j

∥∥∥∥∥∥
2

≤
m∑

j=1
|γ̂j − γ0j |2 = ∥γ̂ − γ0∥2.

According to the estimate process, we have

γ̂ − γ0 = (UN
T UN )−1UN

T (Y N − Qθ̂) − γ0

= (UN
T UN )−1UN

T (Qθ0 + UN γ0 + eN + εN + V N − Qθ̂) − γ0

= (UN
T UN )−1UN

T V N + (UN
T UN )−1UN

T eN + (UN
T UN )−1UN

T εN

+ (UN
T UN )−1UN

T Q(θ0 − θ̂)
, B11 + B12 + B13 + B14,

where

B11 = (UN
T UN )−1UN

T V N , B12 = (UN
T UN )−1UN

T eN ,

B13 = (UN
T UN )−1UN

T εN , B14 = (UN
T UN )−1UN

T Q(θ0 − θ̂).
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First, we consider B11. Because the eigenvalues of 1
N UN

T UN are bounded in probability,
we have

E(∥B11∥2) = E
[
V N

T UN (UN
T UN )−1(UN

T UN )−1UN
T V N

]
≤ 1

N2 E
[
trace

{
V N

T UN UN
T V N

}]
≤ 1

N
E
[
trace

{
(UN

T UN )− 1
2 UN

T V N V N
T UN (UN

T UN )− 1
2
}]

= σ2

N
E
[
trace

{
(UN

T UN )− 1
2 UN

T UN (UN
T UN )− 1

2
}]

= O
(
N−1m

)
.

Hence, we have B11 = Op

(√
N−1m

)
. Next, based on the ∥eN ∥2 = Op(m), we consider

B12,

E(∥B12∥2) = E
[
eN

T UN (UN
T UN )−1(UN

T UN )−1UN
T eN

]
≤ 1

N
E
[
eN

T eN

]
= O

(
N−1m

)
.

Hence, we have B12 = Op

(√
N−1m

)
. Now, based on the ∥εN ∥2 = Op(NK−2r

N ), we
consider B13,

E(∥B13∥2) = E
[
εN

T UN (UN
T UN )−1(UN

T UN )−1UN
T εN

]
≤ 1

N
E
[
εN

T εN

]
= O

(
K−2r

N

)
.

Hence, we have B13 = Op

(
K−r

N

)
. Based on Lemma 1, Assumption 3.2 and Assumption

3.8, we can get

(θ0 − θ̂)T
QT Q(θ0 − θ̂)

=(θ0 − θ̂)T (W N Y N , Π)T (W N Y N , Π)(θ0 − θ̂)

=(θ0 − θ̂)T
(

Y N
T W N

T W N Y N Y N
T W N

T Π
ΠT W N Y N ΠT Π

)
(θ0 − θ̂)

=(θ0 − θ̂)T
(

(η0 + g0(ZN ) + V N )T ST S(η0 + g0(ZN ) + V N ) (η0 + g0(ZN ) + V N )T ST Π
ΠT S(η0 + g0(ZN ) + V N ) ΠT Π

)
(θ0 − θ̂)

=(θ0 − θ̂)T
(

(η0 + g0(ZN ))T ST S(η0 + g0(ZN )) (η0 + g0(ZN ))T ST Π
ΠT S(η0 + g0(ZN )) ΠT Π

)
(θ0 − θ̂)

+(θ0 − θ̂)T
(

V N
T ST SV N V N

T ST Π
ΠT SV N 0

)
(θ0 − θ̂) + (θ0 − θ̂)T

(
2V N

T ST S(η0 + g0(ZN )) 0
0 0

)
(θ0 − θ̂)

=Op (KN (KN + m)) .

Thus, we have

E(∥B14∥2) = E

[
(θ0 − θ̂)T

QT UN (UN
T UN )−1(UN

T UN )−1UN
T Q(θ0 − θ̂)

]
≤ 1

N
E

[
(θ0 − θ̂)T

QT Q(θ0 − θ̂)
]

= O

(
KN (KN + m)

N

)
.
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This implies that B14 = Op

(√
KN (KN +m)

N

)
. Then, we have

∥γ̂ − γ0∥2 = Op

(
N−1m + K−2r

N + N−1K2
N + N−1KN m

)
= Op

(
N− 2r−1

2r+1 + N− 2r
2r+1 + 1

a+2b

)
.

Thus, we have B1 = Op

(
N− 2r−1

2r+1 + N− 2r
2r+1 + 1

a+2b

)
. In combination with the convergence

rates of B2 and B3, we have

∥γ̂(t) − γ0(t)∥2
2 = Op

(
N− 2b−1

a+2b

)
+ Op

(
N− 2r−1

2r+1 + N− 2r
2r+1 + 1

a+2b

)
.

Finally, we consider the convergence rate of ĝ(z). Note that

∥α̂0 − α∥2 ≤
∥∥∥θ̂0 − θ

∥∥∥2
= Op

(
KN (KN + m)

N

)
.

By the Corollary 6.21 of [25], we have
∥Π(z)α0 − g0(z)∥2

2 = Op(K−2r
N ).

Invoking formula (10) in [14], one has
∥ĝ(z) − g0(z)∥2

2 = ∥Π(z)α̂ − g0(z)∥2
2

≤ 2∥Π(z)α̂ − Π(z)α0∥2
2 + 2∥Π(z)α0 − g0(z)∥2

2

= O(K−1
N )∥α̂ − α0∥2 + Op(K−2r

N )

= Op

(
KN + m

N

)
+ Op(K−2r

N )

= Op

(
N− a+2b−1

a+2b

)
+ Op

(
N− 2r

2r+1
)

.

�
Proof of Theorem 3.13. Similar to the proof of Lemma .1, it is easy to show that
R21 = R31 = op(

√
N). Then, by KN /N = o(1), we have

√
N(λ̂ − λ0) =

√
NξT (θ̂ − θ0)

=
√

NξT
(
R11 + Op(N1/2) + Op(KN )

)−1
QT (I − P )M(I − P )(eN + εN + V N )

=ξT
(

R11
N

)−1
Q̃

T (I − P )M(I − P )√
N

V N + op(1)

=ξT

(
ΛT Λ
N

)−1 ΛT (I − P )√
N

V N + op(1).

Invoking the central limit theorem and Assumption 3.7, we have
√

N(λ̂ − λ0) D−→ N(0, σ2ς).
�


