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Research Article 

 

Abstract— The use of robots is on the rise, and this study focuses 

on developing manufacturing-assistant robot software for small 

production plants involved in non-mass production. The primary 

objective is to address the challenges of hiring expert robot 

operators by creating user-friendly software, thus enabling non-

experts to operate robots effectively. The software comprises three 

main modules: the convolutional neural network (CNN), process 

selection-trajectory generation, and trajectory regulation. To 

initiate operations within these modules, operators record the 

desired process and its trajectory through hand gestures and index 

finger movements, captured in a video. The recorded video is then 

separated into images. These images undergo classification by the 

CNN module, which also calculates the positions of landmarks, 

such as joints and index finger's fingernail. Out of eight different 

pre-trained CNN structures tested, the Xception structure yielded 

the best result, with a test loss of 0.0051. Using the CNN's output 

data, the desired process is determined, and its trajectory is 

generated. The trajectory regulation module identifies the 

connection points between the generated trajectory and the object, 

subsequently eliminating unnecessary trajectory segments. The 

regulated trajectory, along with desired tasks like welding or 

sealing, is simulated using an industrial robot within a simulation 

environment. In conclusion, the developed software empowers 

non-expert operators to program industrial robots, particularly 

beneficial for companies with non-standardized production lines, 

where hiring expert robot operators might be challenging. 

 
 

Index Terms—Classification and localization, Fingertip 

detection, Human-robot interaction, Welding process, Sealing 

process.  

I. INTRODUCTION 

OBOTS CAN be classified according to the location 

(mobile and fixed), power systems (pneumatic, hydraulic, 

and electric), locomotion methods (stable, wheeled, legged, and 

others), or application areas (industrial and non-industrial) [1]. 

An industrial robot, as defined by the Robotic Institute of 

America [2],  is a programmable mechanical device used to 

perform dangerous or repetitive tasks with high accuracy, 
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replacing human labour. Collaborative robots accounted for 

5.37%, 6.59%, and 7.54 % of the installed industrial robots 

between 2019 and 2021, respectively [3]. These installed 

industrial robots are used in various manufacturing processes 

such as machine tending, welding, and assembling, as shown in 

Figure 1. The aim of the current study is to transform a 

traditional industrial robot into a modern collaborative robot 

capable of performing welding and sealing processes. 

 

 
Fig. 1. Task distribution of industrial robots installed in 2022 [3] 

 

Human-robot interaction (HRI) plays a crucial role in 

enabling human-robot collaboration (HRC). At least one 

communication channel, such as vision or speech should be 

used in order to occur HRI. Vision involves the interpretation 

of images captured by sensors such as cameras. Numerous 

studies in the literature have utilized vision to establish HRI in 

literature [4]–[6]. For instance, Hamabe et al. trained a 

lightweight robot for the assembly process using vision 

communication channels [7]. In another work, Ding et al. 

developed robot software to ensure safe manufacturing using 

vision [8]. In the current study, vision-based HRI software was 

developed.  

Hand gestures recognition and fingertip position 

determination are commonly used methods for human-

computer interaction and HRI [9]–[12]. Raheja et al. calculated 

to fingertip position by using skin colour of hand [9].  In another 

study, sequential mathematical operations were employed to 

obtain the fingertip position after subtracting the color-based 

hand image from the main image [13]. Other studies have also 

explored similar approaches using colour-based method [11], 
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[12]. Another method employed for in hand gesture 

identification and fingertip position detection involves  

obtaining information from depth images captured by RGB-D 

sensors [14], [15]. Shin and Kim achieved an air writing process 

utilizing an RGB-D sensor and fingertip detection [16]. 

Similarly, another study successfully detected with successful 

by using RGB-D sensor [17]. Huang et al. has achieved 

fingertip detection by using a cascaded convolutional neural 

network (CNN) and RGB images, employing a different 

approach than the aforementioned studies [18]. In another 

study, air writing has been performed using color separation 

and faster R-CNN structures together [10]. In the robotic field, 

one notable example involves determining the orientation of the 

robot using an image from a sensor worn on the operator's wrist, 

along with hand gesture recognition and fingertip detection 

[19]. Many other studies have also utilized specialized sensors 

for detecting hand gestures or fingertips [20], [21]. In the 

current study, hand gestures and fingertip position were 

determined by processing the RGB images obtained from the 

environment using a single CNN. 

The designed CNN structure incorporates a pre-trained CNN, 

and a transfer learning method was employed to train this 

designed CNN. Transfer learning is a skill that people often 

unwittingly use to apply an acquired ability to another similar 

task. It has been widely used in various applications, ranging 

from fault detection [22]  to time series forecasting [23]. Li et 

al. used transfer learning to classify text data [24]. In another 

study, transfer learning has been utilized in order to process 

hyperspectral image [25]. Moreover, a robot has been 

successfully developed to detect damaged ropes on bridges 

using transfer learning [26]. Similarly, in another project, a 

robot employed transfer learning to distinguish objects from 

underground images [27]. In the current study, eight different 

pre-trained CNN architecture was trained for pre-defined task 

by using transfer learning and CNN structure that was obtained 

best result was chosen.  

In the current study, a robot software was developed to assist 

in welding and sealing processes based on HRI. The developed 

software intended for use in small scale plants with non-mass 

production lines.  Firstly, the desired task and a trajectory were 

defined according to the operator’s hand gestures and positions 

of the fingertip. Next, the relationship between the defined 

trajectory and the metal object was searched. Finally, we 

implemented the obtained trajectory onto the robot in the 

simulation environment. As a result, the user could command 

the robot to perform the desired task without the need for 

manual programming. This study offers a user-friendly 

approach, allowing the robot to perform similar tasks without 

requiring any specific knowledge of robotics. 

II. MATERIAL AND METHODS 

A. Structure of Developed Software 

Developed software consists of CNN, process selection-

trajectory generation, and trajectory regulation modules. The 

modules of developed software and data traffic between 

modules are given in Figure 2.
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Fig. 2. Block diagram of developed software 

 

A camera was used to be the robot aware of its environment 

and perceive the desired process of the robot. The camera’s task 

was to record the hand movement of the operator in the robot's 

environment. The operator starts the video recording process 

before the operation, and the video recording is stopped by the 

operator when the defined process demonstration is finished. 

After the recorded video is separated into images, the images 

are sent to the CNN structure. CNN classifies the images 

according to hand gestures. If classifying result is calculated as 

index finger, middle joint, and fingernail positions of the index 

finger is produced by CNN. In the process selection and 

trajectory generation module, the type and start-end times of the 

operation such as welding or sealing are determined from hand 

motions. The index finger class between the start and end times 

determines the trajectory of the process. Then, the obtained 

process and trajectory are submitted for operator approval. If 

the operator does not confirm the process or trajectory, the 

program returns to the video recording stage. If the operator 

confirms the action and the trajectory, the trajectory regulation 

is applied to the trajectory. After the regulated trajectory is 

confirmed by the operator again, the determined process is 

carried out by the KUKA KR Agilus KR6 R900 sixx robot 

located in the simulation environment along the arranged 

trajectory. After the process is complete, the program returns to 

the first step. 

 

1) CNN Module 

Training of CNN, which is a part of developed software, 

consist of three steps as dataset forming, train dataset 

augmenting, and model training.  

Fifty-three videos with a total size of 1.54GB were recorded 

in the experimental environment in order to create a dataset. 

Forty-five of these videos were used for the training and 

validation dataset.  Rest of these videos were used for the test 
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dataset. Total 8000 images, that were 180×320px size, were 

obtained from training and validation videos. 512 images, that 

were according to homogeneous each class, were randomly 

separated from this dataset for the validation dataset. Rest of 

these images was used as training dataset. Total 128 images, 

that were 180×320px size, were obtained from test videos to 

generate test dataset. Formed datasets were contained of four 

class as Zero, One, Two, and Three. Each class label was 

typified finger count of hand gestures. The data contained in 

One labelled class has 4 location information (𝑥𝐽, 𝑦𝐽 and 𝑥𝑇 , 𝑦𝑇),  

as well as class labels. J and T letters were symbolized joint and 

fingernail of index finger, respectively. Class label and position 

data of datasets was given in Figure 3. 

Data augmentation is an operation that artificial images, 

which are generated from training dataset images, are 

incorporated into the training dataset to increase the 

performance of CNN. The images were rotated 180° and the 

brightness of the rotated images were modified ratio of ±25% 

in order to increase the variety of images in the training data set. 

After these processes, obtained artificial images was added in 

the training dataset. 

 

    
    

(a) (b) (c) (d) 

Fig. 3. Classes in the datasets; (a) Zero, (b) One, (c) Two, (d) Three 
 

After the data sets were created, CNN structure was trained 

using the block diagram in Figure 4.  

 

 
Fig. 4. Block diagram of CNN structure 

 

𝑦𝑆 and 𝑦𝐿  were shown class label and positions data of image 

in Figure 4, respectively. Eight different CNN model was tried 

as pre-trained CNN.  �̂�𝑠 and �̂�𝐿 were symbolized predicted class 

and position data of CNN structure, respectively. Total, 

classification, and localization loss functions were presented as 

𝐿, 𝐿𝑠, and 𝐿𝐿 symbols, respectively. Cross-Entropy loss function 

was used as classification loss function and squared error was 

utilized as localization loss function. If the class of the input 

image is One, the total loss function is calculated by using a 

formula that sums the mean of 𝐿𝑆  and 𝐿𝐿. Otherwise, the total 

loss function equals the mean of the classification loss function.  

The black dashed lines in Figure 4 show the blocks used only 

during the training of the CNN architecture. The dropout layer 

is also a structure consisting of dashed lines. The dropout layer 

ratio was chosen as 0.25. The black solid-lined blocks show the 

blocks used in both training and testing phases. In the fully 

connected layer, one of the black solid-lined blocks, there are 

128, 4, and 4 neurons, respectively. ReLU, Softmax, and 

Sigmoid are activation functions found in network outputs. 

Detailed information about the functions of the blocks was 

mentioned in [28]–[30]. Also, the CNN structure was trained 

during 10 epochs by using the Adam optimization algorithm. 

The learning rate was chosen as 10-3 in the first 5 epochs and 

the learning rate was adjusted as 10-4 for the rest of the training 

process. Mini-batch size was chosen as 32. Weights of the pre-

trained CNNs were set up as ImageNet and update of pre-

trained CNNs weights were continued during the training 
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process. The training process was shortened by using transfer 

learning. 

 

2) Process Selection and Trajectory Generation Module 

Process selection and trajectory generation were realized in 

this part of developed software by depending on class and 

position data obtained from CNN structure.  Process selection 

operation was performed before trajectory generation. Firstly, 

noised class labels need to remove from obtained class labels to 

choose the process. The noised labels are formed by blurred 

images that occur when the operator’s hand enters or quits on 

video. It is inspired by the exponential weight averages formula 

presented in Equation 1 to eliminate noised labels. 

 

𝑉𝑘 = 𝛽𝑉𝑘−1 + (1 − 𝛽)𝑄𝑘 , 𝑘 = 2,3, … , 𝑁 (1) 

 

In Equation 1, 𝑉, 𝛽, 𝑄, 𝑁, and 𝑘 refer to mean value, mean 

coefficient, current measure, total sample size, and discrete time 

index, respectively. How many samples will be averaged with 

𝛽 is determined by using as flows: 

 

𝑇𝑠 =
1

1 − 𝛽
 (2) 

 

Total sample size is shown as 𝑇𝑠 in Equation 2. Equation 1 

was not used because the class output of CNN wasn't numerical 

value. Also, bias coefficient was not used owing to the same 

reason. Equation 3 that formed by inspiring Equation 1 was 

used to filter class labels. 

 

𝑓𝐿𝑘 = {
𝑄𝑘 𝑘 ≤ 𝑇𝑠

𝑚𝑜𝑑(𝑓𝐿𝑘−𝑇𝑠
, 𝑓𝐿𝑘−𝑇𝑠+1, … , 𝑓𝐿𝑘−1, 𝑄𝑘 ) 𝑘 > 𝑇𝑠

 (3) 

 

𝑓𝐿 is typified filtered label data in Equation 3. Raw and 

filtered label data that belong to the sealing process were given 

in Figure 5. 
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Fig. 5. Label data for sealing process 

 

The red arrows in Figure 5 were shown noised label data. The 

detected noised labels were eliminated by using Equation 3. In 

the current study, 𝛽 coefficient was chosen as 0.97. 𝛽 

coefficient is range of between 0 and 1 as can be understood 

from Equation 2. Also, while the noise increases as the 𝛽 

approaches 0, the inertia of the system increases as it 

approaches 1. 

After filtering the label data, the process is determined by 

using the flowchart presented in Figure 6.
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Fig. 6. Process determination flowchart 

 

Firstly, the process is determined in Figure 6. After the 

defined process is activated, the trajectory generation is started 

when the filtered label is One. The trajectory generation process 

is continued until the filtered label is Three. The position and 

orientation of the index finger are calculated by using Equation 

4-7 and the joint and fingernail position of the index finger. The 

reason for calculating the positions of the joint and fingernail of 

the index finger is that the operator can also determine the 
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orientation of the manipulator in orientation-dependent 

operations such as welding. 

 

𝛼 = 𝑡𝑎𝑛−1(
𝑦𝑇 − 𝑦𝐽

𝑥𝑇 − 𝑥𝐽

) (4) 

𝑑 = √(𝑥𝑇 − 𝑥𝐽)2 + (𝑦𝑇 − 𝑦𝐽)2 (5) 

𝑥𝐹 = 𝑥𝑇 +
𝑑

4
sin (𝛼) (6) 

𝑦𝐹 = 𝑦𝑇 +
𝑑

4
cos (𝛼) (7) 

 

𝛼 refers to the orientation angle of the index finger in 

Equation 4. 𝑑 represents the distance between the joint and 

fingernail of the index finger in Equation 5. (𝑥𝐹 , 𝑦𝐹) are typified 

fingertip positions of the index finger on X and Y axes, 

respectively. The hand quickly moves towards the metal object 

during the trajectory generation process. The distance between 

two points was calculated using Equation 5 with finger position 

information obtained from two sequential images in order not 

to create a trajectory during this orientation process. If the 

calculated distance is lower than 7px, obtained (𝑥𝐹 , 𝑦𝐹)  was 

included trajectory.  Otherwise, (𝑥𝐹 , 𝑦𝐹) was not incorporated 

trajectory. 

 

𝑡𝑥𝑘 = 𝛿𝑥𝐹 𝑘
+ ∅(𝑥𝐹 𝑘−1

, 𝑥𝐹 𝑘−2
, … , 𝑥𝐹 𝑘−𝑁

) (8) 

𝑡𝑦𝑘 = 𝛿𝑦𝐹 𝑘
+ ∅(𝑦𝐹 𝑘−1

, 𝑦𝐹 𝑘−2
, … , 𝑦𝐹 𝑘−𝑁

) (9) 

 

Trajectory of 𝑡𝑟𝑗2×𝑘 = [𝑡𝑥, 𝑡𝑦] was obtained utilizing 

Equation 8 and 9. 𝑡𝑥 and 𝑡𝑦 refer to trajectory position on X 

and Y axes, respectively. 𝛿, ∅, and 𝑁 represent last measure 

coefficient, mean coefficient, and count of elements to be 

averaged, respectively. These value of the coefficient were 

chosen as 0.5, 0.5, and 5, respectively. Noises on the trajectory 

were partially cleared by using Equations 8 and 9. 

 

3) Trajectory Regulation Module 

Trajectory regulation module was formed to establish 

relationship between generated trajectory and metal object and 

decrease noise on trajectory.  An image that is not consist 

operator’s hand was taken from the video to regulate trajectory. 

Initially, an image without operator's hand was taken from the 

video to regulate trajectory. The image was converted greyscale 

image and Sobel filter was applied to the greyscale image. 

Edges of object that is in the image was roughly calculated with 

the method as can be seen in Figure 7b.  After this step, section 

of object in image was cropped by help of object edges. The 

cropped image was converted to grayscale image and blurred, 

respectively.  Lastly, Sobel filter was applied on the blurred 

image and Figure 7d, that shows more clearly edges of object, 

was obtained. Blur filter was not used in first step because 

undesired edges were occurred in image. 

 

  

  

(a) (b) (c) (d) 

Fig. 7. Obtaining edge images process; (a) Original image, (b) Rough edge 

image, (c) Cropped image, (d) Edge image 
 

Distance between each of the edge points in the obtained 

edge image and each of the 𝑡𝑟𝑗 points was measured by using 

Equation 5. 𝑡𝑟𝑗 points that were 15px away from edge points 

were removed from the trajectory after the measured 

distances. 𝑚𝑡𝑟𝑗 trajectory that was not contained in the 15px 

away points was formed. Finally, the trajectory regulating 

process was carried out by applying a 20 × 1 dimensional 

median filter to the positions of the X and Y axis in 𝑚𝑡𝑟𝑗. 

Figures 11 and 12 can be examined for a better understanding 

of the trajectory and regulated trajectory difference. 

B. Simulation of Developed Software 

In this study, the KUKA KR Agilus KR6 R900 sixx robot 

with 6 axes and an Euler wrist was used in our laboratory. The 

maximum payload and reach of this robot are 6kg and 901mm 

respectively.  Also, the position repeatability of this robot is 

0.03mm.  Developed software was simulated on CoppeliaSim 

program that is a simulation environment. Before the simulation 

scene was not formed, a 3D solid model of the robot was drawn 

on the SolidWorks program. The formed 3D solid model was 

converted to URDF (Unified Robotic Description Format) with 

URFD exporter [31]. Then the URDF file was added to the 

designed scene as presented in Figure 8. 

 

1
2

4

3

5

7

6

8

9

10
 

Fig. 8. Simulation environment 

 

Manipulator (1) and robot PC (2) are components of the robot 

in Figure 9. Work plane, operator, and the PC that the software 

will run represents as (3), (4), and (5) respectively. Cameras (6-

7) were added to the simulation environment to watch to the 

work plane from different angles. Video streams from the 

cameras were shown (9-10) windows, respectively.  It is 

assumed that a camera is placed at the endpoint of the 

manipulator that records the hand movements of the operator 

and the video stream of this camera is presented on the screen 

(8). ManyCam program [32] was used to input video from 
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outside to the simulation environment while creating the screen. 

The manipulator in the simulation environment was moved 

using MATLAB package program and the inverse kinematic 

solution of the simulation program. The simulation program 

was run using the Newton dynamic engine with 50ms step size. 

III. RESULTS 

A part of the developed software is the CNN structure. The 

most important building block of this CNN architecture is pre-

trained CNN structures. In the current study, CNN structure that 

using 8 different pre-trained CNN was trained. After the 

training process, training, validation, and test performance were 

presented in Table 1. 

 
TABLE I 

LOSS FUNCTION VALUES 

Algorithms 
PS[33] 

(MB) 

TT       

(s) 
𝑳𝒕𝒓𝒂𝒊𝒏 𝑳𝒗𝒂𝒍𝒊𝒅 𝑳𝒕𝒆𝒔𝒕 

ResNet50[34] 98 1030 0.712 0.429 2.396 

VGG16[35] 528 2460 1.539 1.515 1.412 

DenseNET121[36] 33 2120 0.961 0.886 0.709 

InceptionResNetV2

[37] 
215 

3820 
0.016 0.003 0.533 

EfficientNetB0[38] 29 2570 0.031 0.092 0.407 

MobileNetV2[39] 14 1930 0.019 0.002 0.155 

InceptionV3[40] 92 1720 0.017 0.230 0.080 

Xception[41] 88 2200 0.011 0.003 0.005 

Bold numbers indicate the best results. 

 

Parameter size and training time were shown as PS and TT 

in Table 1, respectively. The CNN training process was 

performed on the Google Colab platform. PC components used 

on this platform; GPU: Nvidia P100-16GB, CPU: Intel Xeon-

2.30GHz, RAM: 25.51GB, Disk memory: 68.40GB. Since the 

best test result was obtained from the Xception algorithm, the 

loss values of Xception and other algorithms were compared by 

using multivariate Tukey comparison test and the Tukey test 

results are presented in Table 2. 

 
TABLE II 

XCEPTION AND OTHER METHODS COMPARISON 

Algorithms 𝑳 ± 𝑺𝑫 
p 

( According to Xception) 

ResNet50 1.1795±0.8683 <0.05* 

VGG16 1.4889±0.0552 <0.05* 

DenseNET121 0.8522±0.1057 0.238 

InceptionResNetV2 0.1846±0.2468 0.999 

EfficientNetB0 0.1771±0.1649 0.999 

MobileNetV2 0.0592±0.0685 1.000 

InceptionV3 0.1096±0.0894 1.000 

Xception 0.0067±0.0033 - 

* Statistically significant difference. 𝑳 ± 𝑺𝑫 represents the mean of loss and 

standard deviation. 

 

The Xception algorithm was found to have statistical 

differences with the ResNET50 and VGG16 algorithms as can 

be seen in Table 2. There is no statistical difference between 

other algorithms and the Xception algorithm. In addition, after 

the training process was completed, all data in the validation 

and test datasets were classified by the CNN architecture and 

the relevant classes were located. These classification and 

localization results are shown in Figure 9. 
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(b) 

Fig. 9. Classification and localization results; (a) Results of the validation 

dataset, (b) Results of the test dataset 
 

The Xception algorithm was used in the application as the 

best performance was obtained using the algorithm. Firstly, the 

operator recorded various sealing and welding process videos. 

These recorded videos were processed by CNN as seen in 

Appendix 1. Sealing process, welding process, and joint-

fingernail of index finger were shown with black, red, and blue 

colour, respectively in Appendix 1. Then, generated trajectories 

were regulated and regulated trajectories were given in Figure 

10 and 11. 

 

    
(a) (b) (c) (d) 
Fig. 10. Visual results of trajectory regulation; (a) Sealing process 

trajectory, (b) Regulated sealing process trajectory, (c) Welding process 

trajectory, (d) Regulated welding process trajectory 
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(b) 

Fig. 11. Graphical results of trajectory regulation; (a) Sealing process 
trajectory, (b) Welding process trajectory 

 

The regulated trajectories were sent to the robot that in the 

simulation environment. The desired tasks were simulated as 

seen in Figure 12. 

Axis angles, axis moments, tool centre point (TCP) position 

and trajectory tracking error occurring during the sealing and 

welding process are presented in Figures 13 and 14.  
 

 

  
(a) (b) 

Fig. 12. Simulated desired tasks; (a) Sealing process, (b) Welding process 
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(c) (d) 

Fig. 13. Values occurring during the sealing process; (a) Axis angles, (b) Axis Moments, (c) TCP trajectory, (d) Error values during trajectory tracking 
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(c) (d) 

Fig. 14. Values occurring during the welding process; (a) Axis angles, (b) Axis Moments, (c) TCP trajectory, (d) Error values during trajectory tracking 

 
 

After sealing and welding processes, metal object in work 

plane was given in Figure 15. 

 

 
(a) 

 
(b) 

Fig. 15. Processed metal object; (a) Sealing process, (b) Welding process 

 

The desired task by the operator was performed by the robot 

as it can be seen in Figure 15. The sealing process, welding 

process, and robot movements were given as videos in the [42] 

and [43], respectively. 

IV. DISCUSSION 

Fingertip location was calculated by using skin colour in 

some studies when studies in the literature that fingertips 

detection were examined [11]–[13]. Depth images that were 

obtained from RGB-D sensors were used to detect fingertip 

position in other fingertip detection studies [14]–[16]. Skin 

colour and depth images were not used in this study. Also, when 

fingertip detection studies that were based on CNN structures 

were investigated, using cascade CNN structure was seen [18]. 

A single CNN was used as different from the study. In addition, 

when fingertip detection studies that were in the robotic field 

were researched, special sensors were developed to perceive 

hand gestures [19], [20]. In the current study, a standard camera 

was used to sense hand gestures. 

In the current study, solving of classification and localization 

problem was implemented to hand gestures recognition and 

fingertip position detection. In this way, two different problems 

were solved with a single structure. This study has some 

limitations. In this study, the most important restriction of the 

current study is that the thicknesses of the parts to be machined 

were predefined and a standard depth was worked on. Another 

limitation is the CNN architectures used. Pre-trained CNN 

architectures were used to increase the accuracy performance 

by reducing the training time with the transfer learning method. 

V. CONCLUSION 

In this study, a robot software capable of performing 

processes such as sealing and welding was developed for small-

scale plants without mass production capabilities. Operators 

without any prior robot education/knowledge can program the 

robot using finger movements through the developed robot 

software. This programmability capability was achieved 

through the integration of the CNN, process selection-trajectory 

generation, and trajectory regulation modules. The CNN 

structure consisted of a pre-trained CNN, fully connected 

layers, and activation functions connected in series. Eight pre-

trained CNNs were trained on formed datasets and 

subsequently tested, with the Xception algorithm yielding the 

best result (Ltest=0.0051). The CNN structure was used to 
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classify image data and determine the positions of the robot's 

joints and the index finger's fingernail. With the classification 

data, the process selection and trajectory generation module 

detected the desired task, and the same module created the 

trajectory based on the positions data. Furthermore, a special 

algorithm was developed within the process selection and 

trajectory generation module to reduce any noise that may occur 

during video processing. The generated trajectory was then 

regulated by the trajectory regulation module to ensure proper 

alignment with the objects. Following this step, the robot 

performed the desired process within the simulation 

environment. In future work, an additional module will be 

developed to predict trajectories based on the objects and will 

be incorporated into the software. Subsequently, the software 

will undergo testing on a real robot. In addition, the developed 

software will become more improved by using other deep 

learning architectures such as LSTM. 
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APPENDICES 

 
Appendix 1. Processing video images, (a) Sealing process, 

(b) Welding process 
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