
BALKAN JOURNAL OF ELECTRICAL & COMPUTER ENGINEERING, Vol. 11, No. 4, October 2023

Copyright © BAJECE ISSN: 2147-284X http://dergipark.gov.tr/bajece

Research Article

Abstract— The use of robots is on the rise, and this study focuses

on developing manufacturing-assistant robot software for small

production plants involved in non-mass production. The primary

objective is to address the challenges of hiring expert robot

operators by creating user-friendly software, thus enabling non-

experts to operate robots effectively. The software comprises three

main modules: the convolutional neural network (CNN), process

selection-trajectory generation, and trajectory regulation. To

initiate operations within these modules, operators record the

desired process and its trajectory through hand gestures and index

finger movements, captured in a video. The recorded video is then

separated into images. These images undergo classification by the

CNN module, which also calculates the positions of landmarks,

such as joints and index finger's fingernail. Out of eight different

pre-trained CNN structures tested, the Xception structure yielded

the best result, with a test loss of 0.0051. Using the CNN's output

data, the desired process is determined, and its trajectory is

generated. The trajectory regulation module identifies the

connection points between the generated trajectory and the object,

subsequently eliminating unnecessary trajectory segments. The

regulated trajectory, along with desired tasks like welding or

sealing, is simulated using an industrial robot within a simulation

environment. In conclusion, the developed software empowers

non-expert operators to program industrial robots, particularly

beneficial for companies with non-standardized production lines,

where hiring expert robot operators might be challenging.

Index Terms—Classification and localization, Fingertip

detection, Human-robot interaction, Welding process, Sealing

process.

I. INTRODUCTION

OBOTS CAN be classified according to the location

(mobile and fixed), power systems (pneumatic, hydraulic,

and electric), locomotion methods (stable, wheeled, legged, and

others), or application areas (industrial and non-industrial) [1].

An industrial robot, as defined by the Robotic Institute of

America [2], is a programmable mechanical device used to

perform dangerous or repetitive tasks with high accuracy,

Mustafa Can BINGOL, is with Department of Electrical-Electronic
Engineering Burdur Mehmet Akif Ersoy University, Burdur, Turkey,(e-mail:

mcbingol@mehmetakif.edu.tr).

https://orcid.org/0000-0001-5448-8281

Omur AYDOGMUS, is with Department of Mechatronic Engineering Firat
University, Elazig, Turkey, (e-mail: oaydogmus@firat.edu.tr).

https://orcid.org/0000-0001-8142-1146

Manuscript received July 11, 2023; accepted Aug 6, 2023.
DOI: 10.17694/bajece.1326072

replacing human labour. Collaborative robots accounted for

5.37%, 6.59%, and 7.54 % of the installed industrial robots

between 2019 and 2021, respectively [3]. These installed

industrial robots are used in various manufacturing processes

such as machine tending, welding, and assembling, as shown in

Figure 1. The aim of the current study is to transform a

traditional industrial robot into a modern collaborative robot

capable of performing welding and sealing processes.

Fig. 1. Task distribution of industrial robots installed in 2022 [3]

Human-robot interaction (HRI) plays a crucial role in

enabling human-robot collaboration (HRC). At least one

communication channel, such as vision or speech should be

used in order to occur HRI. Vision involves the interpretation

of images captured by sensors such as cameras. Numerous

studies in the literature have utilized vision to establish HRI in

literature [4]–[6]. For instance, Hamabe et al. trained a

lightweight robot for the assembly process using vision

communication channels [7]. In another work, Ding et al.

developed robot software to ensure safe manufacturing using

vision [8]. In the current study, vision-based HRI software was

developed.

Hand gestures recognition and fingertip position

determination are commonly used methods for human-

computer interaction and HRI [9]–[12]. Raheja et al. calculated

to fingertip position by using skin colour of hand [9]. In another

study, sequential mathematical operations were employed to

obtain the fingertip position after subtracting the color-based

hand image from the main image [13]. Other studies have also

explored similar approaches using colour-based method [11],

44.40%

18.53%

11.97%

6.18%

2.12%

1.36%
15.44%

Handling Welding

Assembling Cleanroom

Dispensing Processing

All others/unspecified

Development of a Human-Robot Interaction

System for Industrial Applications

Musataf Can Bingol and Omur Aydogmus

R

306

http://dergipark.gov.tr/bajece
https://orcid.org/0000-0002-2306-6008

BALKAN JOURNAL OF ELECTRICAL & COMPUTER ENGINEERING, Vol. 11, No. 4, October 2023

Copyright © BAJECE ISSN: 2147-284X http://dergipark.gov.tr/bajece

[12]. Another method employed for in hand gesture

identification and fingertip position detection involves

obtaining information from depth images captured by RGB-D

sensors [14], [15]. Shin and Kim achieved an air writing process

utilizing an RGB-D sensor and fingertip detection [16].

Similarly, another study successfully detected with successful

by using RGB-D sensor [17]. Huang et al. has achieved

fingertip detection by using a cascaded convolutional neural

network (CNN) and RGB images, employing a different

approach than the aforementioned studies [18]. In another

study, air writing has been performed using color separation

and faster R-CNN structures together [10]. In the robotic field,

one notable example involves determining the orientation of the

robot using an image from a sensor worn on the operator's wrist,

along with hand gesture recognition and fingertip detection

[19]. Many other studies have also utilized specialized sensors

for detecting hand gestures or fingertips [20], [21]. In the

current study, hand gestures and fingertip position were

determined by processing the RGB images obtained from the

environment using a single CNN.

The designed CNN structure incorporates a pre-trained CNN,

and a transfer learning method was employed to train this

designed CNN. Transfer learning is a skill that people often

unwittingly use to apply an acquired ability to another similar

task. It has been widely used in various applications, ranging

from fault detection [22] to time series forecasting [23]. Li et

al. used transfer learning to classify text data [24]. In another

study, transfer learning has been utilized in order to process

hyperspectral image [25]. Moreover, a robot has been

successfully developed to detect damaged ropes on bridges

using transfer learning [26]. Similarly, in another project, a

robot employed transfer learning to distinguish objects from

underground images [27]. In the current study, eight different

pre-trained CNN architecture was trained for pre-defined task

by using transfer learning and CNN structure that was obtained

best result was chosen.

In the current study, a robot software was developed to assist

in welding and sealing processes based on HRI. The developed

software intended for use in small scale plants with non-mass

production lines. Firstly, the desired task and a trajectory were

defined according to the operator’s hand gestures and positions

of the fingertip. Next, the relationship between the defined

trajectory and the metal object was searched. Finally, we

implemented the obtained trajectory onto the robot in the

simulation environment. As a result, the user could command

the robot to perform the desired task without the need for

manual programming. This study offers a user-friendly

approach, allowing the robot to perform similar tasks without

requiring any specific knowledge of robotics.

II. MATERIAL AND METHODS

A. Structure of Developed Software

Developed software consists of CNN, process selection-

trajectory generation, and trajectory regulation modules. The

modules of developed software and data traffic between

modules are given in Figure 2.

Developed Software

Process Selection and

Trajectory Generation

Video

Recording
Trajectory Regulation

Operator

Confirm ?

YesNo

Video
Processed

Video

Trajectory

CNN

Regulated

Trajectory

Trajectory

Operator

Confirm ?

No Yes

Regulated

Trajectory

Fig. 2. Block diagram of developed software

A camera was used to be the robot aware of its environment

and perceive the desired process of the robot. The camera’s task

was to record the hand movement of the operator in the robot's

environment. The operator starts the video recording process

before the operation, and the video recording is stopped by the

operator when the defined process demonstration is finished.

After the recorded video is separated into images, the images

are sent to the CNN structure. CNN classifies the images

according to hand gestures. If classifying result is calculated as

index finger, middle joint, and fingernail positions of the index

finger is produced by CNN. In the process selection and

trajectory generation module, the type and start-end times of the

operation such as welding or sealing are determined from hand

motions. The index finger class between the start and end times

determines the trajectory of the process. Then, the obtained

process and trajectory are submitted for operator approval. If

the operator does not confirm the process or trajectory, the

program returns to the video recording stage. If the operator

confirms the action and the trajectory, the trajectory regulation

is applied to the trajectory. After the regulated trajectory is

confirmed by the operator again, the determined process is

carried out by the KUKA KR Agilus KR6 R900 sixx robot

located in the simulation environment along the arranged

trajectory. After the process is complete, the program returns to

the first step.

1) CNN Module

Training of CNN, which is a part of developed software,

consist of three steps as dataset forming, train dataset

augmenting, and model training.

Fifty-three videos with a total size of 1.54GB were recorded

in the experimental environment in order to create a dataset.

Forty-five of these videos were used for the training and

validation dataset. Rest of these videos were used for the test

307

http://dergipark.gov.tr/bajece

BALKAN JOURNAL OF ELECTRICAL & COMPUTER ENGINEERING, Vol. 11, No. 4, October 2023

Copyright © BAJECE ISSN: 2147-284X http://dergipark.gov.tr/bajece

dataset. Total 8000 images, that were 180×320px size, were

obtained from training and validation videos. 512 images, that

were according to homogeneous each class, were randomly

separated from this dataset for the validation dataset. Rest of

these images was used as training dataset. Total 128 images,

that were 180×320px size, were obtained from test videos to

generate test dataset. Formed datasets were contained of four

class as Zero, One, Two, and Three. Each class label was

typified finger count of hand gestures. The data contained in

One labelled class has 4 location information (𝑥𝐽, 𝑦𝐽 and 𝑥𝑇 , 𝑦𝑇),

as well as class labels. J and T letters were symbolized joint and

fingernail of index finger, respectively. Class label and position

data of datasets was given in Figure 3.

Data augmentation is an operation that artificial images,

which are generated from training dataset images, are

incorporated into the training dataset to increase the

performance of CNN. The images were rotated 180° and the

brightness of the rotated images were modified ratio of ±25%

in order to increase the variety of images in the training data set.

After these processes, obtained artificial images was added in

the training dataset.

(a) (b) (c) (d)

Fig. 3. Classes in the datasets; (a) Zero, (b) One, (c) Two, (d) Three

After the data sets were created, CNN structure was trained

using the block diagram in Figure 4.

Fig. 4. Block diagram of CNN structure

𝑦𝑆 and 𝑦𝐿 were shown class label and positions data of image

in Figure 4, respectively. Eight different CNN model was tried

as pre-trained CNN. �̂�𝑠 and �̂�𝐿 were symbolized predicted class

and position data of CNN structure, respectively. Total,

classification, and localization loss functions were presented as

𝐿, 𝐿𝑠, and 𝐿𝐿 symbols, respectively. Cross-Entropy loss function

was used as classification loss function and squared error was

utilized as localization loss function. If the class of the input

image is One, the total loss function is calculated by using a

formula that sums the mean of 𝐿𝑆 and 𝐿𝐿. Otherwise, the total

loss function equals the mean of the classification loss function.

The black dashed lines in Figure 4 show the blocks used only

during the training of the CNN architecture. The dropout layer

is also a structure consisting of dashed lines. The dropout layer

ratio was chosen as 0.25. The black solid-lined blocks show the

blocks used in both training and testing phases. In the fully

connected layer, one of the black solid-lined blocks, there are

128, 4, and 4 neurons, respectively. ReLU, Softmax, and

Sigmoid are activation functions found in network outputs.

Detailed information about the functions of the blocks was

mentioned in [28]–[30]. Also, the CNN structure was trained

during 10 epochs by using the Adam optimization algorithm.

The learning rate was chosen as 10-3 in the first 5 epochs and

the learning rate was adjusted as 10-4 for the rest of the training

process. Mini-batch size was chosen as 32. Weights of the pre-

trained CNNs were set up as ImageNet and update of pre-

trained CNNs weights were continued during the training

308

http://dergipark.gov.tr/bajece

BALKAN JOURNAL OF ELECTRICAL & COMPUTER ENGINEERING, Vol. 11, No. 4, October 2023

Copyright © BAJECE ISSN: 2147-284X http://dergipark.gov.tr/bajece

process. The training process was shortened by using transfer

learning.

2) Process Selection and Trajectory Generation Module

Process selection and trajectory generation were realized in

this part of developed software by depending on class and

position data obtained from CNN structure. Process selection

operation was performed before trajectory generation. Firstly,

noised class labels need to remove from obtained class labels to

choose the process. The noised labels are formed by blurred

images that occur when the operator’s hand enters or quits on

video. It is inspired by the exponential weight averages formula

presented in Equation 1 to eliminate noised labels.

𝑉𝑘 = 𝛽𝑉𝑘−1 + (1 − 𝛽)𝑄𝑘 , 𝑘 = 2,3, … , 𝑁 (1)

In Equation 1, 𝑉, 𝛽, 𝑄, 𝑁, and 𝑘 refer to mean value, mean

coefficient, current measure, total sample size, and discrete time

index, respectively. How many samples will be averaged with

𝛽 is determined by using as flows:

𝑇𝑠 =
1

1 − 𝛽
 (2)

Total sample size is shown as 𝑇𝑠 in Equation 2. Equation 1

was not used because the class output of CNN wasn't numerical

value. Also, bias coefficient was not used owing to the same

reason. Equation 3 that formed by inspiring Equation 1 was

used to filter class labels.

𝑓𝐿𝑘 = {
𝑄𝑘 𝑘 ≤ 𝑇𝑠

𝑚𝑜𝑑(𝑓𝐿𝑘−𝑇𝑠
, 𝑓𝐿𝑘−𝑇𝑠+1, … , 𝑓𝐿𝑘−1, 𝑄𝑘) 𝑘 > 𝑇𝑠

 (3)

𝑓𝐿 is typified filtered label data in Equation 3. Raw and

filtered label data that belong to the sealing process were given

in Figure 5.

0 100 200 300 400 500 600 700

Sample

Zero

One

Two

Three

Raw Label

Filtered Label

C
la

ss

Fig. 5. Label data for sealing process

The red arrows in Figure 5 were shown noised label data. The

detected noised labels were eliminated by using Equation 3. In

the current study, 𝛽 coefficient was chosen as 0.97. 𝛽

coefficient is range of between 0 and 1 as can be understood

from Equation 2. Also, while the noise increases as the 𝛽

approaches 0, the inertia of the system increases as it

approaches 1.

After filtering the label data, the process is determined by

using the flowchart presented in Figure 6.

Start

 Get Filtered

Label (FL)

tmpFL=0

Process(P)=0

Process

Active(PA)=0

tmpFL=1 &

FL=0 & P=0

P = 1

(Welding)

P = 2

(Sealing)

tmpFL=2 &

FL=0 & P=0

tmpFL=2 &

FL=0 & P 0

PA = 1

Yes

No

Yes

No

Yes

FL=1 & PA 0

Trajectory

Generation

No

Yes

FL=3 & P 0

P=0

PA=0

No

Yes

tmpFL=FL

Stop

No

Fig. 6. Process determination flowchart

Firstly, the process is determined in Figure 6. After the

defined process is activated, the trajectory generation is started

when the filtered label is One. The trajectory generation process

is continued until the filtered label is Three. The position and

orientation of the index finger are calculated by using Equation

4-7 and the joint and fingernail position of the index finger. The

reason for calculating the positions of the joint and fingernail of

the index finger is that the operator can also determine the

309

http://dergipark.gov.tr/bajece

BALKAN JOURNAL OF ELECTRICAL & COMPUTER ENGINEERING, Vol. 11, No. 4, October 2023

Copyright © BAJECE ISSN: 2147-284X http://dergipark.gov.tr/bajece

orientation of the manipulator in orientation-dependent

operations such as welding.

𝛼 = 𝑡𝑎𝑛−1(
𝑦𝑇 − 𝑦𝐽

𝑥𝑇 − 𝑥𝐽

) (4)

𝑑 = √(𝑥𝑇 − 𝑥𝐽)2 + (𝑦𝑇 − 𝑦𝐽)2 (5)

𝑥𝐹 = 𝑥𝑇 +
𝑑

4
sin (𝛼) (6)

𝑦𝐹 = 𝑦𝑇 +
𝑑

4
cos (𝛼) (7)

𝛼 refers to the orientation angle of the index finger in

Equation 4. 𝑑 represents the distance between the joint and

fingernail of the index finger in Equation 5. (𝑥𝐹 , 𝑦𝐹) are typified

fingertip positions of the index finger on X and Y axes,

respectively. The hand quickly moves towards the metal object

during the trajectory generation process. The distance between

two points was calculated using Equation 5 with finger position

information obtained from two sequential images in order not

to create a trajectory during this orientation process. If the

calculated distance is lower than 7px, obtained (𝑥𝐹 , 𝑦𝐹) was

included trajectory. Otherwise, (𝑥𝐹 , 𝑦𝐹) was not incorporated

trajectory.

𝑡𝑥𝑘 = 𝛿𝑥𝐹 𝑘
+ ∅(𝑥𝐹 𝑘−1

, 𝑥𝐹 𝑘−2
, … , 𝑥𝐹 𝑘−𝑁

) (8)

𝑡𝑦𝑘 = 𝛿𝑦𝐹 𝑘
+ ∅(𝑦𝐹 𝑘−1

, 𝑦𝐹 𝑘−2
, … , 𝑦𝐹 𝑘−𝑁

) (9)

Trajectory of 𝑡𝑟𝑗2×𝑘 = [𝑡𝑥, 𝑡𝑦] was obtained utilizing

Equation 8 and 9. 𝑡𝑥 and 𝑡𝑦 refer to trajectory position on X

and Y axes, respectively. 𝛿, ∅, and 𝑁 represent last measure

coefficient, mean coefficient, and count of elements to be

averaged, respectively. These value of the coefficient were

chosen as 0.5, 0.5, and 5, respectively. Noises on the trajectory

were partially cleared by using Equations 8 and 9.

3) Trajectory Regulation Module

Trajectory regulation module was formed to establish

relationship between generated trajectory and metal object and

decrease noise on trajectory. An image that is not consist

operator’s hand was taken from the video to regulate trajectory.

Initially, an image without operator's hand was taken from the

video to regulate trajectory. The image was converted greyscale

image and Sobel filter was applied to the greyscale image.

Edges of object that is in the image was roughly calculated with

the method as can be seen in Figure 7b. After this step, section

of object in image was cropped by help of object edges. The

cropped image was converted to grayscale image and blurred,

respectively. Lastly, Sobel filter was applied on the blurred

image and Figure 7d, that shows more clearly edges of object,

was obtained. Blur filter was not used in first step because

undesired edges were occurred in image.

(a) (b) (c) (d)

Fig. 7. Obtaining edge images process; (a) Original image, (b) Rough edge

image, (c) Cropped image, (d) Edge image

Distance between each of the edge points in the obtained

edge image and each of the 𝑡𝑟𝑗 points was measured by using

Equation 5. 𝑡𝑟𝑗 points that were 15px away from edge points

were removed from the trajectory after the measured

distances. 𝑚𝑡𝑟𝑗 trajectory that was not contained in the 15px

away points was formed. Finally, the trajectory regulating

process was carried out by applying a 20 × 1 dimensional

median filter to the positions of the X and Y axis in 𝑚𝑡𝑟𝑗.

Figures 11 and 12 can be examined for a better understanding

of the trajectory and regulated trajectory difference.

B. Simulation of Developed Software

In this study, the KUKA KR Agilus KR6 R900 sixx robot

with 6 axes and an Euler wrist was used in our laboratory. The

maximum payload and reach of this robot are 6kg and 901mm

respectively. Also, the position repeatability of this robot is

0.03mm. Developed software was simulated on CoppeliaSim

program that is a simulation environment. Before the simulation

scene was not formed, a 3D solid model of the robot was drawn

on the SolidWorks program. The formed 3D solid model was

converted to URDF (Unified Robotic Description Format) with

URFD exporter [31]. Then the URDF file was added to the

designed scene as presented in Figure 8.

1
2

4

3

5

7

6

8

9

10

Fig. 8. Simulation environment

Manipulator (1) and robot PC (2) are components of the robot

in Figure 9. Work plane, operator, and the PC that the software

will run represents as (3), (4), and (5) respectively. Cameras (6-

7) were added to the simulation environment to watch to the

work plane from different angles. Video streams from the

cameras were shown (9-10) windows, respectively. It is

assumed that a camera is placed at the endpoint of the

manipulator that records the hand movements of the operator

and the video stream of this camera is presented on the screen

(8). ManyCam program [32] was used to input video from

310

http://dergipark.gov.tr/bajece

BALKAN JOURNAL OF ELECTRICAL & COMPUTER ENGINEERING, Vol. 11, No. 4, October 2023

Copyright © BAJECE ISSN: 2147-284X http://dergipark.gov.tr/bajece

outside to the simulation environment while creating the screen.

The manipulator in the simulation environment was moved

using MATLAB package program and the inverse kinematic

solution of the simulation program. The simulation program

was run using the Newton dynamic engine with 50ms step size.

III. RESULTS

A part of the developed software is the CNN structure. The

most important building block of this CNN architecture is pre-

trained CNN structures. In the current study, CNN structure that

using 8 different pre-trained CNN was trained. After the

training process, training, validation, and test performance were

presented in Table 1.

TABLE I

LOSS FUNCTION VALUES

Algorithms
PS[33]

(MB)

TT

(s)
𝑳𝒕𝒓𝒂𝒊𝒏 𝑳𝒗𝒂𝒍𝒊𝒅 𝑳𝒕𝒆𝒔𝒕

ResNet50[34] 98 1030 0.712 0.429 2.396

VGG16[35] 528 2460 1.539 1.515 1.412

DenseNET121[36] 33 2120 0.961 0.886 0.709

InceptionResNetV2

[37]
215

3820
0.016 0.003 0.533

EfficientNetB0[38] 29 2570 0.031 0.092 0.407

MobileNetV2[39] 14 1930 0.019 0.002 0.155

InceptionV3[40] 92 1720 0.017 0.230 0.080

Xception[41] 88 2200 0.011 0.003 0.005

Bold numbers indicate the best results.

Parameter size and training time were shown as PS and TT

in Table 1, respectively. The CNN training process was

performed on the Google Colab platform. PC components used

on this platform; GPU: Nvidia P100-16GB, CPU: Intel Xeon-

2.30GHz, RAM: 25.51GB, Disk memory: 68.40GB. Since the

best test result was obtained from the Xception algorithm, the

loss values of Xception and other algorithms were compared by

using multivariate Tukey comparison test and the Tukey test

results are presented in Table 2.

TABLE II

XCEPTION AND OTHER METHODS COMPARISON

Algorithms 𝑳 ± 𝑺𝑫
p

(According to Xception)

ResNet50 1.1795±0.8683 <0.05*

VGG16 1.4889±0.0552 <0.05*

DenseNET121 0.8522±0.1057 0.238

InceptionResNetV2 0.1846±0.2468 0.999

EfficientNetB0 0.1771±0.1649 0.999

MobileNetV2 0.0592±0.0685 1.000

InceptionV3 0.1096±0.0894 1.000

Xception 0.0067±0.0033 -

* Statistically significant difference. 𝑳 ± 𝑺𝑫 represents the mean of loss and

standard deviation.

The Xception algorithm was found to have statistical

differences with the ResNET50 and VGG16 algorithms as can

be seen in Table 2. There is no statistical difference between

other algorithms and the Xception algorithm. In addition, after

the training process was completed, all data in the validation

and test datasets were classified by the CNN architecture and

the relevant classes were located. These classification and

localization results are shown in Figure 9.

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0

20

40

60

80

100

L
o
c
a

liz
a

ti
o
n

 (
M

S
E

)

C
la

s
s
if
ic

a
ti
o

n
 (

A
c
c
.
R

a
te

 %
)

(a)

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0

20

40

60

80

100

L
o
c
a

liz
a

ti
o
n

 (
M

S
E

)

C
la

s
s
if
ic

a
ti
o

n
 (

A
c
c
.
R

a
te

 %
)

(b)

Fig. 9. Classification and localization results; (a) Results of the validation

dataset, (b) Results of the test dataset

The Xception algorithm was used in the application as the

best performance was obtained using the algorithm. Firstly, the

operator recorded various sealing and welding process videos.

These recorded videos were processed by CNN as seen in

Appendix 1. Sealing process, welding process, and joint-

fingernail of index finger were shown with black, red, and blue

colour, respectively in Appendix 1. Then, generated trajectories

were regulated and regulated trajectories were given in Figure

10 and 11.

(a) (b) (c) (d)
Fig. 10. Visual results of trajectory regulation; (a) Sealing process

trajectory, (b) Regulated sealing process trajectory, (c) Welding process

trajectory, (d) Regulated welding process trajectory

311

http://dergipark.gov.tr/bajece

BALKAN JOURNAL OF ELECTRICAL & COMPUTER ENGINEERING, Vol. 11, No. 4, October 2023

Copyright © BAJECE ISSN: 2147-284X http://dergipark.gov.tr/bajece

60 80 100 120 140 160 180 200 220 240 260

x(px)

270

280

290

300

310

320

330

Trajectory

Regulated Trajectory

y
(p

x
)

(a)

20 40 60 80 100 120 140 160 180 200

x(px)

190

200

210

220

230

240

250

260

270

Trajectory

Regulated Trajectory

y
(p

x
)

(b)

Fig. 11. Graphical results of trajectory regulation; (a) Sealing process
trajectory, (b) Welding process trajectory

The regulated trajectories were sent to the robot that in the

simulation environment. The desired tasks were simulated as

seen in Figure 12.

Axis angles, axis moments, tool centre point (TCP) position

and trajectory tracking error occurring during the sealing and

welding process are presented in Figures 13 and 14.

(a) (b)

Fig. 12. Simulated desired tasks; (a) Sealing process, (b) Welding process

0 10 20 30 40 50 60 70 80

Time(s)

-30

-20

-10

0

10

20

30

40

50

60

70

A1

A2

A3

A4

A5

A6

A
x
is

 A
n

g
le

s
(°

)

0 10 20 30 40 50 60 70 80

Time(s)

-20

0

20

40

60

80

100

120

140

160

180

A1

A2

A3

A4

A5

A6

A
x

is
 T

o
rq

u
es

 (
N

m
)

(a) (b)

-0.1 -0.08 -0.06 -0.04 -0.02 0 0.02 0.04 0.06 0.08 0.1

x(m)

1.375

1.38

1.385

1.39

1.395

Regulated Trajectory

TCP Trajectory

y
(m

)

0 100 200 300 400 500 600

Sample

-0.02

-0.015

-0.01

-0.005

0

0.005

0.01

0.015

0.02

X Axis

Y Axis

E
rr

o
r(

m
)

(c) (d)

Fig. 13. Values occurring during the sealing process; (a) Axis angles, (b) Axis Moments, (c) TCP trajectory, (d) Error values during trajectory tracking

312

http://dergipark.gov.tr/bajece

BALKAN JOURNAL OF ELECTRICAL & COMPUTER ENGINEERING, Vol. 11, No. 4, October 2023

Copyright © BAJECE ISSN: 2147-284X http://dergipark.gov.tr/bajece

0 10 20 30 40 50 60

Time(s)

-20

-10

0

10

20

30

40

50

60

A1

A2

A3

A4

A5

A6

A
x
is

 A
n

g
le

s(
°)

0 10 20 30 40 50 60

Time(s)

-50

0

50

100

150

200

A1

A2

A3

A4

A5

A6

A
x

is
 T

o
rq

u
es

 (
N

m
)

(a) (b)

-0.1 -0.08 -0.06 -0.04 -0.02 0 0.02 0.04 0.06 0.08 0.1

x(m)

1.455

1.46

1.465

1.47

1.475

Regulated Trajectory

TCP Trajectory

y
(m

)

0 50 100 150 200 250 300 350 400

Sample

-0.01

-0.008

-0.006

-0.004

-0.002

0

0.002

0.004

0.006

0.008

0.01

X Axis

Y Axis

E
rr

o
r(

m
)

(c) (d)

Fig. 14. Values occurring during the welding process; (a) Axis angles, (b) Axis Moments, (c) TCP trajectory, (d) Error values during trajectory tracking

After sealing and welding processes, metal object in work

plane was given in Figure 15.

(a)

(b)

Fig. 15. Processed metal object; (a) Sealing process, (b) Welding process

The desired task by the operator was performed by the robot

as it can be seen in Figure 15. The sealing process, welding

process, and robot movements were given as videos in the [42]

and [43], respectively.

IV. DISCUSSION

Fingertip location was calculated by using skin colour in

some studies when studies in the literature that fingertips

detection were examined [11]–[13]. Depth images that were

obtained from RGB-D sensors were used to detect fingertip

position in other fingertip detection studies [14]–[16]. Skin

colour and depth images were not used in this study. Also, when

fingertip detection studies that were based on CNN structures

were investigated, using cascade CNN structure was seen [18].

A single CNN was used as different from the study. In addition,

when fingertip detection studies that were in the robotic field

were researched, special sensors were developed to perceive

hand gestures [19], [20]. In the current study, a standard camera

was used to sense hand gestures.

In the current study, solving of classification and localization

problem was implemented to hand gestures recognition and

fingertip position detection. In this way, two different problems

were solved with a single structure. This study has some

limitations. In this study, the most important restriction of the

current study is that the thicknesses of the parts to be machined

were predefined and a standard depth was worked on. Another

limitation is the CNN architectures used. Pre-trained CNN

architectures were used to increase the accuracy performance

by reducing the training time with the transfer learning method.

V. CONCLUSION

In this study, a robot software capable of performing

processes such as sealing and welding was developed for small-

scale plants without mass production capabilities. Operators

without any prior robot education/knowledge can program the

robot using finger movements through the developed robot

software. This programmability capability was achieved

through the integration of the CNN, process selection-trajectory

generation, and trajectory regulation modules. The CNN

structure consisted of a pre-trained CNN, fully connected

layers, and activation functions connected in series. Eight pre-

trained CNNs were trained on formed datasets and

subsequently tested, with the Xception algorithm yielding the

best result (Ltest=0.0051). The CNN structure was used to

313

http://dergipark.gov.tr/bajece
https://drive.google.com/file/d/1BbK_wv2Q76ItVLSbViC1Vb7YpxlN-tEa/view?usp=sharing
https://drive.google.com/file/d/1Y5jE8uPoiJMKLEHeG-wj1OqVRs1bO48-/view?usp=sharing
https://drive.google.com/file/d/1Y5jE8uPoiJMKLEHeG-wj1OqVRs1bO48-/view?usp=sharing

BALKAN JOURNAL OF ELECTRICAL & COMPUTER ENGINEERING, Vol. 11, No. 4, October 2023

Copyright © BAJECE ISSN: 2147-284X http://dergipark.gov.tr/bajece

classify image data and determine the positions of the robot's

joints and the index finger's fingernail. With the classification

data, the process selection and trajectory generation module

detected the desired task, and the same module created the

trajectory based on the positions data. Furthermore, a special

algorithm was developed within the process selection and

trajectory generation module to reduce any noise that may occur

during video processing. The generated trajectory was then

regulated by the trajectory regulation module to ensure proper

alignment with the objects. Following this step, the robot

performed the desired process within the simulation

environment. In future work, an additional module will be

developed to predict trajectories based on the objects and will

be incorporated into the software. Subsequently, the software

will undergo testing on a real robot. In addition, the developed

software will become more improved by using other deep

learning architectures such as LSTM.

REFERENCES

[1] A. Dobra, “General classification of robots. Size criteria,” in 2014

23rd International Conference on Robotics in Alpe-Adria-Danube

Region (RAAD), IEEE, 2014, pp. 1–6.
[2] “Defining The Industrial Robot Industry and All It Entails.”

https://www.robotics.org/robotics/industrial-robot-industry-and-all-
it-entails (accessed Sep. 28, 2020).

[3] IFR, World Robotics 2022. 2022. [Online]. Available:

https://ifr.org/downloads/press2018/2022_WR_extended_version.pd
f

[4] S. M. M. Rahman, Z. Liao, L. Jiang, and Y. Wang, “A regret-based

autonomy allocation scheme for human-robot shared vision systems
in collaborative assembly in manufacturing,” in IEEE International

Conference on Automation Science and Engineering, 2016, pp. 897–

902. doi: 10.1109/COASE.2016.7743497.
[5] H. Ding, M. Schipper, and B. Matthias, “Collaborative behavior

design of industrial robots for multiple human-robot collaboration,”

in 2013 44th International Symposium on Robotics, ISR 2013, 2013.
doi: 10.1109/ISR.2013.6695707.

[6] S. M. M. Rahman, Y. Wang, I. D. Walker, L. Mears, R. Pak, and S.

Remy, “Trust-based compliant robot-human handovers of payloads
in collaborative assembly in flexible manufacturing,” in IEEE

International Conference on Automation Science and Engineering,

2016, pp. 355–360. doi: 10.1109/COASE.2016.7743428.
[7] T. Hamabe, H. Goto, and J. Miura, “A programming by

demonstration system for human-robot collaborative assembly

tasks,” in 2015 IEEE International Conference on Robotics and
Biomimetics, IEEE-ROBIO 2015, 2015, pp. 1195–1201. doi:

10.1109/ROBIO.2015.7418934.

[8] H. Ding, J. Heyn, B. Matthias, and H. Staab, “Structured
collaborative behavior of industrial robots in mixed human-robot

environments,” in IEEE International Conference on Automation

Science and Engineering, 2013, pp. 1101–1106. doi:
10.1109/CoASE.2013.6653962.

[9] J. L. Raheja, K. Das, and A. Chaudhary, “Fingertip Detection: A Fast

Method with Natural Hand,” Int. J. Embed. Syst. Comput. Eng. Local
Copy, vol. 3, no. 2, pp. 85–88, 2012, [Online]. Available:

http://arxiv.org/abs/1212.0134

[10] S. Mukherjee, S. A. Ahmed, D. P. Dogra, S. Kar, and P. P. Roy,
“Fingertip detection and tracking for recognition of air-writing in

videos,” Expert Syst. Appl., vol. 136, pp. 217–229, 2019, doi:

10.1016/j.eswa.2019.06.034.
[11] S. K. Kang, M. Y. Nam, and P. K. Rhee, “Color based hand and finger

detection technology for user interaction,” in 2008 International

Conference on Convergence and Hybrid Information Technology,
ICHIT 2008, 2008, pp. 229–236. doi: 10.1109/ICHIT.2008.292.

[12] G. Wu and W. Kang, “Vision-Based Fingertip Tracking Utilizing

Curvature Points Clustering and Hash Model Representation,” IEEE
Trans. Multimed., vol. 19, no. 8, pp. 1730–1741, 2017, doi:

10.1109/TMM.2017.2691538.

[13] G. Wu and W. Kang, “Robust Fingertip Detection in a Complex

Environment,” IEEE Trans. Multimed., vol. 18, no. 6, pp. 978–987,

2016, doi: 10.1109/TMM.2016.2545401.
[14] J. Yang, X. Ma, Y. Sun, and X. Lin, “LPPM-Net: Local-aware point

processing module based 3D hand pose estimation for point cloud,”

Signal Processing: Image Communication, vol. 90. p. 116036, 2021.
doi: 10.1016/j.image.2020.116036.

[15] C. Wang, Z. Liu, M. Zhu, J. Zhao, and S. C. Chan, “A hand gesture

recognition system based on canonical superpixel-graph,” Signal
Processing: Image Communication, vol. 58. pp. 87–98, 2017. doi:

10.1016/j.image.2017.06.015.

[16] J. Shin and C. M. Kim, “Non-Touch Character Input System Based
on Hand Tapping Gestures Using Kinect Sensor,” IEEE Access, vol.

5, pp. 10496–10505, 2017, doi: 10.1109/ACCESS.2017.2703783.

[17] J. L. Raheja, A. Chaudhary, and K. Singal, “Tracking of fingertips
and centers of palm using KINECT,” in Proceedings - CIMSim 2011:

3rd International Conference on Computational Intelligence,

Modelling and Simulation, 2011, pp. 248–252. doi:
10.1109/CIMSim.2011.51.

[18] Y. Huang, X. Liu, L. Jin, and X. Zhang, “DeepFinger: A Cascade

Convolutional Neuron Network Approach to Finger Key Point
Detection in Egocentric Vision with Mobile Camera,” in 2015 IEEE

International Conference on Systems, Man, and Cybernetics, SMC

2015, 2016, pp. 2944–2949. doi: 10.1109/SMC.2015.512.
[19] F. Chen et al., “WristCam: A Wearable Sensor for Hand Trajectory

Gesture Recognition and Intelligent Human-Robot Interaction,”

IEEE Sens. J., vol. 19, no. 19, pp. 8441–8451, 2019, doi:
10.1109/JSEN.2018.2877978.

[20] G. Shi, C. S. Chan, W. J. Li, K. S. Leung, Y. Zou, and Y. Jin, “Mobile
human airbag system for fall protection using mems sensors and

embedded SVM classifier,” IEEE Sens. J., vol. 9, no. 5, pp. 495–503,

2009, doi: 10.1109/JSEN.2008.2012212.
[21] L. Peternel, N. Tsagarakis, and A. Ajoudani, “A human-robot co-

manipulation approach based on human sensorimotor information,”

IEEE Trans. Neural Syst. Rehabil. Eng., vol. 25, no. 7, pp. 811–822,
2017, doi: 10.1109/TNSRE.2017.2694553.

[22] C. Li, S. Zhang, Y. Qin, and E. Estupinan, “A systematic review of

deep transfer learning for machinery fault diagnosis,”
Neurocomputing, vol. 407, pp. 121–135, 2020, doi:

10.1016/j.neucom.2020.04.045.

[23] R. Ye and Q. Dai, “Implementing transfer learning across different
datasets for time series forecasting,” Pattern Recognit., vol. 109,

2021, doi: 10.1016/j.patcog.2020.107617.

[24] Z. Li, B. Liu, and Y. Xiao, “Cluster and dynamic-TrAdaBoost-based
transfer learning for text classification,” in ICNC-FSKD 2017 - 13th

International Conference on Natural Computation, Fuzzy Systems

and Knowledge Discovery, 2018, pp. 2291–2295. doi:
10.1109/FSKD.2017.8393128.

[25] S. Mei, X. Liu, G. Zhang, and Q. Du, “Sensor-specific Transfer

Learning for Hyperspectral Image Processing,” in 2019 10th
International Workshop on the Analysis of Multitemporal Remote

Sensing Images, MultiTemp 2019, 2019. doi: 10.1109/Multi-

Temp.2019.8866896.
[26] S. Hou, B. Dong, H. Wang, and G. Wu, “Inspection of surface defects

on stay cables using a robot and transfer learning,” Autom. Constr.,

vol. 119, 2020, doi: 10.1016/j.autcon.2020.103382.
[27] G. A. Atkinson, W. Zhang, M. F. Hansen, M. L. Holloway, and A. A.

Napier, “Image segmentation of underfloor scenes using a mask

regions convolutional neural network with two-stage transfer
learning,” Autom. Constr., vol. 113, 2020, doi:

10.1016/j.autcon.2020.103118.

[28] M. C. Bingol and O. Aydogmus, “Practical application of a safe
human-robot interaction software,” Ind. Rob., vol. 47, no. 3, pp. 359–

368, 2020, doi: 10.1108/IR-09-2019-0180.

[29] M. C. Bingol and O. Aydogmus, “Performing predefined tasks using
the human–robot interaction on speech recognition for an industrial

robot,” Eng. Appl. Artif. Intell., vol. 95, 2020, doi:

10.1016/j.engappai.2020.103903.
[30] M. C. Bingol and Ö. Aydoğmuş, “İnsan-Robot Etkileşiminde İnsan

Güvenliği için Çok Kanallı İletişim Kullanarak Evrişimli Sinir Ağı

Tabanlı Bir Yazılımının Geliştirilmesi ve Uygulaması,” Fırat
Üniversitesi Müh. Bil. Derg., vol. 31, no. 2, pp. 489–495, 2019, doi:

10.35234/fumbd.557590.

[31] OSRF, “SolidWorks to URDF Exporter,” 2020.
http://wiki.ros.org/sw_urdf_exporter (accessed Oct. 17, 2020).

[32] “ManyCam Main Page.” https://manycam.com/ (accessed Oct. 17,

314

http://dergipark.gov.tr/bajece

BALKAN JOURNAL OF ELECTRICAL & COMPUTER ENGINEERING, Vol. 11, No. 4, October 2023

Copyright © BAJECE ISSN: 2147-284X http://dergipark.gov.tr/bajece

2020).

[33] TensorFlow, “Keras Applications,” 2020.
https://keras.io/api/applications/%0A (accessed Oct. 15, 2020).

[34] K. He, X. Zhang, S. Ren, and J. Sun, “Deep Residual Learning for

Image Recognition,” 2015.
[35] K. Simonyan and A. Zisserman, “Very Deep Convolutional

Networks for Large-Scale Image Recognition,” 2014.

[36] G. Huang, Z. Liu, L. van der Maaten, and K. Q. Weinberger,
“Densely Connected Convolutional Networks,” 2016.

[37] C. Szegedy, S. Ioffe, V. Vanhoucke, and A. Alemi, “Inception-v4,

Inception-ResNet and the Impact of Residual Connections on
Learning,” 2016.

[38] M. Tan and Q. V. Le, “EfficientNet: Rethinking Model Scaling for

Convolutional Neural Networks,” 2019.
[39] M. Sandler, A. Howard, M. Zhu, A. Zhmoginov, and L.-C. Chen,

“MobileNetV2: Inverted Residuals and Linear Bottlenecks,” 2018.

[40] C. Szegedy, V. Vanhoucke, S. Ioffe, J. Shlens, and Z. Wojna,
“Rethinking the Inception Architecture for Computer Vision,” 2015.

[41] F. Chollet, “Xception: Deep Learning with Depthwise Separable

Convolutions,” 2016.
[42] M. C. Bingol and O. Aydogmus, “Sealing Process,” 2020.

https://drive.google.com/file/d/1BbK_wv2Q76ItVLSbViC1Vb7Ypx

lN-tEa/view?usp=sharing (accessed Nov. 16, 2020).
[43] M. C. Bingol and O. Aydogmus, “Welding Process,” 2020.

https://drive.google.com/file/d/1Y5jE8uPoiJMKLEHeG-

wj1OqVRs1bO48-/view?usp=sharing (accessed Nov. 16, 2020).

BIOGRAPHIES

 MUSTAFA CAN BINGOL received the B.S.

(2014), M.S. (2016), and Ph.D. (2021)

degree in mechatronic engineering from

the University of Firat. Since 2023, He has

been an Assistant Professor in Department

of Electrical-Electronic Engineering,

Faculty of Engineering-Architecture,

Burdur Mehmet Akif Ersoy University,

Burdur, Turkey. He works in the field of robotics.

OMUR AYDOGMUS received the B.S.

(2000), M.S. (2004), and Ph.D. (2011)

degree in electric-electronics engineering

from the University of Firat. Since 2019,

He has been a Professor in Department of

Mechatronics Engineering, Faculty of

Technology, Firat University, Elazig,

Turkey. His research interests include

electric machines and robotics.

APPENDICES

Appendix 1. Processing video images, (a) Sealing process,

(b) Welding process

(a)

(b)

315

http://dergipark.gov.tr/bajece

