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Abstract

Closed-from formulas for the general solution to a difference equation are given, generaliz-
ing some special cases in the literature. We also analyze and give some comments on the
results on the long-term behaviour of some solutions of the special cases.
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1. Introduction and preliminaries

We use the standard notations N, Z, R for the sets of natural, whole and real numbers,
respectively. If | € Z, then Ny :={n € Z :n > 1}. If s,t € Z, s < t, then i = s, ¢, means
that ¢ takes the values of Z such that s < ¢ <t. We understand that H:’an b; = 1, for any
m € Z.

Many formulas for solutions to difference equations and systems in closed form can be
found in quite old literature [9,12,13,21,22]. For some old presentations of the methods
for finding them see [19,20]. One can also consult, e.g., [10,15,23-25,27,28]. Some recent
formulas and tricks for finding solutions to nonlinear difference equations and systems can
be found, e.g., in [14,35,37,49-60]. The formulas are usually useful in dealing with the
solutions to the equations and systems. However, it is a rare situation that an equation
or system is solvable. Even if the equation or system is solvable, there is a possibility that
obtained formulas are not so useful for investigation of the long-term behavior of their
solutions. Therefore, one can try to find some other type of relations, for instance, their
invariants [30,31,33,39,40].

The bilinear difference equation

, n € Ny, (1.1)

where a,b,c,d,xg € R, is one of the first nonlinear equations for which was shown its
solvability [19,20]. In [52], among other things, we presented some historical facts about
the difference equation. Many other facts and connections with other difference equations
and systems can be found, for instance, in [1,2,10,11,18-20,23,26-28,51,52,56,57, 60].
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Eq.(1.1) can be solved by transforming it to a linear difference equation of second order.
This fact, among other things, is also employed in our studies presented here. Generally
speaking, solvability of many difference equations and systems is shown by transforming
them to some known solvable ones by some suitable transformations [14,35,49-55,57-60).

The following result was essentially proved in [9] and [12], and can be found in many
books and papers (see, e.g., [18,51,61]).

Lemma 1.1. Consider the equation
Tnt2 +a1Zpy1 + aprn, =0, n € Ny,
where a1, xo,r1 € R and ag € R\ {0}. Then, the following statements hold.
(1) If a3 # 4ay, then

T, = (1'1 — )\2&30))\1 — (331 — )\1%0))\2 : n e No, (1'2)
Al — Ao

where

—ay +/a} — 4ag und —ay —\/a? — 4ag
2= .

2 2

A =

(2) If a} = 4ay, then
Tn = ((z1 — Azo)n + Az0) A", n € Ny, (1.3)
where A = —ay /2.

The equation
bxpx,—4

—————, n € Ny, 1.4
CTp—3 + dTp_g 0 (1.4)

Tp+1 = 0Ty +
where a,b,c,d € R, z_; € R, j = 0,4, was studied recently in [38], where some formulas
for solutions in the cases:

(1) a=b=c=d=1;

(2)a=b=c=1,d=—-1;

B)a=c=1,b=d=—1;

4)a=c=d=1,b= -1,
were presented. Besides, [38] gives some claims on the long-term behavior of solutions to
Eq.(1.4).

The purpose of the paper is to show that Eq.(1.4) is a special case of a solvable difference
equation, from which the solvability in the cases (1)-(4) follows. We also analyze the claims
on the long-term behavior of solutions to Eq.(1.4) formulated in [38] and show that they
are false.

2. Solvability of a generalization of Eq. (1.4)

Here we show that Eq.(1.4) is a special case of a solvable difference equation. Before
we state our first result note that Eq.(1.4) can be rewritten in the form

acty—3 + (ad + b)xy—_4
CTp—3 + dTp_y

Tp+l = Tn , n € Np. (2.1)

The form suggests studying a natural generalization of Eq.(1.4) (see Eq.(2.2) below).
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Theorem 2.1. Let o, 3,7,0 € R, a® + %2 # 0 # 72 4+ 62, and U be a homeomorphism of
R such that ¥(0) = 0. Then, the equation

a\II(l'n—EI) + B\P($n—4)
YU (zp—3) + 0V (2p—4)

Tppg = U1 (\Il(xn) ) . néeN, (2.2)

is solvable in closed form.

Proof. If there is ng € Ny such that x,, = 0, then if x,,4+; is defined it must be equal
to zero. But then x,,45 is not defined. Hence, from now on for a solution (x,)nen_, to
Eq.(2.2) we suppose x,, # 0 for n € N_4, which implies

V(z,) #0, for neN_y. (2.3)
Eq.(2.2) along with the conditions posed on ¥ imply
aV(zy—3) + BY(xn_4)

Y (xy, = V(z, s € Np. 2.4
Using the transformation
= —— N_s. 2.5
Un = Gy "EN-3 (2.5)
in (2.4) we obtain the equation
Yp—3 + B
ntl = — < € No. 2.6
T s rs PE° (26)
Let
29 = yym_j, meNy, j=0,3. (2.7)
Then
)
j azm + B .
1(711*1 = T(S, m e NO, ] = 0,3 (28)
Yzm' +
Using the change of variables
()
() — Y1 _ 0 _
Zm’ = = ——, meNy, j=0,3, 2.9
st (29)
where v # 0, in (2.8) we obtain
’yQuT(Z)H —y(o + 5)u%)+1 +(ad — B)uld) =0, meNy, j=0,3. (2.10)

There are several cases to be considered.
Case ad # P, v # 0. Under the assumptions, there are several subcases to be consid-
ered.
Case (a + 6)* # 4(ad — Bv). Employing (1.2) we obtain
(uf” = Aauf ) — (uf” — Muf)2g

() — 0
ul . : (2.11)

for m € Ny, j = 0, 3, where

a+d+(a+0)2—4(ad — By)
2y

AL = (2.12)

and

Ny OFO- V(@ +257)2 —4(ad — ). (2.13)
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Using (2.11) in (2.9) we have

Z(j)_(zéj)_)\2+%))\§n+1_(z(()j)_)\1+%))\31+1 5

(o) = 2o+ 0P — () —a + a7

i

for m € Ny, 7 =0, 3, that is

R Bcheak 2 e U B Bk s ) (2.14)
S R R P (T D Y S PV O

for m € Ng, 5 =0, 3.
Combining (2.5) and (2.14) we have

V(z—_j) 8\ \m+1 Y(z_j;) 8\ ym+1
U (24m—j) = ((\P(Ijjl) “Re N T (we gty TN _5) U(zam—j-1)
m—=3) U(r_ U(x_ . m—j—1)»
(q/(gg,ji)l) — o+ DA — (q/(gg,ji)l) — AN Y

for m € Ny, 7 =0, 3, as well as

U(Zam—j) = Yam—jYam—j—1Ydm—j—2Yam—j—3V (Zam—j—a), (2.15)

formeN, j=1,4.
Thus

m
U(z4m) =V (x_4) [ [ vaiyai-1y4i-291i-3,
i=0

m
U(zami1) =Y (2 3) [ [ yair1yaivai19ai-2,
i=0

m
U(xamr2) = (x_2) | [ vaivoyair1vaiyai-1,
i=0

m
U(zamys) =W(x_1) [ [ vairsyairobairiyai,
i=0

for m € Np, which implies

m
" U(ea) [T vaiyai1yaiovais ) (2.16)

1=0

T =V

m

U(z-3) H Y4i+1Y4iY4i—1Y4i-2 | (2.17)
i=0
m

V(r_2) H Y4i+2Y4i+1Y4iYdi—1
i=0

1
Tamy1 =V

Lo =01 , (2.18)

m
U(z—1) [ yaitsvairoyairivai | (2.19)

1=0

—1
Tams3 =V

/N 7~ N/ N/
N~ N "
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for m € Ng, where

Yam¥Yam—1Y4m—2Y4m—3
U (x m U (z m
_((wif?m 2+ DA — (g — M )N 5)

(gre) —)\2+7)>\m—(‘1’(:’5°) — M+ Y

) V(a_1)
)

(o — A+ DN - GEH - M+ DN
X V(z_1) (V1) m
(\If(x, ) A2 + )>‘ (\IJ(:E 2) A1+ ))‘ v
(g — e+ DA - G - M DN
% -3 -3 g Y
W(x m W (x_ m
(qum,ig — A2+ *))‘ (qJEx,ﬁg — At %))‘2 v
U(x_ m W(x_ 5\ \m
(GEE e e DN - (R - DT
U(x m W(x_ m !
(T =+ 2N — (G -+ 2 7
Yam+1YamY4m—1Y4m—2
B ((gg 3; _/\2+é)/\m+2 (i%x 5; /\1+ ))\m+2 5)
B W(x—: m VU(x_ m S
(T = A+ 2N — (G - M+ 2 Y
U(x m U (x m
y (\1/(5;_01)) A2 + )/\ i (\p(gs())) A1+ ))‘ H 9
() —de + D — (g — M+ )N 7
W (x_ m W (x_ §\\m
(G e DT - G M DT
U (x m W(z_ m
(TG - R+ AP - (FEY - M+ 2N 7
V(x_ m W(x_ m
(GEE e e DN - (W - DT
U(z_ m W(r_ m ’
(\I/Exfg — A2+ )>‘ - (\I/Em 3 — A+ %))‘2 v

Yam+2Yam+1Y4mYdm—1

(G e DA (G - AT
o U(z_2) m+1 U(z_2) Syym+l o~
(Te2 — A2+ DA = (F53 — M+ 2N gl
U(x_ m U(x_ m
(B e - (e
(WG — e+ DN - (GG - M+ T
U(x m W(z m
< (362 — de + DA — (G — M+ DA
(Tl = X+ 207 — (g - n+ g Y
U(x_ m U(x_ m
(=t g+ AP - (F= gt
% V(z_1) V(@) 5 e
(Tray — A2t )/\m— () — A1+ 5)AT v

(2.20)

(2.21)

(2.22)
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Yam+3Yam+2Yam+1Y4m
__((3&%%-—A2+~5Am+2 (g — M+ AP 5)
- VU(x_ m VU(x_ m A
(\I/Ex,lg — A2+ )>‘ i (\I/E:E 1; - >\ + ))‘ i v
WU(x_ m W(x_ m
(\I/Ex 2; — A2t ))‘ i (\I/Em 2; — At ))‘ o
% (‘I’(x 2) Ao + ))\m+1 (‘I’(l“ 2) ))\m+1 o ;
U(x m W (x m
) <Qx3—x-+>A+2 u@z%<x+%»¢”_g
U(x m VU (x m
(T = A+ 2N = (G - M+ 2
U(x m VU (x m
(\If(gc 01 - ))‘ i (\If(g; 01 — A1 +%))‘2 AR
X e e -—1, (2.23)
(T —)‘2+;))\71”— (T — A+ 2)Ap v

for m € Ny. Hence, (2.16)-(2.23) present the general solution to Eq.(2.2) in this case.
Case (a +6)? = 4(ad — B7). From (1.3) we have

uld) = ((ugj) - )\u(() ))m + /\u( )))\m L (2.24)
for m € Ny, j = 0, 3, where
a+0
A= 2 # 0.
Using (2.24) in (2.9) we obtain
0 (@ = A+ ) m+1) + M) s
m (Z(()j)_)\_|_%)m_|_)\ %
for m € Ng, 7 =0, 3, that is,
, (= A Dm A D)+NA 5 (225
B VEEP S R |
for m € Ng, 7 =0, 3.
Relations (2.5) and (2.25) yield
G A DM+ D+ 0N
\I/(x4m—j) = ( ( Jq]tii]) 5 — — \I/(x4m—j—1)7 (226)
(\I/(:E,jfl) - A+ ;)m + A Y
for m € Ng, j =0, 3.
We also have
YamYam—1Y4m—2Y4m—3 = (;}(; 1)) A )(m+1)+)\))\ - ﬁ
(g f)—/\+ ym —+ A v
) (Fe=t = A+ 2)(m +1) + M)A s
(pi=d = A+ 2ym+ A v
(! s a4 )(m—i—l)—i—)\))\_é
(3=} = A+ 2ym+ A v
(! Ty~ AT Dm D FIN o
(P=2) = A+ 2ym+ A v’ '
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Yam+1YamYsm—1Ydm—-2 = ((\Ijgz _ %)( ) ))\ _ 5)
(g — A+ Dm+)+a 7
) <W‘”0> A+ MDA 5
(q,(fff) —)\—i-;)m—i-)\ v
y (3= = A+ 2)(m +1) + XA s
(Pl — A+ Sym+ A y
(BER DN s (2.25)
(3222 X4 2)m + A )
e (<$’§:§3 “A+ D m+2)+ NN 5)
(o2 Ay )m+1)+A 7
y (=2} = A+ 2)(m +2) + M)A s
(sl A+ Hm+)+r 7
(GES A DA DN
(f(ﬁj”ff)—A+ ym—+ A 8l
y (3@;;3 — A+ 2)(m+1)+ 1A 5 229
(Pl — A+ Sym+ A v
Yam+3Y4m+2Y4m~+1Ydm = ((géiig AT %)( 2)+ )X _ 5)
(e Ny Hmt+1)+r T
(GEF A DD E 0
(P A+ ) (m+1)+A 7
. (T - A+ Dm+2)+ A 5
(Yol A+ ) m+1)+A
8 o UL R (2.30)
(f(; 1))—)\4- ym—+ A v

for m € Ny. Hence, (2.16)-(2.19), (2.27)-(2.30) present the general solution to Eq.(2.2) in
this case.
Case v = 0. Under the condition we have § # 0 and

«
Yn+1 = 5Yn—3 + g, n € Ny, (2.31)
that is,
2D,y = %zﬁg) + g, m € No, j =0,3. (2.32)

Case oo = 6. We have

29 = §m+zéj), m € Ny, j =0,3.
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Yqm—j
This relation, (2.5) and (2.15) imply

that is,

=5 R
o —~ ~~ Mm A~ S B /m.o.v\/m\\an/.|_A
h T T T \a)\./\llx \:).W.W \7)@@ /WW\(TW\
S S o| < g o o = B ~| = N
MM’ mmx | | mmx | ,\IU/ N I _TW;/\ | | — , , — +
S~ 2 EE S EELE 2R oEE TR g8 T 88 T -
N T =T I =T I dla B+ &5 L 5lE L ek
I8l I+ I 4 S S| ‘= = = ~_
SEEEEEE S G S P S Lo ol Foae =
2N sls P sls T & + + ®mie T mie e — B3
= + T + =+ 2 e~ T~ L~ - —  TIT
BB &> = AL S S I Al  _— BT — J® — 23 ElE
=] + + ~ + i N— ——~ | I —— | | — | | S
y g % g T e Bl T — 9T EE T EE BT EE
we T wmte T ae AR ~= rleg Al sla sl Blr sls T
g ~~ A~ AN o S T et it S et -
~— = — ~— Il S >+ >+ >+ —
N A N R 5 + = + = + = f
— A m E|E TR Bl e ElE S = o 7 LT S TS
e e M R L N
S— | S— | N (( — .j ~ ~ ~
Sl sl + 55 £ FE £ F @i T @lie % ®mie  x wle
vww._\ IT \L/ IT \L/ IT \L/ l_l (0 /I\O (0 (0
+ g Tt g + = + & g Sumyg Sy Su |
g Qe & we E @ § alkk ) = X =
ale ~— @jo SIE e S o 4 o _
I I I I i i i i
5 T 3 T e = "o o
g E 5 5 5 £ ¢ £
> B B B S s g g
=) =) =) =g g =

for m € Ny, so that
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for m € Ny, and finally

Tap =T (‘Il(w—4)£[0 (’?y + \I\,Ij(;x_ol))) (?3 + ig:;;)
(5ue) () e
(ot (010 $E0) (3 20
(s
;Mm+2:¢—1ﬁw¢_gi1(§ar+l>+3?””))(BU*'”*‘$8t3>
?j . ‘I’(“’—l)) ) (2.35)
) v

(33_3) )

B . U(x)

(57 \Il(x_1)> U(z_)
\Il(a:_l)

e (?(j +1)+ \I/(x_g)>

(z_3)
woy) (Praiy)) e

rams =0 (we 0 I (B 1)+
j=0

(56+1+

for m € Ny. Hence, (2.33)-(2.36) present the general solution to Eq.(2.2) in this case.
Case a # 6. Eq.(2.32) implies

for m € Ny, j = 0, 3, that is,

iy = AL (O (237)
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Relations (2.5), (2.15) and (2.37) imply

b 7

S £

= =

2 =
~ o~ ——~ 2| F ——~ —~ —~ a| =
—~|— |~ | | | —~ |~ | | |
222222 SR \IO/I anll o I B, T SO Y
| | | | | [N s S | | | | [
=N L= N = - == =
S S S S S S S g
/N /N /N /N /N /N /N 7/

N N N N N N N~ N~
+ + + + 4+ + o+ o+
— — i — — — — —
e e || | e e 1l |
EUCE DAY A AT AN T
SleRleRle il Tlege e 2y
S S RS S BN B B H) Bd
©” @ 9 8 ®” @ 9 8
(((ﬁ(((ﬁ
X X X S X X X SN
1 I
_— a
+ +
g g
<f <f
G G
= =

-

S

<t
SN B
5 5 T
e > Hw
> \xo/1_1_.o_~/x\/x\
T =B BB ==
g e ss 7
e 5 E
— Zlo Jle Jlw
+ O~
—~ + o+ o+
| — — —
Hx_v_ro_ro_
Sl Bl AT
roaroaroam_
~ ~ ~ \l/a
SoE S =
ol Q. x 3

> U (24m-1),

RN
BlE EE T2
> vwAvw,.\.nwl_
— — =8 3
+ + = |8
g g S
/N /N m
Jlo Zlo = _
+ + ~—
i L) l_l
| , —
5 e
1. E|a £
S o a\;Wa
~ ~ ~
3 3 S

for m € N.
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Hence

">
R REE
glr Ble 2le 5|5
S S = g
Slo Jlo IJlo o
+ + + +
— R — —
e Tl |l |
BN S N
s s 23 ,w/w
S S S 2
Q. Q. Q. 3
(((\(B/
X X X N————

N T
T~ — Q>
—~ |~ | [ |
\IO/I — [ &N [N BECCHEE S S
$_ (N [ I N N
/.W\MW\ SEE B|E >
5 5 5 7
. - s e
/N /N /N /N
Jleo Jlw Jlo Jlw
N—— N———" ~——" N—
+ o+ o+ 4+
— — — i
e Tl |lo |
2L 3L 3L 1T
|3 |3 |3 =
3 3 3 <| S
~— ~— ~— ~
Q Q Q 3
X X X ~——
o
Sumyy
—~
o
8
~
=
I
—~~
[a\]
+
£
~
S
~—
=

N
& - I
P ol T T T BB
T Sle Bl S
T Pl SlE 7
Sl 2 22— o
Sleo Jlo Zlw
+ ~— ~— ~
— + + +
_ — — —
il I _ |
+ | o o
S = -
2 Rz 2 s A\J)w
g g g =
Sa} Sa} Q. 3
(((/I\B/
X X X S—




12 S. Stevié

for m € Ny, so that

g
—~
8
S
~— ~—

N——— ~

| Q
N——

. .
<< =
&
S

O =
(e g
() )

s (wte ] (S8 2y o)

(a/8)) —1 ani U(zo)
. <6 a—20 +<g) \Il(x_01)>)’

for m € Ny. Hence, (2.38)-(2.41) present the general solution to Eq.(2.2) in this case.

Case a0 = v, a =0. We have 8 # 0, v =0 and § # 0. Thus

Tpi1 = yl (?1’(3}@), n € Ny,

(2.38)

(2.39)

(2.40)

(2.41)

(2.42)
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which yields

x, = U1 ((?) \Il(x0)> , n € Np. (2.43)
Case ad = 7y, a # 0, f = 0. Under the conditions we have § = 0 and v # 0. Thus

Ty = U1 (j\li(xn)>, n € Ny, (2.44)

which yields

= U ((i‘)n\y(azo)> , neN. (2.45)

Case ad = PBv, 6 = 0. Under the conditions we have v # 0, § = 0 and a # 0, and
consequently obtain Eq.(2.44) whose solution is (2.45).

Case ad = v, v = 0. Under the conditions we have § # 0, a = 0 and 5 # 0. and
consequently obtain Eq.(2.42) whose solution is (2.43).

Case afvyd # 0. In this case we obtain Eq.(2.42), i.e., Eq.(2.44), whose solution is
(2.43), i.e., (2.45). O

Remark 2.2. From Theorem 2.1, some calculation and a representation in [51] are ob-
tained the closed-form formulas in [38] for solutions to the special cases (i)-(iv) of Eq.(1.4).
We omit the standard problem.

3. On some results on the long-term behavior of solutions to Eq. (1.4)

One of the main problems in the theory of difference equations is describing the long-
term behaviour of their solutions (see, e.g., [2,3,5-8,16-18,23,26,29,34-36,40-48, 50, 53—
55,58,59] and the references therein).

Here we analyze the claims on the long-term behaviour of some solutions to the special
cases of Eq.(1.4) considered in [38]. The paper starts with finding equilibria of Eq.(1.4)
and, unfortunately, made a typical mistake. Namely, for an equilibrium z of Eq.(1.4) it
has to hold the relation

bz?
T =aT + ————. 1
x a$+(c+d)i° (3.1)
It is wrongly claimed therein that (3.1) is equivalent to the relation
2(1 — a)(c +d) = bz>. (3.2)

Then it is assumed (1 — a)(c + d) # b, and from (3.2) concluded that £ = 0 is a unique
equilibrium point of Eq.(1.4). But & = 0 is not a solution to (3.1). As a consequence of
the wrong claim, the following claim ([38, Theorem 5]) is wrong.

Claim 1. Assume that b(d+3c) < (1 —a)(c+d)?. Then the equilibrium point of Eq.(1.4)
is locally asymptotically stable.

The following claim is Theorem 6 in [38].
Claim 2. The equilibrium point = of Eq.(1.4) is global attractor if d(1 — a) # b.

From the same reason the claim is not well-formulated. Moreover, if we even ignore the
problem with the choice of a wrong equilibrium, the claim is not correct. We show this by
an example. Before presenting the example note that Eq.(2.1) is obtained from Eq.(2.2)
for V(z) =2, a =ac, B =ad+b,y=cand § =d.
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Example 3.1. Consider the equation

aTp-3 + Bry_4
YTp—3 + 0Tp_4a

T+l = Tn , n € Np.

where «, 3,7, are positive numbers satisfying the conditions

a+y/(a—08)2 448y > § + 2,

5(7 - a) 7é 6’7 - 5@,
whereas the initial values z_;, j = 0,4, satisfy the conditions

» 5
=2 =03,
L_(i+1) Y

where \g is given in (2.13).

(3.3)

From (3.5) we easily see that in this case d(1 — a) # b, which is a condition in Claim 1.

From (2.16)-(2.23) it follows that for m € Ny we have

Tom =T —4 H Y4iY4i—1Y4i—2Y4i-3
i=0
m

Lam+1 =T-3 H Y4i+1Y4iY4i—1Y4i—2,
i=0
m

Lam+2 =L—2 H Y4i+2Y4i+1Y4iY4i-1,
i=0
m

Lam+43 =T-1 H Y4i+3Y4i+2Y4i4+1Y4i,
i=0

where

Yam¥Yam—1Y4m—2Y4m—3

__(( R R DY C e VR P 5)
Bl (:pl

/\+)/\m—( - /\+)/\m ¥
y G2 =X+ DA = G - M+ )M 5
R R L il = YR PV
y (32— X+ AP — (2 -M+2 )Am“ s
(322 — Ao + )Am—(i—j—AlJr )N oy

y (””3—/\ + )Am“ (- M+2 Haprt s
(=2 — X+ )Am—(ﬁ—j—Aﬁr )N o

(3.11)
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Yam+1Y4mYdsm—1Y4m—2

|

X

(32 = A+ DA = (32 = M+ g2
(322 = Ao+ AT = (32 = M+ gt
(R = do 4+ )ATH = (2 — A+ 2)Ap !
(xl Ao+ QAT = (5 = AL+ 2)AF
(= X+ SN — (222 — M+ )Am“
(%—Aﬁ P (TQ—AIJF )
(32— X+ A7 = (2 - M+ 2)a!
(G2 =X+ DA = (32 =M+ 2

Yam+2Yam-+1Y4amYdm—1

( — Ao+ ))\m+2 (gi A+ )/\WH_2
B (——A + O — (22 - A+ a0
y (2_2 — Ao+ ))\m+2 (2 j -+ *)/\m+2
(i_j _)\2+ )/\m+1 (i Z _>\1+ ))\m-&-l
T m+1 m+1
y (Tfl—/\g—i- ))\ ( 01—/\1+ )/\
(2 =%+ DN = (% M+ )X
m+1 z m+1
y (7—/\24- )/\ (T;_A1+ )/\
(e DN - (B -+ x
Yam+3Y4m+2Y4m~+1Y4m
( )\ + )Am+2 (z ; >\1+ ))\m-‘rQ
B (——/\ H O = (5L = M+ A
y (% _ )\2+ 7)>\m+2 (% _ )\1 + 7)>\m+2
€T_ m+1 T_ m+1
(r_i—)\z—i- ))\ —(r_i—)\l—l- )/\
. (%7}\24»%))\7?&2 (%7>\1+ ))\m+2
(i—j—/\2+%))\?1+1—(%j—/\1+ Ay aptt
§ (%_)‘2+%))‘T+1_(%_)\1+)m+1
(et DN — (- n+ DN

i)

2>

2o

0

v

—f’;)

2o

2l

2o

=2
~

2>

2>

=2 [

for m € Ny, where A\; and A2 are given in (2.12) and (2.13), respectively.
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(3.13)

(3.14)
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Further, we have

i (72 = do + SATT — (o I
mooo (B — Ao DA — (- — A+ 2R v
. G =+ AT = (= =M+ N 5
= 1m o - _
moteo (T =M+ AP - (- M)Ay
T R 2 Ml Gt k)4
= 11m T o 7 — _
meres (72_)‘2+%))‘1 _(é—)\l-F%))\g Y
o E oo
e D - a3
=X\ ——>1,

where first we have used the assumption (3.6), whereas in the last inequality we have used
the condition in (3.4), from which along with (3.7)-(3.14) it follows that for such solutions
we have lim,_, o ©, = 400, that is, the solutions are even unbounded refuting Claim 2.

Remark 3.2. It is easy to find the parameters «, 3,7, ¢ satisfying the conditions (3.4) and
(3.5), as well as the positive initial values so that the relations in (3.6) hold. For example,
we can chose « =y =0 =1 and § = 2, in which case we have that a =b=c=d =1 in
Eq.(1.4).

Remark 3.3. The only correct result on the behaviour of solutions to Eq.(1.4) in [38] is
Theorem 7 therein, which states that every positive solution to the equation is bounded
if min{a,b,c,d} > 0 and a + % < 1. However, the result is trivial, since in this case
from Eq.(1.4) it immediately follows that for each positive solution to the equation we
have 0 < xp41 < (a + 3)1'” < xn, n € Np. Moreover, from the estimate and by a
well-known theorem it follows that each positive solution to Eq.(1.4) converges [62], and
that the limit is equal to zero, which was not noticed in [38]. For some results on the
boundedness of solutions to various difference equations and systems see, for instance,
[4-8,29,31,32,34,36,40-43,45,47] and the related references therein.
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