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Abstract: Pyrimidine compounds have medicinal and biological activities as previously reported. In this work, 
two novel fused pyrimidine compounds were synthesized, fused pyrazolo–pyrimidine compound was 
synthesized by cyclization of 5-amino-4-cyano-1-phenyl pyrazole with propionic acid in the presence of POCl3, 
and the other fused pyrrole–pyrano-pyrimidine compound was synthesized by cyclization of ethyl(E)-N-(3-
cyano-4-(4-(dimethylamino)phenyl)-7-methyl-4,5,6,7-tetrahydropyrano[2,3-b] pyrrole-2-yl) formimidate 
with hydrazine hydrate, in methanol. These fused pyrimidine compounds were characterized by FT-IR and 1H 
NMR. The effect of these compounds was studied on the activity of the human neurotransmission enzyme 
acetylthiocholine esterase AChE. Results indicated that these compounds significantly inhibited AChE activity 

at concentrations of 10-11 M. Michalis-Menton showed mixed noncompetitive inhibition of AChE activity. In 
conclusion, newly synthesized compounds could be promising derivatives for enhancing cholinergic 
neurotransmission. Among the other derivatives, derivative 4 formed H-bond interactions with key amino 
acid residues Tyr334, and Asp72, whereas the other electrostatic interactions formed with Tyr334, Phe330, 
Ile287, Tyr121, Arg289, Trp279, Gly335, and Phe288. In the case of derivatives 9, similar binding interactions 
with active pockets of 2ACE were observed due to the high homology of the binding site residues. In addition, 
we examined ADMET properties with the help of online databases to search for possible drug similarity of 

synthesized compounds 4 and 9 and revealed that both molecules were compatible with Lipinski's five rules. 
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1. INTRODUCTION 
 

Acetylcholinesterase is known to be distributed in 

nervous tissue such as the brainstem, cerebellum, 
and peripheral and autonomic nervous systems. 
Skeletal muscle also contains AChE with distribution 
patterns seemingly related to the type of muscle 
(fast versus slow twitch) and their specific function. 
The presence and function of AChE on red blood cells 

are less commonly known. Blood group antigens 
reside on the outer lipid bilayer of red blood cells for 
convenient antibody recognition. In the same regard, 
AChE is also present in red blood cell membranes (1). 
 
Alzheimer’s disease (AD) is associated with memory 
and thinking impairment, behavioral problems, and 

disturbance in daily living activities. AD is common 
in old people due to irreversible neuronal loss. The 
deficiency of acetylcholine (ACh) in synapses of the 

cerebral cortex is one of the important sufferers of 
AD and can be treated by the inhibition of AChE that 

hydrolyzes ACh into choline and acetate (2). 

 
Fused pyrimidine rings are among a wide range of 
nitrogen heterocyclics that have been studied due to 
their pharmaceutical activities to produce biologically 
important molecules (3-5). The pyrimidine ring is 
fused into different heterocyclic (6,7) and exhibits 

several activities such as antimicrobial, antitumor, 
antimalarial, antihypertensive, vasodilator, and anti-
allergic (8,9). The observed activity may be due to 
the presence of fused pyrimidine moiety. The chloro, 
amine, fluorine, bromine, amino-pyrimidine, 4-
methoxyphenylpyridine, hydroxynaphthalene, 
coumarin ring, pyrazolo-pyrimidine, thino-

pyrimidine, phenyl-pyrimidine scaffold presence in 
various positions of the aromatic ring may enhanced 
biological potential (10). 
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On the other hand, naphthyridine also represents 
one of the important fused nitrogen compounds with 
diverse biological activities,

 such as antibacterial, 

anticancer, anti-inflammatory, and anti-ureolytic 

activity (11-14). During the last decade, there was a 
large interest in fused nitrogen heterocycles to 
synthesize novel pyridopyrimidine and naphthyridine 

derivatives. Those novel compounds were 

characterized using IR Candida albicans. Most fused 
pyrimidine has been used and licensed by the FDA 
(15) to treat some cancer types. Pazopanib (A) 'trade 

name votrient and methotrexate (B) has a 
pyrimidine core that is considered a cancer therapy 
drug (16) leading to the synthesis of new fused 
bicyclic and tricyclic pyrimidine analogs and their 

effect on cancer cells (17). 

 
 
 

(A) 

 
 

(B) 

 
Figure 1: Fused pyrimidine compounds licensed by FDA. (A) Pazopanib and (B) methotrexate. 

 
Herein, we synthesized new pyrimidine derivatives 

to explore their potential as inhibitors of human 
AChE activity. These compounds were characterized 
using Furious transfer infrared FT-IR and proton 

nuclear magnetic resonance 1H NMR. The inhibition 
activity of the compounds was studied in vitro in 
human serum. 
 
2. EXPERIMENTAL SECTION 
 
2.1. Materials 

All chemicals were purchased from Sigma‐Aldrich 

and Fluka companies. 1HNMR spectra were recorded 
on a Bruker, Ultra Shield 400 Mhz, spectrometer 
(Switzerland) using DMSO-d6 and CDCl3 as a solvent 
with tetramethylsilane (TMS) as an internal standard 
(Iran Polymer & Petrochemical Institute). All 
reactions were carried out with the thin layer 

chromatography technique (TLC) and revealed by a 
mixture of n-hexane and ethyl acetate (3: 2) as pure 
eluents. 
 
2.2. Synthesis of Fused Pyrimidines 
In this study, we used previously prepared 
compound 2 listed in Table 4 to synthesize 

compounds 3 and 4. The previously synthesized 
compound 7 was used to prepare compound 9, see 
Table 1. 
 

2.2.1. Synthesis of compound 2: 2-(Ethoxy 

methylene) malononitrile (20) 
A weight of 0.66 g, 0.01 mole of redistilled 
malononitrile, 1.48 g, 0.01 mol of triethyl 

orthoformate, and 2.04 g, 0.02 mole of acetic 
anhydride was stirred and heated to 110 °C until the 
reaction had subsided and the temperature dropped 
to 95 °C. Distillation was used to remove impurities 
from the clear yellow reaction mixture until the 
temperature reached 115 °C. Then a vacuum 
distillation (100 °C, 15 mm) was used to remove the 

rest of the solvent. The product was cooled down to 
80 °C and then refluxed 1.0 g of charcoal and 35 mL 
of absolute ethanol for 5 minutes. After filtering and 
washing with 3 mL of hot absolute ethanol, the 
filtrate was cooled on ice until crystallization was 
completed and recrystallized from ethanol to purify 

the white crystalline material and then dried to 

constant weight in vacuo to obtain the compound 2, 
with a yield: 89% (1.8 g) and mp: 55-57 °C. 
 
2.2.2. Preparation of compound 3: 5-Amino-4-
cyano-1-phenyl pyrazole (21) 
A mixture of compound 2 (1.22 g, 0.01 mole) and 

phenylhydrazine (1.08 g, 0.01 mole) in ethanol (40 
mL) was refluxed for 1 h. The precipitate was 
separated by cooling, filtered, and purified by 
recrystallization from ethanol/water to give a light 
yellow compound 3, with a yield of 88% (1.75 g) and 
mp: 134-136 °C. 
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Table 1: A library of synthesized compounds. 

No. Chemical structure  Name of the compound  

2 

 

2-(ethoxymethylene)malononitrile (18) 

3 

 

5-Amino-4-cyano-1-phenyl pyrazole 

4 

 

6-ethyl-1-phenyl-1,5-dihydro-4H-

pyrazolo[3,4-d] pyrimidin-4-one 

7 

 

2-amino-4-(4-(dimethylamino)phenyl)-7-
methyl-4,5,6,7-tetrahydropyrano[2,3-

b]pyrrole-3-carbonitrile (19) 

8 

 

ethyl(E)-N-(3-cyano-4-(4-
(dimethylamino)phenyl) -7-methyl-

4,5,6,7-tetrahydropyrano[2,3-b]pyrrol-2-
yl)formimidate 

9 

 

5-(4-(dimethylamino)phenyl)-4-imino-8-
methyl-5,6,7,8-
tetrahydropyrrolo[3',2':5,6]pyrano[2,3-
d]pyrimidin-3(4H)-amine 

 
2.2.3. Synthesis of compound 4: 6-Ethyl-1-phenyl-
1,5-dihydro-4H-pyrazolo[3,4-d] pyrimidine-4-one 
A mixture of compound 3 (2.67 g, 0.01 mole) was 
dissolved in propionic acid (5 mL), then quickly 

added 0.2 mL of POCl3 and refluxed for 12 h. After 

the mixture cooled, a mass of white precipitate was 
observed. To neutralize the acid, fused K2CO3 was 
added until no bubble occurred. The mixture was 
filtered and washed with ethanol, dried, and then 
recrystallized from ethanol to give a pale-yellow 
compound 4 with a yield of 68% (1.35 g) and mp: 

101-103 °C. 
 
2.2.4. Synthesis of compound 7: 2-Amino-4-(4-
(dimethylamino) phenyl)-7-methyl-4,5,6,7-
tetrahydropyrano[2,3-b] pyrrole-3-carbonitrile 
In a typical procedure, equimolar amounts of 4-
(dimethylamino) benzaldehyde (1.49 g, 0.01mole), 

malononitrile (0.66 g, 0.01 mole) and N-methyl-2-
pyrrolidinone (0.99 g, 0.01 mole) were mixed with 

tetraethyl ammonium bromide (10 mole %) in 15 
mL, 90 % of ethanol and refluxed with stirring for 95 
minutes. After the reaction was completed, the 
mixture was cooled to room temperature and poured 

into ice to obtain the crude products. The products 

were recrystallized as 1,4-dioxane to give compound 
7 with a yield of 92% (1.85 g) and mp: 178-180 °C. 

 
2.2.5. Synthesis of compounds 8: Ethyl(E)-N-(3-
cyano-4-(4-(dimethylamino) phenyl)-7-methyl-
4,5,6,7-tetrahydropyrano [2,3-b]pyrrol-2-yl) 

formimidate 
A mixture of compound 7 (2.96 g, 0.01 mole), 
triethyl orthoformate (1.48 g, 0.01 mole), and 16 mL 
of acetic anhydride was reflexed for 5 h. Under 
vacuum, the solvent was removed and the product 
was recrystallized from benzene to give brown-
colored compound 8 with a yield of 77%  (1.46 g) 

and mp: 162-164 °C. 
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2.2.6. Synthesis of compound 9: 5- (4- 
(dimethylamino) phenyl) -4-imino-8-methyl-5,6,7,8 
tetrahydro pyrrolo [3',2':5,6] pyrano [2,3-d] 

pyrimidine-3(4H)-amine 
A mixture of the compound 8 (3.52 g, 0.01 mole) in 
25 mL methanol, a solution of hydrazine hydrate 
(0.50g, 0.01mole), or ethylene diamine (0.60 g, 

0.01 mole), or phenyl hydrazine (1.08 g, 0.01 mole) 
was stirred for 1 hour and left overnight. The next 
day, the mixture was filtered, dried, and 
recrystallized from 1,4-dioxane to give yellow-
colored compound 9 with a yield of 80% ( 1.63 g) 
and mp: 261-263 °C. 

 
2.3. The Activity of Human AChE 
2.3.1. Acetylcholinesterase (AChE) assay 
The activity of acetylcholine esterase (AChE) was 
studied according to Ellman et al method (22) with a 
slight modification. Acetylthiocholine iodide (ASChI, 

34 μL, 0.06 M) was added to 50 μL of 5,5-dithiobis 

[2-nitrobenzoic acid] (DTNB) and 2.25 mL of sodium 
phosphate buffer (pH=7.3, 0.2 M) and finally, 10 μL 
of human serum was added to the mixture and 
vortexed well.  The changes in absorbency were 

assayed before and after adding the substrate at 430 
nm for 2 minutes. 
 

AChE activity (µmole/ 2 min/mL) = ΔA / 2 * d.f 
 
2.3.2. Effect of pyrimidine derivatives (Compounds 4 
and 9) on AChE activity 

The effect of each derivative (compounds 4 and 9) 
on the AchE was also studied according to the 
modified Ellman method. Briefly, a stock of the 
synthesized compounds (0.01M) was freshly 
prepared and used to prepare a series of different 
concentrations (10-2, 10-3, 10-5, 10-7, 10-9and 10-11 

M) of dimethylsulfoxide (DMSO). A volume of 0.25 
mL of pyrimidine derivatives was added to 50 μL 
DTNB (0.001 M), followed by the addition of 10 μL of 
human serum, mixed well, and 2 mL of the mixture 
was withdrawn to be mixed with 34 μL of ASChI 
substrate (0.06 M). The absorbance was assessed 

before and after adding the substrate at 430 nm for 

2 minutes. 
 
The inhibition percentage % of the enzyme activity 
was determined according to the equation:  

 

% Inhibition = 100 −
The activity in the presence of an inhibitor

The activity in the absence of an inhibitor
× 100    (Eq. 1) 

 
2.3.3. Type of inhibition (23) 

To study the type of inhibition, different 
concentrations of AChTI (substrate) (0.02, 0.04, 
0.06, and 0.08 M) were used against a constant 
concentration of inhibitors. The enzyme activity was 
assayed using the Linewer-Burk equation in the 
presence and absence of the compounds, and then 

the type of inhibition, inhibitor constant Ki, 

maximum velocity Vmax, and Michalis-Menton 
constant Km were determined.  
 
2.4. Docking Study 
A molecular docking study was carried out using the 
Autodock 4.2 program (24), while Discovery Studio 

Visualizer (25) was used to select the best binding 
mode with the receptor and 3D interaction poses. 
The 3D structures of AChE (PDB ID: 2ACE) were 
obtained from the Protein Data Bank (www.rcsb.org), 
followed by separating the co- crystallized ligands 
and water molecules. Then polar hydrogens were 
added. Finally, the 3D structures of the tested 

compounds were optimized using Gaussian 03 
software with the semi-empirical AM1 method.  
 

2.5. Estimation of Pharmacokinetic and 
Toxicological Properties 
Absorption, distribution, metabolism, excretion, and 

toxicity (ADMET) refers to the characteristic 
properties of a drug that express its 
pharmacokinetics in the human body. Lipinski's rule 
of 5 states (26) that absorption or permeability is 
more likely when there are no more than five 
hydrogen bond donors and acceptors, no molecular 
weight greater than 500 g/mol, and octanol/water 

partition coefficient greater than five. In this study, 
we evaluated the absorption, distribution, 
metabolism, and excretion properties of two 

synthesized molecules using the SwissADME online 

database (27) and screened them according to the 
Lipinski 5 rule. We also examined the toxicity risk 
assessment properties of the compounds with the 
help of the ProTOX-II online database (28) and 
OSIRIS Property Explorer (29). 
 

3. RESULTS AND DISCUSSION 

 
3.1. Synthesis of Compounds 4 and 9 
Previous studies mentioned that a good yield of 
compound 3 5-amino-4-cyano  pyrazole (30,31) 
could be obtained by the standard addition of 
phenylhydrazine to an unsaturated ethoxymethylene 

compound 2. Compound 4 was synthesized by 
treating compound 3 with some aliphatic carboxylic 
acids such as acetic acid, formic acid, and propionic 
acid respectively in the presence POCl3 as shown in 
Scheme (1). 
 
3.2. Characterization by FT-IR and 1H NMR 

The intermediate compounds 3 and 7 were well 
characterized using FT-IR and 1HNMR. The FT-IR 
spectra of the compound 3 in Figure (1a), showed 

stretching bands at 3329 and 3431 cm-1 for 
symmetrical and unsymmetrical (NH2), 3109 cm-1 
for (C-Harom.), 2931-3061 cm-1 for (C-Haliph.), 2222 

cm-1 for (CN), 1637 cm-1 for (C = N) and 1599 cm-1 
for (C=C) with the disappearance of stretching bands 
from the ether group. The FT-IR spectra of 4 in 
Figure (1b) showed bands of (NH2) stretching at 
3329 cm-1. Although 3431 cm-1 and (C≡N) at 2222 
cm-1 were not recognized, the (NH) stretching at 
3155 cm-1, (CHarom.) at 3103 cm-1, (CHaliph.) at 2816-

2943 cm-1, (C=O) at 1685 cm-1, (C=N) at 1604 cm-

1, and (C=C) at 1554 cm-1 were observed. 
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Scheme 1: Synthesis of compound 4. The conditions used were (i) Triethylorthoformate/acetic anhydride, 

140 °C,4 h. (ii) Phenyl hydrazine/EtOH,78 ºC, 2 h. (iii) Propionic acid/ POCl3 / K2CO3,120 °C, 18 h. 
 

 
Scheme 2: Synthesis of compound 9. The reaction conditions were (i) (C2H5) 4N + Br /EtOH, 78 °C, 1h. 
(ii) Triethylorthoformate/acetic anhydride,140 °C, 5h. (iii) NH2NH2.H2O/ MeOH, room temperature for 2h. 
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Compound 7 was added to triethylorthoformate in 
acetic anhydride to form an imidoformate derivative 
8, then compound 8 was added to hydrazine hydrate 

for 1 hr 2°  to form fused pyrimidine derivative [9], 
Scheme (2). The FTIR spectra of the compound 7 in 
Figure 1c showed stretching bands symmetrical and 
asymmetrical at 3335 and 3433 cm-1 for NH2, 3213 

cm-1 for aromatic C-H stretching,  2860 - 3076 cm-1 
for aliphatic C-H stretching, 2208 cm-1 for C≡N 
stretching, 1610 cm-1 for N-H bending, 1562 cm-1 for 
C=C, band at 1234 cm-1 for asymmetrical C-O-C and 
band at 1072 cm-1 for symmetrical C-O-C. For 
compound 9, a band of C≡N, but bands of NH2 

stretching at 3319 and 3416 cm-1, N-H at 3192 cm-

1, aromatic C-H at 3122 cm-1, aliphatic C-H at 2810-

3072 cm-1, C=N at 1602 cm-1, and a band C=C at 
1550 cm-1, Figure 1d. 
 

The 1H NMR spectrum of compound 3 in Figure (2e) 
showed signals at δ = 6.69 ppm (s, 2H, NH2), δ = 
7.42-7.54 ppm (m, 5H, ArH) and δ = 7.78 ppm (s, 
1H, N=CH). For compound 4,  signals at δ = 2.14 

ppm (s, 3H, CH3), δ = 7.36-8.05 ppm (m, 5H, ArH), 
δ = 8.27 ppm (s, 1H, N=CH) and δ = 12.34 ppm (s, 
1H, NH). The 1HNMR spectrum of compound 7 in 
Figure 2f showed signals at δ = 2.28 ppm (s, 3H, 
NCH3), δ = 2.40 ppm (t, 2H, CH2), δ = 2.59 ppm (t, 
2H, NCH2), δ = 2.82 ppm (s, 6H, N(CH3)2), δ = 4.45 

ppm (s, 1H, CH), δ = 6.34 ppm (s, 2H, NH2), δ = 
6.58-7.24 ppm (m, 4H, ArH). 

 

 

 
 

Figure 2: Characterization of the prepared compounds. The FTIR spectra of compounds 3, 4, 7, and 9 are 
shown in a-d. The 1H NMR of compounds 3 and 7 are shown in e and f. 

3.3. Effect of Pyrimidine Derivatives (Compund 
4 and 9) on AChE Activity 
Clinically, acetylcholinesterase inhibitors (AChEI) are 

used to treat various diseases, including Myasthenia 

gravis, Glaucoma, Lewy body dementia, and 
Alzheimer's disease (32). 
 

Treatment is believed to reduce symptoms by 
improving cholinergic function and increasing the 



Nasif ZN et al. JOTCSA. 2024; 11(3): 1197-1210  RESEARCH ARTICLE 

1203 

amount of acetylcholine in cholinergic synapses. The 
active site must be reversibly bound to the active site 
of the enzyme to be a successful inhibitor, as 

irreversible binding can result in severe 
consequences, including death (33). In this regard, 
in many nations, the synthesis of fused pyrimidine 
compounds and investigating microbiological and 

toxicity tests are commonly useful. 
 
The activity of AChE was estimated before and after 
adding the compounds 4 and 9 using a series of 

concentrations (10-2, 10-3,10-5,10-7,10-9,10-11) M of 
and different concentrations of ASChI (0.02, 0.04, 
0.06 and 0.08) M) Figure 2a. In this paper, the effect 

of compounds 4 and 9 on human AChE activity 
against DMSO as a blank solution was analyzed, 
Figure 2b.  Pyrimidine derivatives 4 and 9 showed 
inhibitory effects on enzyme activity compared with 

the normal values of AChE (2.63 μmol/2 min/mL), 
Figure 2b, Table 2.

 

 
Figure 3: The activity of human AChE at different concentrations of ASChI before and after adding 

compounds 4 and 9. a) The enzymatic activity of free AChE, b) The enzymatic activity of AChE after adding 

compounds 4 and 9. The Lineweaver-Burk plots of AChE in the presence of the maximum concentration of 
compounds 4 and 9 are shown in c and d. 

 
Table 2: Effect of pyrimidine (compounds 4 and 9) on AChE activity. 

Compounds Inhibitor 
(M) 

AChE 
μmol/2min/ml 

% 
inhibition 

Control zero 2.630 - 
Compound 4 10-3 0.500 80.98 

 10-5 0.450 82.88 
 10-7 0.780 70.07 
 10-9 0.700 73.38 
 10-11 0.400 84.79* 

Compound 9 10-3 0.850 67.68 
 10-5 0.837 68.18 
 10-7 1.012 61.60 
 10-9 0.950 63.88 
 10-11 0.650 75.29* 

* Maximum inhibition concentration in each compound. 
Table 2 indicated that the highest significant 
inhibition% of compound 4 (84.79%) and compound 
9 (75.29%) were at (10-11) M concentrations, which 
could be attributed to the presence of more than one 

nucleophile side in both compounds. Compound 9 
has (NH2), dimethyl aniline group linked to 
anthracenyl showed good inhibition of AChE activity, 
whereas the phenyl ring attached to imidazole [1,2-

a b

 

c d 
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a] pyridine in the compound 4 may compete with the 
substrate ASChI and cause properly orient to fit the 
active site of the enzyme. The type of inhibition and 

kinetic parameters (Km, Vmax, and Ki) at different 
substrate concentrations were determined using the 
Linweaver-Burk plot, Figure 2c and 2d), and Table 3. 

 
Table 3: Kinetic properties of AChE with and without pyrimidine compounds. 

Sample 
Inhibitor 
(M) 

Km 

(M) 
Vmax 

(μmol/mL/2min) 
Ki (M) Inhibition type 

Control Zero 0.02 5 - - 

 

Compound 4 

10-7 0.02 2.5 3 ×10-8 Non-competitive 

10-11 0.02 2.22 
2.1×10-

12 Non-competitive 

 

Compound 9 

10-7 0.05 1.92 
9.2×10-

8 
Mix 

10-11 0.05 1.81 
8.3×10-

12 Mix 

 
Results in Table 3 showed that Km values varied 

depending on the type of inhibition. The higher Km 

value and the lower Ki value refer to the highest 
affinity of the inhibitor to fit into the active site cleft 
of the enzyme. Accordingly, compounds 4 and 9 
have the highest affinity to bind the enzyme at 10-11 
M, where the lowest Ki values. This assumes the 

kinetics of a tight-binding inhibitor. The results also 
showed that compound 9 have mixed-type inhibition, 
which can be attributed to the structure of the 
inhibitor that makes a conformational change after 
binding to –SH, -COOH, imidazole group of Ser, His, 
Glu in AChE, which located in the active center of the 
enzyme or essential in determining the active 

conformation of the enzyme molecule. On the other 
hand, the non-competitive inhibition of compound 4 
is a classical model of inhibitor that binds to another 
site at enzyme molecule and causes conformational 

change locking the enzymatic activity. 
 
The amide group in the pyrimidine ring and the 

hetero aromatic ring contributed to the inhibition of 
acetyl and butyl cholinesterase. Compared to the 
unsubstituted pyrazole compounds, the substitution 
of pyrazole with the aryl ring increases the inhibition 
potency of the compounds. Now, it has been shown 
that a large number of Sp2 carbons, and therefore 

the π orbitals, increases molecular recognition by the 
AChE enzyme, as the active site of AChE is composed 
of many aromatic amino acids (34). Importantly, the 
affinity toward the active site could be affected by 
several factors, such as size, three-dimensional 
structure, the existence of groups that easily bind 
noncovalently to groups within or near the active site, 

etc. The position in space could be attributed as a 

result of such a good-fit orientation such as the 
covalent bonding and hydrogen bonding with the 
serine residue. A previous study (35) reported a 
rational design of 5H-thiazolo[3,2-a] pyrimidine 
derivatives that acted as AChE inhibitors binding to 
the active site of the human AChE substratum 

domain. Studies of molecular analysis led to the 
discovery of some pyrimidine derivatives, such as 
3H-thiazole substituted with 3H [3,2-a], where their 
biological activity was fully in line with the proposed 
binding. The replaced 5H-thiazole [3,2-a] pyrimidine 
derivatives could improve the structure of enzyme 

inhibitors into novel therapeutic agents for serious 
neurodegenerative diseases. 
 

Another study (36) developed a sequence of 6H-

benzo[c]chromen-6-one and 7,8,9,10-

tetrahydrobenzo[c]chromen-6-one derivatives in a 
variety of plant-derived nutritional products. The 
biological activity was tested as a potential inhibitor 
of acetylcholine esterase and butyrylcholine esterase. 
However, it did not show an inhibitory effect on 

cholinesterase enzymes and suggested that 
compounds based on the inhibition of cholinesterase 
enzymes should be generated with benzo [c] 
chromene-6-one. 
 
A new series of some novel 1,2,3,4-
tetrahydropyrimidine condensed pyrazinamide has 

been developed and evaluated as inhibitors of acetyl 
and butyl cholinesterase (AChE and BuChE) (37,38) 
reported a straightforward two-stage synthesis and 
biological evaluation of novel racemic 

benzochromene pyrimidinones as non-hepatotoxic, 
acetylcholine esterase inhibitors and found 
significantly lower inhibition of hAChE compared to 

EeAChE, IC50 values ranging from 1279 to 3657 nM. 
Compound 3Bb was the most effective inhibitor. 
 
The kinetic mechanism of inhibition of hAChE by 
compound 3Bb was investigated using classical 
double reciprocal plots of Lineweaver-Burk to gain 

insight into the mode of inhibition. Analysis of this 
graph revealed the interception of the lines above the 
x-axis, suggesting that 3Bb is capable of interacting 
with both the free and the acylated enzyme, thus 
acting as a mixed-type hAChE inhibitor. The 
constants of inhibitor dissociation Ki (the constant of 
complex dissociation enzyme-inhibitor) and K'i (the 

constant of complex dissociation enzyme-inhibitor-

substrate) are calculated at 0.38 and 1.12 μM, 
respectively. 
 
A sequence of novel 1,2,3,4-tetrahydropyrimidines 
of biological interest has been synthesized (37). 
Compound libraries were prepared using p-

toluenesulfonic acid as an active catalyst compared 
to Lewis acid. The results showed that all synthesized 
compounds were active against acetyl and 
butylcholinesterase enzyme activities. Anis et al (39) 

prepared a new hybrid molecule type pyrazolo[4,3-
e]-1,2,4-triazole [1,5-c] pyrimidines derivatives. The 

anti-acetylcholine esterase activity of compounds 
was evaluated, and results indicated significant 
activities (IC50= 1.73–39.86 μM). The 
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dihydrobenzimidazopyrimidine derivatives were 
analyzed against acetylcholinesterase (AChE) and 
exhibited effective inhibitory activity at 46.8 nM and 

42.5 nM IC50 (40). 
 
3.4. Molecular Docking 
In the present work, an in silico study was performed 

using molecular docking simulation to test the 
capability of some synthesized compounds as 
potential AChE inhibitors. Target compounds 4 and 9 
and Donepezil were docked as ligands with the active 
pocket of AChE (PDB ID: 2ACE) to achieve favorable 
conformation, with the maximum number of 

interactions and minimal free energy, as shown in 
Figs. 4, 5, and 6. The study findings including binding 
energies and types of interactions are shown in Table 
4. 
 
Figure 4 shows 2D and 3D Donepezil interactions as 

a ligand with target 2ACE, including  H-bond, π- π, 

and van der Waals interactions with residues of 

Tyr121, Trp279, Tyr334, Phe284, and Leu282 amino 
acids at the active site of AChE with a binding energy 
-8.6 kcal/mol and distances ranging from 2.68 to 

3.23. The docking simulation of compounds 4 and 9 
demonstrated stronger electrostatic interactions 
(van der Waal’s, π−π stacking, and H-bond) with 
lower docking energies -11.4, -10.6 kcal/mol 

respectively as shown in Fig. 4, 5 & 6. Among the 
other derivatives, derivative 4 formed H-bond 
interactions with key amino acids residues Tyr334, 
and Asp72, whereas the other electrostatic 
interactions formed with Tyr334, Phe330, Ile287, 
Tyr121, Arg289, Trp279, Gly335, and Phe288. In the 

case of derivative 9, similar binding interactions with 
the active pockets of 2ACE were observed due to the 
high homology of the binding site residues. The 
considerable number of various binding interactions 
with amino acid residues of the active pocket in the 
target protein, as well as favorable binding energies, 

suggests that these compounds could be used as 

clinically effective inhibitors for the AChE enzyme. 
 

Table 4: Docking results obtained for synthesized coumarin derivatives with acetylcholinesterase (PDB ID: 
2ACE). 

Compound Ligand moiety Site Interaction E (kcal/mol) 

4 

NH2 

NH 
C=O 
6-ring 
C=C 

N TYR 334 (A) 

O ASP 72 (A) 
N GLY 335 (A) 
TYR 334 (A) 
ILE 287 (A) 

H-bond acceptor 

H- bond acceptor 
H- bond donor 
Pi-Pi 
Pi-Alkyl  

-12.4 

9 

NH2 
NH 
C=C 

6-ring 
 

N ASP 72 (A) 
O PHE 330 (A) 
N ASP 72 (A) 

TYR 334  (A) 
TRP 279  (A) 

H- bond acceptor 
H- bond acceptor 
Pi- Anion 

Pi-Alkyl 
          Pi-Alkyl  

-11.6 

Donepezil 

-OCH3 

 
6-ring 
 
C=C 

NH TYR 121 (A) 
O PHE 330 (A) 
N PHE 284 (A) 
TRP 279 (A) 
ASP 285 (A) 

LEU 282 (A) 

H- bond acceptor 
H- bond acceptor 
H- donor 
Pi-H bond 
Pi-Pi  

Pi-Alkyl 

-8.6 

 

Figure 4: The receptor-ligand interactions on 2D and 3D-Diagram of Donepezil on the catalytic site of 
AChE enzyme. 
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Figure 5: The receptor-ligand interactions on 2D and 3D-Diagram of compound 4 with the catalytic site of 

AChE enzyme. 

 

Figure 6: The receptor-ligand interactions on 2D and 3D-Diagram of compound 9 with the catalytic site of 
AChE enzyme. 

 
3.5. Pharmacokinetic and Toxicological 

Properties 
Both compounds have high gastrointestinal 
absorption. It shows that these compounds can be 
easily consumed in the gastrointestinal tract when 
taken by oral administration. Both compounds can 
cross the blood-brain barrier and cannot be used as 

substrates of P-glycoprotein. The red dot in the yolk 
area indicates that compounds 4 and 9 may remain 
in the brain unaffected by P-glycoprotein. According 
to the BOILED-Egg data model, compounds 4 and 9 

have excellent drug capability for both blood-brain 
barrier penetration and gastrointestinal absorption, 
Figure 7. Although compound 4 is an inhibitor of 

CYP1A2, it is a non-inhibitor of the enzymes CYP2C19, 
CYP2C9, CYP2D6, and CYP3A4 enzymes.  While 
Compound 9 is the non-inhibitor of CYP1A2, it is the 

inhibitor of CYP2C19, CYP2C9, CYP2D6, and CYP3A4 

enzymes. A cytochrome P450 non-inhibitor indicates 
that the molecule will not interfere with the 
biotransformation of the substance (drug) 
metabolized by cytochrome P450. Both compounds 
comply with Lipinski's rule of 5, see Table 5. When 
the toxic properties of the compounds were 

evaluated, it was determined that Compound 4 had 
hepatotoxic and carcinogenic properties but was 
mutagenic, immunotoxic, cytotoxic, irritant, and 
inactive. Compound 9 is inactive in terms of 

hepatotoxic and carcinogenic, mutagenic, 
immunotoxic, cytotoxic, and irritant. When all these 
properties are evaluated, it is recommended to carry 

out further research on the drug properties of 
compounds 4 and 9. 
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Table 5: The pharmacokinetic properties of compounds 4 and 9. 

Properties 4 9 

Molecular weighta 240.26 
g/mol 

352.43 
g/mol 

Number of atoms 30 50 
Heavy atoms 18 26 
Rotatable bonds 2 5 

H-Bond acceptors 3 4 
H-Bond donors 1 0 
Molar refractivity 69.26 105.73 
TPSA (Å2) 63.57 61.09 
Log Po/w 2.20 2.83 
GI absorption High High 

BBB permeant Yes Yes 
P-gp substrate No No 
CYP1A2 inhibitor Yes No 
CYP2C19 inhibitor No Yes 
CYP2C9 inhibitor No Yes 

CYP2D6 inhibitor No Yes 
CYP3A4 inhibitor No Yes 

Log Kp (cm/s) -6.72 -6.50 
Lipinski Yes, 0 

violation 
Yes, 0 
violation 

Toxicity classa 4 4 
Predicted LD50  1000 

mg/kg 
1200 
mg/kg 

Hepatotoxicity Active Inactive 

Carcinogenicity Active Inactive 
Immunotoxicity Inactive Inactive 
Mutagenicity Inactive Inactive 
Cytotoxicity Inactive Inactive 
MMPb Inactive Inactive 
Irritant Inactive Inactive 
aThe toxicity class consists of six numbers. (Number 

1 means toxic; number 6 means non-toxic.) 
bMMP: Mitochondrial Membrane Potential 

 

 
Figure 7: The BOILED-Egg models of compounds 4 (a) and 9 (b). 

 
4. CONCLUSION 

 
In the present study, a new family of multitarget 
molecules has been designed to be able to interact 
with AChE. These compounds were well 
characterized and showed significant substitutions 
predominantly at (NH2) and dimethyl aniline group 
linked to anthracenyl. These substituted molecules 

showed a good inhibitory effect on AChE activity, 
whereas a phenyl ring attached to imidazole [1,2-a] 

pyridine was studied to improve the inhibitory of 

AChE activity. The data of this research suggest that 
these molecules are promising leads for the 
development of novel multitarget-directed ligands of 
MTDL with good inhibitory potency of AChE, which is 
presently missing in the therapeutic arsenal. The 
strong interactions with amino acid residues of the 
active pocket in the target protein as well as 

favorable binding energies suggest that these 
compounds could be used as clinically effective 
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inhibitors for the AChE enzyme. When the predicted 
pharmacokinetic and toxicological properties 
(ADMET) of the synthesized compounds are 

evaluated, it is suggested that they may be good 
drug candidates due to their low toxicity class and 
compatibility with the Lipinski rules, and further in 
vivo/in vitro studies are recommended. 
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