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ABSTRACT
This paper focuses on the application of a suite of simulation studies to assess well-
known and contemporary outlier detection methods in linear regression. These simu-
lations vary across different parameters, including the number of observations, param-
eters, levels, and direction of contamination. The recorded final parameter estimates
are used to rank the methods using Multiple-criteria decision-making (MCDM) tools.
The study reveals that method success varies based on simulation settings. MCDM
analysis results indicate a limited set of applicable methods when the contamina-
tion structure and level are unknown. Additionally, the most successful methods
demand increased computation time, while some alternatives exhibit applicability
within shorter durations with median rankings. These findings offer valuable insights
for researchers employing regression analysis in scenarios where the underlying model
is known, and the possibility of potential outliers exists.
Keywords: outlier detection, robust regression, linear regression, decision analysis

ÖZ
Bu makale, doğrusal regresyonda bilinen ve çağdaş aykırı değer tespit yöntemlerini
değerlendirmek için bir dizi simülasyon çalışmasının uygulanmasına odaklanmak-
tadır. Bu simülasyonlar, gözlem sayılarının, parametre sayılarının ve kirlenmenin yönü
ve oranı dahil olmak üzere farklı parametreler için gerçekleştirilmiştir. Kaydedilen
nihai parametre tahminleri ve Çok Kriterli Karar Verme (ÇKKV) araçları kullanılarak
tahmincilerin sıralanması sağlanmıştır. Çalışma, tahmincilerin başarısının simülasyon
ayarlarına bağlı olarak değiştiğini ortaya koymaktadır. ÇKKV analizi sonuçları, kir-
lenme yönünün ve oranının bilinmediği durumlarda uygulanabilecek tahmincilerin
sınırlı sayıda olduğunu göstermektedir. Ayrıca, en başarılı yöntemler artan hesaplama
zamanı gerektirirken, bazı alternatifler orta sıralamalarla kısa süreler içinde uygu-
lanabilirlik göstermektedir. Bu bulgular, altta yatan modelin bilindiği ve potansiyel
aykırı değerlerin olabileceği senaryolarda regresyon analizi kullanan araştırmacılar
için değerli öngörüler sunmaktadır.
Anahtar Kelimeler: uçdeğer teşhisi, dayanıklı regresyon, doğrusal regresyon, karar
analizi
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1. INTRODUCTION
Suppose the linear regression model is

𝑦 = 𝑋𝛽 + 𝜀

where 𝑦 is the n-vector of the response variable, 𝑋 is the design matrix, 𝛽 is the unknown vector of regression parameters,
𝜀 is the i.i.d. error-term with zero mean, 𝑝 is the number of parameters, and 𝑛 is the number of observations. The
Ordinary Least Squares (OLS) estimator

𝛽 = (𝑋 ′𝑋)−1𝑋 ′𝑦

is an unbiased and efficient estimator of 𝛽, that is,

𝐸 (𝛽 − 𝛽) = 0

and variance of 𝛽 is minimum among the other unbiased estimators when some conditions are held. This implies

𝑀𝑆𝐸 (𝛽) = [𝐵𝑖𝑎𝑠(𝛽)]2 +𝑉𝑎𝑟 (𝛽)
is minimum where 𝑀𝑆𝐸 is Mean Square Error.

When data includes unusual observations (a.k.a. outliers), properties of OLS may drastically change depending
on the level of contamination. In the case of single outlier, one-leave-out techniques and regression diagnostics are
successfully applied (Belsley et al., 1980; Hadi and Chatterjee, 2015). When the level of contamination is high and
known, 𝑚-leave-out techniques can be used instead but these class of methods may not be applicable as the number
of all possible subsets tend to be quite large where 𝑚 < 𝑛 is the number of outliers. In addition to this, the number of
outliers is generally unknown.

Outlier detection and robust regression methods seek a solution for the outlier problem in linear regression in different
but similar ways. An outlier detection procedure simply performs computation iterations to reveal the outliers. Contrary,
a robust regression estimator tries to estimate an outlier-free 𝛽 without inherently labelling any observations as clean
or contaminated. When an outlier detection algorithm reports a set of contaminated observations then a robust estimate
of 𝛽 can be obtained by removing the contaminated observations from the data. A robust regression estimate of 𝛽 can
also be used to delete observations using a predefined threshold.

In this paper, 17 outlier detection and robust regression methods are simulated using a suite of Monte Carlo studies.
In the simulations, Mean Square Error of estimated parameters are evaluated. The methods are ranked in the context of
a multi-criteria decision-making analysis (MCDM). It is shown that the algorithms fail in many situations depending on
the number of observations, number of parameters, level of contamination, and the direction of outliers. The MCDM
analysis shows that only a small subset of techniques are applicable when the properties of outliers are unknown.

In Section 1 the problem and the context of the paper is introduced. In Section 2 we introduce the methods and
estimators simulated in this study. The MCDM methods used in the decision analysis are also introduced. In Section 3
simulation and MCDM analysis results are reported. Finally in Section 4, we discuss the results and conclude.

2. MATERIALS AND METHODS
2.1. Outlier Detection Methods
2.1.1. hs93, bacon, and bch2006

hs93, bacon, and bch2006 are multi-stage outlier detection methods and they are introduced in the same place as
they follow similar patterns by construct. hs93 is a multi-stage method and starts with an initial subset with size of
𝑝 + 1 in its first stage (Hadi and Simonoff, 1993). The observations with lowest DFFITS regression diagnostics are
used to construct the initial basic subset. In the second step, the initial basic subset is used to construct a basic subset
by enlarging the former by adding new observations. In the last stage the subset obtained from the former stages is
enlarged until a test statistic exceeds a threshold. The threshold is selected as 𝛼-quantiles of Student’s T Distribution
with degrees of freedom 𝑠 − 𝑝 where 𝑠 is the number of observations held by the latest subset.
bacon (Blocked Adaptive Computationally efficient Outlier Nominators) is a multi-stage outlier detection method

(Billor et al., 2000). In the first stage, an initial basic subset is created which is considered as free of outliers. In this
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stage, a sample of 𝑝 + 1 observations is created and enlarged until the basic subset includes up to 𝑚 observations. This
𝑝 +1 sized sample is constructed through a multivariate outlier detection algorithm which is only applied on the design
matrix. The method is iterated until a specific t-statistic reaches a predefined cut-off value. The method requires the
parameter 𝑚 to be set.
bch2006 is a multi-stage outlier detection method and it shares similar patterns to that used in the bacon procedure

(Billor et al., 2006). The method initially calculates the Mahalanobis distances for all rows of the design matrix
excluding the intercept using the coordinate-wise median instead of the sample mean for the location estimate. Best ℎ
observations are selected to build a vector of squared Mahalanobis distances. The generated basic-subset is then fed
into an iteratively weighted least squares procedure, and this step is iterated until a maximum number of iterations is
reached.

2.1.2. cm97 and ccf

cm97 starts with construction of weights using the diagonal elements of the hat matrix using the formula

𝑤𝑖 =
1

max(𝐻𝑖𝑖 , 𝑝)

where 𝐻 = 𝑋 (𝑋 ′𝑋)−1𝑋 ′ and 𝑝 = 𝑝/𝑛 (Chatterjee and Mächler, 1997). A weighted least squares regression is applied
using the weights 𝑤𝑖 . The weights are updated using the formula

𝑤𝑖 =
(1 − 𝐻𝑖𝑖)2

max( |𝑟𝑖 | , 𝑚)
until the estimated regression coefficients are stabilized where 𝑟𝑖 is the 𝑖th residual and 𝑚 is the sample median of
absolute residuals.
ccf is a fast regression method that is robust to outliers and shares a similar logic with the cm97 method. The method

starts with a weighted least squares estimation with 𝑖th weight is set to 𝑤𝑖 = 𝑛/2 for all observations by default (Barratt
et al., 2020). The weights are updated using the formula

𝑤𝑖 = Γsign(𝑒2
𝑖 − 𝛼)

where 𝛼 = 𝑝 ×∑𝑛
𝑖 𝑒

2
𝑖
, and 𝑒𝑖 is the 𝑖th residual. The authors suggest selecting the Γ parameter as 0.1. The iterations of

weight updating are repeated until a predefined maximum number of iterations is reached.

2.1.3. imon2005

imon2005 implements a robust version of the well-known regression diagnostics DFFITS, namely GDFFITS (Rah-
matullah Imon, 2005). The method starts with constructing an outlier-free ℎ-subset through a robust fit estimator.
The authors suggest using lms but any other robust fitting algorithm can be used instead. It is also suggested that the
observations with GDFFITS statistic that exceed 3

√︃
𝑝

ℎ
are labelled as outliers.

2.1.4. ks89

ks89 method starts with calculating Studendized residuals and considers the first 𝑝 observations regarding the
corresponding smallest values (Kianifard and Swallow, 1989). The initial subset is enlarged using the recursive
residuals. The recursive residuals are calculated using the formula

𝑤𝑘 = (𝑦𝑘 − 𝑋 ′
𝑘𝛽)/

√︃
1 + 𝑋 ′

𝑘
(𝑋∗′𝑋∗)−1𝑋𝑘

where 𝑤𝑘 is the 𝑘th recursive residual, 𝑋∗ is the subset of the design matrix with elements corresponding to first 𝑘 − 1
smallest recursive residuals. The iterations are repeated until 𝑘 = 𝑛. The observations that have standardized recursive
residuals greater than a specific threshold are labelled as outliers. The threshold can be selected as 𝛼-quantiles of a
Student’s T distribution with degrees of freedom 𝑛 − 𝑝 − 1.
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2.1.5. lad and quantilereg

The lad (Least Absolute Deviations) estimator minimizes the sum of absolute residuals and has a unique solution
obtained by a goal programming context (Narula et al., 1999). Supposing 𝑒−

𝑖
and 𝑒+

𝑖
denote the 𝑖th residual, 𝑒−

𝑖
> 0 if

the 𝑖th residual is negative, 𝑒+
𝑖
> 0 if the 𝑖th residual is positive, otherwise it fits the regression equation. The linear

objective function

min 𝑧 =
∑︁(

𝑒− + 𝑒+
)

is minimized subject to the constraints

𝑋𝛽 + 𝑒− − 𝑒+ = 𝑦

where 𝑒−
𝑖

≥ 0, 𝑒+
𝑖
≥ 0, 𝛽 𝑗 ∈ R, 𝑖 = 1, 2, . . . , 𝑛, and 𝑗 = 1, . . . , 𝑝. Similarly, quantilereg (Quantile Regression)

estimates a predefined conditional quantile of the response variable 𝑦 (Yu et al., 2003). quantilereg regression
parameters minimizes the linear objective function

min 𝑧 =
∑︁ [

(1 − 𝜏)𝑒− + 𝜏𝑒+
]

under the same constraints of lad where 0 ≤ 𝜏 ≤ 1. When 𝜏 is set to 0.25, 0.50 or 0.75, well-known conditional
quartiles are estimated. Note that any other percentile value can be selected, instead. When 𝜏 is set to 0.50, the
conditional median of the response variable is estimated given a set of exploratory variables.

2.1.6. lms, lts, and lta

lms (Least Median of Squares) estimator

min median 𝑒2

minimizes the sample median of squared residuals (Rousseeuw, 1984), whereas, lts (Least Trimmed Squares) estimator

min
ℎ∑︁
𝑖=1

𝑒2
𝑖

minimizes the sum of first ℎ ordered squared residuals where ℎ is at least half of the data (Rousseeuw and Van Driessen,
2006). Similarly lta estimator

min
ℎ∑︁
𝑖=1

|𝑒𝑖 |

minimizes the sum of the first ℎ ordered absolute residuals (Hawkins and Olive, 1999). Since the objective function of
these estimators are not in closed-form, the estimation process requires comprehensive iterations. Rousseeuw (1984)
proposed a random sampling based algorithm for lms. Rousseeuw and Van Driessen (2006) devised a fast algorithm
for lts in which a couple of samples of size 𝑝 are randomly drawn and enlarged to size ℎ using concentration steps
(c-steps).

2.1.7. py95

py95 is a method in which the eigen structure of

𝑀 =
1
𝑝𝑠2 𝐸𝐷𝐻𝐷𝐸

matrix is investigated where 𝑠2 =
∑
𝑒2/(𝑛 − 𝑝), 𝐻 is hat matrix, 𝐷 is 𝑛 × 𝑛 diagonal matrix with elements 1/(1−𝐻𝑖𝑖),

𝐸 is 𝑛 × 𝑛 diagonal matrix with elements 𝑒𝑖 , 𝑒𝑖 is the 𝑖th residual (Peña and Yohai, 1995). Differently, py95 reports
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suspicious observations rather than absolute outliers. Suppose that the 𝑣 is one of the eigenvectors of 𝑀 . Let 𝑎𝑖 = 𝑣𝑖/𝑣𝑖−1
for 𝑖 = 𝑛, 𝑛 − 1, . . . , 𝑐1, 𝑏 𝑗 = 𝑣 𝑗/𝑣 𝑗+1 for 𝑗 = 1, 2, . . . , 𝑐2, 𝑐1 = 𝑐2 = ⌊𝑛/4⌋, and 𝑜𝑐 is vector of ordered coordinates. If
none of 𝑎𝑖 > 𝑘 for 𝑖 ∈ 𝑜𝑐 and 𝑏 𝑗 > 𝑘 for 𝑗 ∈ 𝑜𝑐, then there is no any suspicious observations where 𝑘 can be selected
as 2.5. Otherwise, the method returns the set of suspicious outliers.

2.1.8. satman2013 and satman2015

satman2013 is a two-stage method for detecting outliers in linear regression (Satman, 2013). In the first stage of
the method, a subset of outlier-free observations is created using a robust covariance matrix estimation inspired by
the Comediance statistic (Huo et al., 2012). This covariance matrix is calculated in reasonably small times when it
is compared to the MVE and MCD (Van Aelst and Rousseeuw, 2009; Rousseeuw and Driessen, 1999) but lacks a
couple of nice statistical properties such as rotation invariance. The method continues with a weighted least squares
estimation using the weights obtained by the former stage. Finally, the method iterates c-steps defined in (Rousseeuw
and Van Driessen, 2006) using the clean subset of observations obtained.

Similarly, satman2015 (Satman, 2015) is also a two-stage method but it differs in constructing the basic subset.
Instead using the Comediance measure, the method constructs an initial subset using the design matrix by applying a
multi-dimensional sorting algorithm, e.g. non-dominated sorting algorithm defined in (Deb, 2015). A 𝑝 + 1 subset of
initial subset of observations are selected from the most-middle of the data. This selection method is not invariant to
affine transformations.

2.1.9. smr98 and asm2000

smr98 algorithm starts with an OLS estimation (Sebert et al., 1998). A single-linkage clustering is then applied on
the standardized pairs of �̂� and 𝑒. The cluster tree is cut using the Mojana criterion

ℎ̄ + 1.25𝜎ℎ

where ℎ is the vector of heights of dendrogram branches. Clusters with the majority of observations are labeled as
clean. The standardized pairs of ( �̂�, 𝑒) play a role of dimension reduction, so the algorithm works perfectly when the
number of regressors is small, e.g. 𝑝 = 2. The performance of the algorithm drastically reduces in higher dimensions.
asm2000 solves this problem by applying a robust fit at the very early steps of the smr98 algorithm. The clustering
stage is based on the robust estimates of �̂� and 𝑒 (Adnan et al., 2000).

2.2. SIMULATION STUDY
In the simulation study, regression data is created using the following data generating process: The number of

observations and the number of regression parameters selected as 𝑛 = 100, 500, 1000 and 𝑝 = 5, 10, 25, respectively.
Each single design matrix has 1s in the first column, that is, the models include an intercept term. Exploratory variables
and the error term are drawn from independent Normal distributions with zero mean and unit variance. Regression
parameters are set to [5, 5, . . . , 5]. Regression data is then contaminated either in 𝑥− and 𝑦− directions with the ratios
of 𝑐 = 0.10, 0.20, 0.30. Variables are contaminated using the formula

𝑉𝑖 = max(𝑉) + 𝑟𝑖

where 𝑟𝑖 is a random value drawn from a Uniform(0, 5) distribution, 𝑉 is either the response variable or columns of the
design matrix excluding the intercept, and max(𝑉) is the maximum value of𝑉 including the𝑉𝑖 . 𝑥− outlier observations
are contaminated in all dimensions.

Figure 1(a) represents a random data contaminated in 𝑥− direction. As the used contamination formula indicates,
outlier values are at least distant as the maximum value of the majority of observations. Similarly, Figure 1(b) represents
a random data with outliers in 𝑦− direction. Note that the configuration of 𝑝 = 2 is never used in simulations but the
same logic is applied in greater dimensions of spaces.

If the method M is a robust regression estimator, then the reported 𝛽𝑖 is used to calculate the MSE values. If the
method M is an outlier detection method and the reported outlier set is S then OLS parameters are estimated using
the complement set of S. By this setting, all of the methods are considered as regression estimators and low MSE
values are the signals and indicators of the low masking and swamping effects of method M. Since the data generating
process differs in the number of parameters, mean of mean square errors (mmse) are calculated and presented for each
single setting in the simulation results.
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(a) x-outliers

(b) y-outliers

Figure 1: Simulation data with 𝑛 = 100, 𝑝 = 2, and 𝑐 = 0.10

2.3. Multiple-criteria Decision-Making Tools
Suppose a multiple-criteria decision problem is presented as in the Table 1 where𝐶1, . . . , 𝐶𝑚 are criteria, 𝑤1, . . . , 𝑤𝑚

are weights of criteria, 𝑔1(𝐴𝑘), . . . , 𝑔𝑚(𝐴𝑘) are functions that takes a cost or a gain value for the alternative 𝐴𝑘 , and
𝐴1, . . . , 𝐴𝑛 are alternatives. Since a sorting operation requires the ≤ operator is defined for elements of vector 𝐴, Table
1 is not called to be sortable because of the operator ≤ is not defined in R𝑚 (or at least it doesn’t have an exact and
unique definition), 𝐴1, 𝐴2, . . . , 𝐴𝑛 are not sortable.

Multiple-criteria decision-making tools are methods which are defined for sorting, a.k.a. ranking, alternatives
𝐴1, . . . , 𝐴𝑛 by using different kinds of comparing operators. The TOPSIS method (Hwang and Yoon, 1981) scores
the alternatives using the Euclidean distance of weighted normalized 𝐴𝑖 vectors to best-ideal and worst-ideal vectors.
VIKOR (Opricovic, 1998; Opricovic and Tzeng, 2002) scores the alternatives using the formula

𝑣
𝑠𝑖 − min 𝑠

max 𝑠 − min 𝑠
+ (1 − 𝑣) 𝑟𝑖 − min 𝑟

max 𝑟 − min 𝑟
where 𝑠𝑖 and 𝑟𝑖 are the sum and maximum of the 𝑖th row of weighted normalized decision matrix, respectively, and 𝑣 can
be selected as 0.5. ARAS (Zavadskas and Turskis, 2010) creates an extended decision matrix by adding an additional
row that contains ideal values of all alternatives. A vector of Utility degress is then formed to score alternatives.
WASPAS (Zavadskas et al., 2012) utilities scores by using the product of normalized decision matrix and row sums.
COPRAS (Zavadskas et al., 1994) scores the alternatives using the formula
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Criteria 𝐶1 𝐶2 . . . 𝐶𝑚

Weights 𝑤1 𝑤2 . . . 𝑤𝑚

Functions 𝑓1 𝑓2 . . . 𝑓𝑚

𝐴1 𝑔1(𝐴1) 𝑔2(𝐴1) . . . 𝑔𝑚(𝐴1)
𝐴2 𝑔1(𝐴2) 𝑔2(𝐴2) . . . 𝑔𝑚(𝐴2)
...

...
...

...
...

𝐴𝑛 𝑔1(𝐴𝑛) 𝑔2(𝐴𝑛) . . . 𝑔𝑚(𝐴𝑛)

Table 1: A generic multiple-criteria decision problem

𝑆𝑖 =
𝑄𝑖

max𝑄

where 𝑖 = 1, 2, . . . , 𝑛, 𝑄𝑖 = 𝑠+
𝑖
+ ∑𝑛

𝑖=1
𝑠−
𝑖

𝑠+
𝑖
𝑍

, 𝑍 =
∑𝑛

𝑖=1 1/𝑠−
𝑖

, 𝑠+
𝑖

and 𝑠−
𝑖

are sums of rows of the normalized decision
matrix regarding to the direction of optimization, e.g. either maximization or minimization, respectively.

Selection of criteria weights depends on the researcher and it is generally subjective. CRITIC (Diakoulaki et al., 1995)
is an automatic method for selecting the importance level of criteria, a.k.a. weights. CRITIC weights are calculated
using

𝑤 𝑗 = 𝑠 𝑗/
∑︁

𝑠

where 𝑠 𝑗 is the score of the 𝑗 th criterion defined as

𝑠 𝑗 = N𝑗

∑︁
F𝑗

and N𝑗 is standard deviation of 𝑗 th column of the normalized decision matrix, F𝑗 is 𝑗 th column of the matrix F ,
F = 1 − Σ̂, Σ̂ is the sample correlation matrix of the normalized decision matrix.

2.4. The Software
Simulation study and the multiple-criteria decision-making tools are applied with Julia (Bezanson et al., 2017). Julia

is a fast, dynamic and compiled programming language that is mostly used in scientific computing. Selection of the
programming language is mostly pragmatic as the simulation study requires 54000 iterations for each single estimator
and the required functionality is packed compactly in a single environment. The Julia package LinRegOutliers is used
in simulations (Satman et al., 2021a). This package implements all of the estimators used in this study purely in Julia.
The multiple-criteria decision-making analysis is applied using the Julia package JMcDM (Satman et al., 2021b).

The methods of the LinRegOutliers package are implemented in a unified way and they are called in a scheme of

method(X, y)

where X is the design matrix, y is the response vector, and method is either lms, lts, hs93, etc. The JMcDM package
is implemented in a similar way and a single MCDM method is called like

method(decisionMat, weights, directions)

where decisionMat is the decision matrix, weights is the vector of weights of criteria, and directions is the vector
of directions of optimizations which can be either minimum or maximum. method is the function name and it can take
values topsis, waspas, copras, etc. Use of the methods are explained in a great detail in papers Satman et al. (2021a)
and Satman et al. (2021b), respectively.
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3. RESULTS
Tables 2 - 4 summarize the simulation results. In these tables, average MSE values of estimates (𝛽) are reported for

different contamination ratios (𝑐 = 0.10, 0.20, 0.30), outlier direction (either in x-space or y-space), and number of
parameters (𝑝 = 5, 10, 25).

Table 2 summarizes the simulation results for 𝑛 = 100. When the contamination in x-space is low (𝑐 = 0.10) and
𝑝 = 5, 10; bacon, asm2000, lts, and lta have relatively smaller mmse values. hs93 comes into scenes in higher
dimensions (𝑝 = 25). This situation is also current for higher contamination rates (𝑐 = 0.20, 0.30). When 𝑝 = 25 and
contamination rates are higher, hs93, bacon, and lta have better performance.

In the case of y-outliers and 𝑛 = 100, most of the methods are fine except bacon, imon2005, and ccf for small
contamination rates (𝑐 = 0.10). When the contamination rate is increased to 0.20, smr98, py95, ks89, lms, satman2015
tend to have larger mmse values. When the contamination rate is maximum, the winners are lts, asm2000, and hs93

with distant mmse values compared to the remaining ones.
Table 3 summarizes the results for 𝑛 = 500. When the dimensionality and the contamination is low (𝑝 = 5, 𝑐 = 0.10);

bacon, asm2000, imon2005, satman2013, lts, lms, and lta have better performance in the presence of x-outliers.
The list remains the same when 𝑝 = 10. In higher dimensions (𝑝 = 25) satman2013 is replaced by hs93 by their
corresponding mmse values. A small subset of the list survives in higher dimensions and higher contamination rates.
bacon, hs93, and lta are successors for 𝑐 = 0.20. When 𝑐 = 0.30, only bacon and hs93 have relatively smaller mmse
values.

In the case of y-outliers and 𝑛 = 100, 𝑝 = 5, and 𝑐 = 0.10, the methods have similar performance by means of
mmse. This situation remains the same for higher dimensions and contamination rate. In the worst case of 𝑝 = 25 and
𝑐 = 0.30 hs93, bch2006, satman2013, lts, lad, quantilereg, and cm97 have relatively smaller mmse values and
can be considered as applicable.

Table 4 summarizes the results for 𝑛 = 1000. bacon, asm2000, imon2005, smr98, satman2013, lts, lta, and lms

have better performance for 𝑝 = 5 and 𝑐 = 0.10 in the presence of x-outliers. In the case of high contamination rates
only asm2000, lts, and lta have distant mmse values to the remaining elements of the list. In the worst case of 𝑝 = 25
and 𝑐 = 0.30, hs93 and bacon are well ahead regarding their low mmse values.

In the case of y-outliers and 𝑛 = 1000, 𝑝 = 5, and 𝑐 = 0.10, all of the methods are applicable. When 𝑐 = 20 and
𝑝 = 10 imon2005 and ccf exit the list. In the worst case of 𝑝 = 25 and 𝑐 = 0.30 most of the methods are applicable
except ks89, py95, lta, lms, imon2005, ccf, and satman2015.

Success of methods differ regarding the number of observations, the number of parameters, the contamination
rate, and the direction of contamination. However, these factors are generally unknown by the researcher, that is, the
multivariate data is not visible to plots even a dimension reduction tool is applied to data1. As a consequence, the
researcher is almost blind to direction of outliers and the contamination ratio.

Table 5 represents the scores calculated by TOPSIS, VIKOR, ARAS, WASPAS, and COPRAS methods to the
decision matrix of simulation results. In the decision matrix, rows (the alternatives) are the methods. The criteria are
formed by the simulation settings. The 𝑖th row and the 𝑗 th column of the decision matrix represents the mmse of the
method M𝑖 for regression setting ∫ 𝑗 . In Table 5 it is shown that the ols has the lowest rank by all of the methods since
the simulation data is always contaminated. The other methods have higher scores as expected. asm2000 is in the top
three for all MCDM methods. hs93 is in the top three for 4 out of 5 methods whereas lta takes a place for 3 out of 5
methods. lta, hs93, asm2000, lts, bacon take a place for at least one MCDM method.

The success of the methods is compared in terms of computation time as well as mmse values. Table 6 represents
the average absolute times and relative times elapsed by the methods2.

Table 6 shows that the statistical properties and the consumed times of methods are related as the most successful
methods hs93 and lta consume more time than the others. ccf is also consistent as it has lower ranks by the MCDM
and lower computation times. satman2013 is an interesting method as it takes 8th or 9th row in the rankings with
its relatively small computation times. cm97 has similar speed properties with lower rankings. The cheapest-success
method is bacon as it takes higher rankings with median computation times.

1 Classical covariance matrix based methods are not robust to outliers and, for instance, Principal Component Analysis requires a robust covariance matrix to be estimated in the presence
of outliers. Performance of covariance estimators (by means of 1. Detecting the true outliers, 2. Rejecting the false outliers, 3. Unbiased estimate of the location vector, 4. Efficient
estimation of variance, etc.) is another issue and this subject is out of scope of this paper
2 The absolute calculation times are average of all computation times in all simulation settings. These elapsed times are measured using a MacBook Pro with 8GB of memory and 2Ghz
8-core CPU. Since the elapsed times differ in many hardware configurations, relative average times are reported. The time consumed by ols is set to 1𝑥. Other methods’ average times
are divided by absolute elapsed time of ols. By this representation, the elapsed times are directly comparable.
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4. DISCUSSIONS AND CONCLUSIONS
Robust regression methods take the model and a dataset as input and return the estimate of regression parameters

whereas outlier detection methods take the same input and return a set of indices of outliers. When the reported outlier
set is omitted from the data, the estimated OLS parameters are considered robust. In this study the well-known and
modern outlier detection methods and robust regression methods are simulated for different number of observations,
the number of parameters, levels of contamination, and direction of contamination. MSE of estimated parameters are
recorded during the simulations. Simulation results show that the success of a method differs regarding the simulation
setting. However, the researchers are generally not aware of the underlying data generating process and the contamination
structure and selection of the proper method is a decision problem.

Multiple-criteria decision-making (MCDM) tools are generally used by ranking the alternatives using a given set of
criteria and importance levels of these criteria. TOPSIS, Vikor, ARAS, WASPAS, and COPRAS are some well-known
MCDM tools applied in the decision making literature. In this paper, these MCDM tools are used to rank outlier
detection methods by their average MSE (mmse) of parameter estimates. The criteria are formed by each single setting
of the data generating process. Since the importance level is unknown or subjective, the CRITIC method is used to
determine a set of weights.

The results of the MCDM analysis show that the ols estimator has the lowest rank as expected just because the
simulation study is performed on the contaminated data. All of the MCDM tools scored asm2000 in the top three
whereas hs93 is ranked in top three for four out of five listings. lta takes the place of three out of five MCDM methods
in the top 3. lta, hs93, asm2000, lts, bacon are top-ranked for at least one MCDM method. If the researcher has no
idea of the underlying data generating process, results of these methods can be considered.

The computation times consumed by the methods are also reported. It is shown that the more successful methods
take more computation time. satman2013 is an interesting method as it takes 8th or 9th row in the rankings with
its relatively small computation times. cm97 has similar speed properties with lower rankings. The cheapest-success
method is bacon as it takes higher rankings with median computation times. If the consumed time is an issue, bacon
can be used with reasonably small MSE of estimates in many settings.

If the direction and level of contamination is known, results of the simulations are directly comparable. When
𝑛 = 1000, 𝑝 = 25 and the contamination is at the maximum level, hs93 is the most performant method by means of
lower MSE. If the direction of contamination is known and the presence of y-outliers is the case, hs93, bch2006 are
the absolute winners with a small time difference.

The simulation results is a confirmation of the previous simulation studies reported in Billor and Kiral (2008) and
Wisnowski et al. (2001) in some sights. Instead of reporting the masking and swamping ratios, this study is original
as it reports MSE of estimated parameters. The former studies utilize a comprehensive study with a wider range of
contamination levels and extra contamination directions and structures. Our study differs as it tests the methods in
larger data sets including the ones with 𝑛 = 1000, 𝑝 = 25 and covers a wider and novel set of methods to compare.

Combining the building blocks of successful methods for a faster and more robust outlier detection procedure and
developing new methods would be the subject of future works.
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Algorithm 𝑐 = 0.10, 𝑑 =x 𝑐 = 0.10, 𝑑 =y
𝑝 = 5 𝑝 = 10 𝑝 = 25 𝑝 = 5 𝑝 = 10 𝑝 = 25

asm2000 0.012 0.012 0.016 0.022 0.030 0.048
bacon 0.012 0.015 0.090 0.012 0.015 3.205
bch2006 16.400 30.081 43.537 0.041 0.040 0.055
ccf 17.682 23.629 32.232 0.135 1.402 7.934
cm97 17.134 24.072 35.438 0.021 0.021 0.028
hs93 0.216 0.470 0.073 0.012 0.012 0.016
imon2005 2.089 23.562 32.354 0.857 1.621 6.242
ks89 17.596 24.594 36.397 0.040 0.074 0.334
lad 17.944 24.881 37.132 0.025 0.026 0.032
lms 0.048 0.046 0.078 0.048 0.048 0.077
lta 0.079 0.083 0.109 0.076 0.084 0.112
lts 0.066 0.060 0.148 0.068 0.061 0.052
ols 18.256 23.713 32.329 2.505 3.776 7.696
py95 13.307 24.140 38.775 0.044 0.068 0.271
quantilereg 18.003 24.949 36.807 0.025 0.025 0.031
satman2013 0.350 13.780 38.723 0.061 0.051 0.046
satman2015 20.823 29.247 48.788 0.059 0.050 0.089
smr98 5.139 21.288 36.532 0.014 0.026 0.139

Algorithm 𝑐 = 0.20, 𝑑 =x 𝑐 = 0.20, 𝑑 =y
𝑝 = 5 𝑝 = 10 𝑝 = 25 𝑝 = 5 𝑝 = 10 𝑝 = 25

asm2000 0.013 0.014 37.395 0.090 0.084 0.202
bacon 0.055 0.017 0.086 0.135 0.491 41.722
bch2006 22.286 30.565 46.163 0.038 0.045 0.105
ccf 19.788 24.718 34.325 2.418 10.052 17.402
cm97 19.884 25.439 37.679 0.054 0.047 0.076
hs93 0.870 0.443 0.019 0.014 0.015 0.030
imon2005 15.372 24.660 34.233 5.648 8.908 17.886
ks89 20.084 26.077 39.141 0.508 1.064 6.031
lad 20.150 26.220 39.578 0.051 0.048 0.075
lms 0.059 0.084 57.019 0.062 0.084 7.460
lta 0.075 0.094 0.229 0.076 0.092 0.225
lts 0.059 0.053 49.205 0.058 0.056 0.053
ols 19.719 24.674 34.308 8.494 10.297 18.027
py95 20.043 26.880 43.595 1.100 1.291 4.736
quantilereg 20.157 26.284 40.096 0.050 0.050 0.075
satman2013 18.126 27.329 42.747 0.049 0.048 0.159
satman2015 22.551 31.344 58.984 0.150 0.728 20.408
smr98 16.419 26.095 40.112 0.043 0.331 3.717

Algorithm 𝑐 = 0.30, 𝑑 =x 𝑐 = 0.30, 𝑑 =y
𝑝 = 5 𝑝 = 10 𝑝 = 25 𝑝 = 5 𝑝 = 10 𝑝 = 25

asm2000 0.016 0.017 51.756 0.307 0.367 0.394
bacon 9.324 7.070 7.990 1.146 4.071 102.800
bch2006 22.895 32.088 48.924 0.038 0.041 5.497
ccf 20.510 25.398 36.658 12.891 21.031 30.651
cm97 20.558 26.297 41.145 0.190 0.268 10.264
hs93 1.205 0.045 0.023 0.021 0.020 1.563
imon2005 19.499 25.498 36.469 14.851 20.330 30.489
ks89 20.942 26.957 41.661 3.172 6.749 24.486
lad 21.029 27.221 43.547 0.126 0.153 7.418
lms 0.096 4.699 82.574 0.089 0.785 39.316
lta 0.071 0.114 44.034 0.072 0.115 28.762
lts 0.049 1.423 71.372 0.049 0.047 0.120
ols 20.249 25.424 36.646 17.996 21.026 29.899
py95 20.998 27.834 54.573 8.208 9.528 24.205
quantilereg 20.993 27.183 43.366 0.128 0.134 8.077
satman2013 21.549 29.471 48.733 0.045 0.055 10.647
satman2015 23.830 35.256 89.485 63.767 63.865 88.561
smr98 20.285 27.583 45.360 1.422 4.714 26.167

Table 2: Average MSE for 𝑛 = 100
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Algorithm 𝑐 = 0.10, 𝑑 =x 𝑐 = 0.10, 𝑑 =y
𝑝 = 5 𝑝 = 10 𝑝 = 25 𝑝 = 5 𝑝 = 10 𝑝 = 25

asm2000 0.002 0.002 0.002 0.004 0.004 0.010
bacon 0.002 0.002 0.002 0.002 0.002 0.002
bch2006 7.936 22.874 29.937 0.007 0.009 0.010
ccf 17.371 21.816 24.900 0.090 0.813 3.769
cm97 17.423 21.799 25.203 0.008 0.006 0.004
hs93 0.130 0.327 0.252 0.002 0.002 0.002
imon2005 0.004 0.004 9.546 0.803 0.881 1.254
ks89 17.270 21.878 25.619 0.013 0.018 0.032
lad 17.510 21.991 25.626 0.008 0.006 0.005
lms 0.021 0.027 0.579 0.021 0.027 0.125
lta 0.029 0.042 0.070 0.029 0.043 0.072
lts 0.018 0.016 0.012 0.018 0.017 0.013
ols 17.827 21.803 24.907 2.629 3.022 3.821
py95 14.599 21.698 25.768 0.016 0.021 0.034
quantilereg 17.455 22.000 25.650 0.008 0.006 0.005
satman2013 0.016 3.474 27.198 0.016 0.015 0.011
satman2015 18.312 23.765 28.833 0.016 0.014 0.011
smr98 0.161 8.767 25.019 0.003 0.003 0.003

Algorithm 𝑐 = 0.20, 𝑑 =x 𝑐 = 0.20, 𝑑 =y
𝑝 = 5 𝑝 = 10 𝑝 = 25 𝑝 = 5 𝑝 = 10 𝑝 = 25

asm2000 0.002 0.003 14.801 0.027 0.044 0.028
bacon 0.003 0.003 0.003 0.003 0.011 0.018
bch2006 19.446 24.112 30.776 0.006 0.008 0.009
ccf 19.037 22.466 25.357 2.324 10.111 12.729
cm97 19.029 22.552 25.664 0.032 0.019 0.011
hs93 1.517 0.295 0.106 0.002 0.003 0.003
imon2005 0.524 3.177 25.279 6.378 7.638 9.953
ks89 19.055 22.757 26.167 0.390 0.500 0.803
lad 19.105 22.717 26.133 0.026 0.016 0.011
lms 0.072 1.764 24.534 0.067 0.321 6.204
lta 0.031 0.055 0.148 0.030 0.054 0.146
lts 0.015 0.013 18.859 0.014 0.014 0.012
ols 19.050 22.445 25.345 9.879 11.094 12.625
py95 19.067 22.907 26.260 0.558 0.716 0.777
quantilereg 19.072 22.716 26.229 0.026 0.016 0.011
satman2013 17.174 23.631 28.475 0.013 0.012 0.010
satman2015 20.096 24.512 29.793 0.014 0.012 0.010
smr98 7.287 21.515 25.999 0.003 0.003 0.003

Algorithm 𝑐 = 0.30, 𝑑 =x 𝑐 = 0.30, 𝑑 =y
𝑝 = 5 𝑝 = 10 𝑝 = 25 𝑝 = 5 𝑝 = 10 𝑝 = 25

asm2000 0.003 0.327 26.057 0.188 0.098 0.163
bacon 10.414 7.387 1.362 1.601 0.675 0.585
bch2006 20.182 24.834 31.424 0.006 0.005 0.008
ccf 19.508 22.750 25.615 15.693 23.772 26.795
cm97 19.524 22.869 26.008 0.122 0.070 0.041
hs93 3.272 0.593 0.003 0.003 0.003 0.003
imon2005 5.178 16.416 25.854 18.310 20.939 25.607
ks89 19.591 23.045 26.509 2.876 3.510 5.491
lad 19.606 23.067 26.615 0.075 0.044 0.027
lms 1.799 14.530 27.409 0.539 4.349 16.216
lta 0.033 0.077 8.549 0.034 0.078 7.022
lts 0.011 0.682 34.699 0.011 0.011 0.010
ols 19.496 22.740 25.621 22.363 24.151 26.671
py95 19.591 23.210 26.576 7.666 7.348 6.340
quantilereg 19.619 23.059 26.656 0.075 0.044 0.027
satman2013 19.955 24.459 29.300 0.011 0.010 0.009
satman2015 20.577 25.150 31.301 153.840 111.669 63.315
smr98 14.966 22.961 26.526 0.004 0.300 0.927

Table 3: Average MSE for 𝑛 = 500
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Algorithm 𝑐 = 0.10, 𝑑 =x 𝑐 = 0.10, 𝑑 =y
𝑝 = 5 𝑝 = 10 𝑝 = 25 𝑝 = 5 𝑝 = 10 𝑝 = 25

asm2000 0.0010 0.0010 0.0010 0.0010 0.0010 0.0010
bacon 0.0010 0.0010 0.0010 0.0010 0.0010 0.0010
bch2006 5.7756 22.0429 26.7652 0.0036 0.0039 0.0045
ccf 17.5024 21.6381 24.2338 0.0804 0.7822 3.4871
cm97 17.5442 21.6073 24.3706 0.0066 0.0043 0.0029
hs93 1.7994 4.0458 0.9715 0.0010 0.0010 0.0010
imon2005 0.0010 0.0010 0.0010 0.8566 0.8655 1.0107
ks89 17.3462 21.6626 24.6064 0.0088 0.0117 0.0185
lad 17.5348 21.6808 24.5792 0.0060 0.0040 0.0028
lms 0.0230 0.0423 3.5922 0.0224 0.0347 0.3284
lta 0.0214 0.0385 0.0674 0.0220 0.0377 0.0664
lts 0.0096 0.0091 0.0334 0.0094 0.0093 0.0078
ols 17.8770 21.6403 24.2406 2.7914 3.1037 3.6352
py95 16.1162 21.4521 24.6933 0.0190 0.0161 0.0191
quantilereg 17.5272 21.6874 24.5982 0.0060 0.0041 0.0028
satman2013 0.0086 1.2815 25.9011 0.0088 0.0083 0.0064
satman2015 16.4922 22.8783 26.8538 0.0090 0.0077 0.0062
smr98 0.0024 2.7959 23.6374 0.0014 0.0010 0.0010

Algorithm 𝑐 = 0.20, 𝑑 =x 𝑐 = 0.20, 𝑑 =y
𝑝 = 5 𝑝 = 10 𝑝 = 25 𝑝 = 5 𝑝 = 10 𝑝 = 25

asm2000 0.0010 0.0010 12.8159 0.0322 0.0010 0.0295
bacon 0.0010 0.0010 0.0010 0.0010 0.0010 0.0010
bch2006 19.1146 23.0278 27.3760 0.0030 0.0035 0.0040
ccf 18.9962 22.2326 24.5423 2.5844 11.0908 13.1101
cm97 18.9782 22.2848 24.7040 0.0294 0.0156 0.0081
hs93 11.3026 2.2483 0.0011 0.0010 0.0010 0.0013
imon2005 0.0688 0.0441 16.8873 7.0404 8.0550 9.6137
ks89 19.0040 22.3559 24.9464 0.3832 0.4586 0.6018
lad 19.0112 22.3573 24.9449 0.0234 0.0132 0.0073
lms 0.4672 6.1905 24.1882 0.1580 0.9109 7.0917
lta 0.0236 0.0499 0.1384 0.0252 0.0499 0.1381
lts 0.0078 0.0074 15.2878 0.0080 0.0078 0.0070
ols 19.0194 22.2258 24.5409 10.9012 11.8859 12.8084
py95 19.0350 22.5864 25.0380 1.2078 0.6776 0.5984
quantilereg 19.0048 22.3663 24.9542 0.0232 0.0133 0.0073
satman2013 17.3134 23.0274 26.8841 0.0074 0.0063 0.0054
satman2015 19.7148 23.5378 27.3970 0.0072 0.0070 0.0057
smr98 2.5292 19.7529 24.8598 0.0018 0.0019 0.0018

Algorithm 𝑐 = 0.30, 𝑑 =x 𝑐 = 0.30, 𝑑 =y
𝑝 = 5 𝑝 = 10 𝑝 = 25 𝑝 = 5 𝑝 = 10 𝑝 = 25

asm2000 0.001 0.498 24.525 0.094 0.159 0.048
bacon 10.133 7.521 1.123 2.403 0.949 0.345
bch2006 19.733 23.402 27.918 0.003 0.003 0.003
ccf 19.436 22.464 24.730 17.917 26.366 28.234
cm97 19.425 22.520 24.894 0.116 0.062 0.030
hs93 11.553 1.125 0.001 0.045 0.002 0.002
imon2005 1.780 3.854 24.839 20.245 22.903 26.694
ks89 19.472 22.623 25.143 3.101 3.522 4.466
lad 19.480 22.639 25.228 0.070 0.038 0.019
lms 5.995 18.192 25.641 1.536 6.981 17.702
lta 0.028 0.073 7.585 0.028 0.072 6.289
lts 0.006 0.751 30.136 0.006 0.006 0.006
ols 19.425 22.463 24.716 24.620 26.749 28.140
py95 19.484 22.770 25.270 11.084 7.890 5.468
quantilereg 19.447 22.621 25.217 0.069 0.038 0.019
satman2013 19.719 23.656 27.324 0.006 0.005 0.005
satman2015 20.138 23.930 28.055 183.544 153.479 61.311
smr98 10.018 22.276 25.141 0.002 0.002 0.195

Table 4: Average MSE for 𝑛 = 1000
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TOPSIS VIKOR ARAS WASPAS COPRAS

Algorithm Score Algorithm Score Algorithm Score Algorithm Score Algorithm Score

lta 0.922 lta 0.998 asm2000 0.528 asm2000 0.344 hs93 1.000
hs93 0.922 asm2000 0.974 bacon 0.454 bacon 0.305 lta 0.835

asm2000 0.885 lts 0.960 hs93 0.451 hs93 0.297 asm2000 0.694
lts 0.855 bacon 0.953 lts 0.183 lts 0.134 lts 0.529
lms 0.782 hs93 0.884 smr98 0.159 smr98 0.123 bacon 0.234

bacon 0.756 lms 0.867 lta 0.122 bch2006 0.078 lms 0.169
smr98 0.745 smr98 0.770 bch2006 0.112 lta 0.075 smr98 0.136

satman2013 0.720 imon2005 0.763 imon2005 0.081 satman2013 0.058 satman2013 0.126
cm97 0.682 satman2013 0.741 satman2013 0.081 cm97 0.051 cm97 0.097
lad 0.680 cm97 0.544 quantilereg 0.063 quantilereg 0.051 bch2006 0.097

quantilereg 0.680 bch2006 0.542 lad 0.063 lad 0.051 lad 0.096
bch2006 0.679 lad 0.540 cm97 0.062 imon2005 0.049 quantilereg 0.096

ks89 0.669 quantilereg 0.540 lms 0.050 lms 0.033 ks89 0.084
py95 0.666 py95 0.484 satman2015 0.030 satman2015 0.025 py95 0.079

imon2005 0.584 ks89 0.477 ks89 0.010 ks89 0.010 imon2005 0.047
satman2015 0.505 satman2015 0.415 py95 0.009 py95 0.009 satman2015 0.039

ccf 0.486 ccf 0.074 ccf 0.002 ccf 0.002 ccf 0.036
ols 0.337 ols 0.010 ols 0.001 ols 0.000 ols 0.024

Table 5: Ranking and scores

Algorithm Absolute time Relative time

ols 0.00013 1.000
ccf 0.00155 12.116
cm97 0.00774 60.596
satman2013 0.01599 125.211
quantilereg 0.06122 479.287
lad 0.06172 483.183
satman2015 0.06690 523.747
smr98 0.15469 1211.039
ks89 0.24363 1907.391
bacon 0.25505 1996.776
lms 0.42403 3319.777
lts 0.48258 3778.131
imon2005 0.53484 4187.311
asm2000 0.54336 4254.016
py95 0.68249 5343.253
bch2006 1.55553 12178.298
lta 4.65866 36472.915
hs93 6.57872 51505.193

Table 6: Absolute and relative elapsed times by algorithms. Relative average times are calculated due to the ols by
setting its time to 1𝑥.
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