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Abstract

Generative Adversarial Networks (GANs) have gained widespread attention since their introduction,
leading to numerous extensions and applications of the original GAN idea. A thorough understanding
of GANs’ mathematical foundations is necessary to use and build upon these techniques. However,
most studies on GANs are presented from a computer science or engineering perspective, which can
be challenging for beginners to understand fully. Therefore, this paper aims to provide an overview
of the mathematical background of GANs, including detailed proofs of optimal solutions for vanilla
GANs and boundaries for f -GANs that minimize a variational approximation of the f -divergence
between two distributions. These contributions will enhance the understanding of GANs for those
with a mathematical background and pave the way for future research.
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1 Introduction

Generative Adversarial Networks (GANs) introduced by [1] consist of generative and discrimina-
tive neural network models that are usually denoted by letters G and D, respectively. To visualize
GANs environment better in our mind, the generative model may be regarded as a counterfeiter
who is attempting to produce a fraud Van Gogh’s Starry Night painting and sell it without being
noticed, whereas the discriminative model is equivalent to an expert who specializes in Van Gogh,
trying to detect the counterfeit fraud painting. However, the counterfeiter does not care about
producing images that are a variation of the original Starry Night painting. In the applications
of GANs, the aim is not to present a new image identical to the original painting. Instead, it
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aims to create a unique illustration of Starry Night that the Van Gogh expert recognizes as an
unknown Van Gogh painting that is unprecedented anywhere before. As a result, a computation
starts between the generator and discriminator over the fraud painting detection. The competition
continues until the counterfeiter becomes intelligent enough to deceive the expert successfully.
More precisely, the discriminator’s role is to distinguish the real and fraud paintings, while the
generator’s role is to generate fraud paintings in such a way that it can mislead the discriminator,
and the discriminator is unable to cope with rejecting the fraud paintings any longer (see Figure 1).

Figure 1. A visualization of the discriminator and generator networks as a counterfeiter and Van Gogh’s
painting expert

Figure 1 presents a visualization of the training process of Generative Adversarial Networks
(GANs). The GAN training process involves two main components: the Generator and the
Discriminator. The Generator takes random noise from the latent space as input and generates
fake data, attempting to mimic the real data distribution. Initially, the generated data is random
and typically of low quality. A batch of real data is sampled from the training dataset that
serves as the ground truth for the Discriminator during training. The Discriminator is trained
on both real and fake data. It is presented with the real data and the corresponding labels (1
for real) to learn to distinguish real data from fake data. It is then presented with the fake data
generated by the Generator and the corresponding labels (0 for fake) to learn to identify the
fake data. The Discriminator’s performance is evaluated using a loss function, such as binary
cross-entropy, which measures how well the Discriminator is differentiating the real data from
the fake data. The Generator is trained to deceive the Discriminator by generating fake data that
appears as realistic as possible. The Generator takes random noise as input and aims to generate
data that the Discriminator labels as real. The Generator’s performance is evaluated using the
Discriminator’s response to the fake data it generates. The Generator’s loss function encourages
it to generate data that deceives the Discriminator (i.e., the Discriminator’s prediction closer to
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1). The model parameters of both the Generator and Discriminator are updated using gradient
descent or some variant, optimizing considering loss functions. The process continues iteratively,
with the Generator getting better at generating realistic data, and the Discriminator becoming
more skilled at differentiating real from fake data. The ideal state is reached when the Generator
can create data that is indistinguishable from real data, and the Discriminator cannot confidently
classify between the real and generated data. It is important to note that the Generator never uses
the real data as input and trains solely with random noises.
To put this in a positive framework, we can say that the discriminator serves as a kind of quality
control of the generated data. The better the discriminator performs, the better the benchmark for
the generator. Then, the generator can finally beat the benchmark in a form in which the optimal
strategy of the discriminator is essentially only guessing whether the generated data are fraud or
real. Finally, the generator is ready to be used in synthetic data generation.
Some of the key issues that are critical in the applications of GANs are as follows:

• Quantifying "similar objects" is trickier than it sounds, and it carries the core to GANs. In the
field of mathematics research, we have many alternative methods to quantify the similarity
between any two objects, which can also lead us to different objectives in setting up GANs.

• In the application of GANs, we aim to generate original objects, which can be distant in which
distance measure we consider to any objects at hand as a training dataset χ (i.e. we do not want
to copy χ, but we feel the generated objects and χ belong to the same class).

• We do not care about generating a perturbation of the original painting. Instead, we want to
produce a fake painting that the expert is going to consider like a unique painting that belongs
to Van Gogh, which she has seen for the first time in her life.

• In this setting, the appropriate concept of similarity is distributional similarity. We call two
objects similar if both are samplings from the same (or roughly same) probability distribution.
This means that the two objects share similar characteristics and features that are determined by
the underlying probability distribution. Therefore, we maintain a training dataset denoted with
χ ⊂ Rn that consists of samples gathered from µ. In this context, µ is a probability distribution,
and its density is represented by p(x). We want to arrive at a reasonable approximating
probability distribution ν having a density q(x) to µ. Then, we can obtain artificial or synthetic
objects that are identical to objects in the training (real) dataset χ by sampling from ν.

• You may question, why we do not just consider the distributions as ν = µ and obtain samples
from the real data distribution µ.
Unfortunately, such sampling is exactly the main problem of GANs since µ is not known explic-
itly. The only thing that we know is that we have a finite set of samples χ sampled from µ.
Consequently, the actual issue is identifying the properties of µ by only using χ. In this sense,
we must focus on specifying an appropriate probability distribution ν as an approximation
process to µ.

• In addition to considering a distribution similar to µ in the sense of probability distances, one
can also try to characterize µ by the empirical behavior of the data, their so-called stylized facts.

• Generally, the success of GANs depends on the sophistication of µ and the training dataset χ

size.

The basic approach of GANs

The purpose of the study is to clarify the mathematical background of GANs. Therefore, it focuses
on only theoretical aspects of GANs and contains any applications.
To approximate a given probability distribution µ, GANs require an initially defined probability
distribution to start its training. Generally, the initial distribution, which we define as γ, is
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introduced in space Rd. Here, the space dimension d is not necessarily identical to the space
dimension n (of Rn). Now, suppose we have chosen the initial distribution γ to be the standard
normal distribution, and we have denoted it with N(0, Id). However, we are free to choose γ

from other well-known probability distribution families (e.g., uniform). GANs utilize a technique
to discover a mapping G, defined as G : Rd 7−→ Rn. At this stage, consider a random variable
z ∈ Rd sampled from initial distribution γ. Then, we can claim that the mapping G(z) is from the
same distribution family as µ. To emphasize, the probability distribution of G(z) can be defined in
the form of γ ◦ G−1. Here, G−1 denotes the inverse of G, and the inverse maps subsets of space
Rn to subsets in space Rd. Therefore, in the GANs modeling method, we desire to find a mapping
G(z) that satisfies γ ◦ G−1 = µ or at least γ ◦ G−1 is a reasonable approximation of the real data
distribution µ.
The vanilla GAN approach forms an adversarial system from which the generator receives updates
on a continuous basis to increase output accuracy. More rigorously, the vanilla GAN presents a
neural network called a discriminator, which attempts to label the observed samples as real, and
generated samples as fake. From this perspective, the discriminator behaves like a classifier that
attempts to distinguish real samples from fake samples. To this end, the discriminator assigns
a probability D(x) ∈ [0, 1] to each sample x for its probability of being a real sample. If samples
G(zj) are outputs of the generator, the discriminator attempts to restrict them since they are fake
samples.
In the early stage of training a GAN, restricting generated samples as fake should not be challeng-
ing since the generator is not elegant at generating realistic samples. However, after each attempt
G fails to produce realistic samples to trick D, and G learns and adjusts itself with a refinement
update. Thus, the improved G performs more reasonably compared to the one used at the early
stages, and then it is the discriminator D’s progression to revise for refinement. In an ideal case,
through such an adversarial iterative process, we can eventually arrive at an equilibrium point;
therefore, even the most reasonable D cannot perform more satisfactory labeling than a random
guess. At this point, the samples generated by G become extremely identical to training samples χ

in distribution. Consequently, the discriminator decision becomes completely random, and the
probability of being real approximates 50%.
In GANs modelling approach, we have to define both the discriminator and generator by utilizing
neural networks to understand the distributional properties of given data. Each neural network
has its corresponding parameters ω and θ. These parameters are used in the training of the
discriminator and generator and include the weights (also known as synaptic weights) of the
neural network layers, as well as the biases of these layers. They are learned during training to
optimize the performance of the GAN in generating realistic samples. Hence, we should register
Dω(x) for the discriminator and Gθ(z) for the generator, and we should denote νθ := γ ◦ G−1

θ .
Thus, it is clear that our task is to identify the desired generator Gθ(z) by adequately adjusting its
parameter θ.

Building a GAN framework

As we mentioned above, there are two parties in GANs modeling method: generator Gθ(z) and a
discriminator Dω(x) who are in competition, and both parties have their own roles during the
modeling process. More specifically,
The generator:

• The generator operates with a random vector whose length is fixed and, then, produces a fake
sample in the corresponding domain.

• The vector is sampled from the Gaussian distribution (generally) and utilized to seed the
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generator. After the training, points in the multidimensional vector space conform with points
in the real data domain, forming a compact replica of the training data distribution.

• The vector space is called the latent space or equally vector space. It consists of some latent
variables or some hidden variables, which are critical for the domain but cannot be observed
directly.

The discriminator:

• The discriminator uses a sample from the domain as input (it may be either real or fake) and
assigns a real or fake (generated) binary class label.

• The real sample directly comes from the original data, while fake samples are only outputs of
the generator.

• The discriminator is a classifier model. When the training is finished, the discriminatory model
is junked as we are curious about in the generator. Occasionally, the generator can be reset as it
has learned to effectively determine characteristic from examples sampled from the problem
domain. Some or all of the characteristics extraction layers can be utilized in transfer learning
applications by utilizing the same or similar input data.

Both players in the min-max game are expressed by a corresponding function. Each function is
differentiable concerning its inputs and parameters. As it introduced above, the discriminator
is a differentiable function denoted by D that uses x as input and is allowed to use only the
discriminator network weights ω as parameters. On the other hand, the generator is specified by
G and uses the random vector z as the initial input and is only allowed to use the weights of the
generator network θ as parameters [2].
In this setting, both players have their own loss functions. The loss functions are described with
regard to parameters specific to players. The discriminator desires to minimize the problem
L(D)(ω, θ) and it must accomplish the minimization by controlling only its parameters ω. On the
other hand, the generator desires to minimize L(G)(ω, θ) and must accomplish the minimization
by controlling only its parameters θ. Here, the discriminator and generator losses rely on the other
player’s parameters. However, both players are limited to controlling only their own parameters.
Since each player’s loss relies on the opposite player’s parameters, despite each player being
allowed to regulate its parameters and cannot control the opposite player’s parameters, such a
scenario is generally expressed as a game rather than a classical optimization problem [2].
As we mentioned already, generator G is a differentiable function. After we produce its random
vector z from a well-known initial distribution called γ, G generates a fake sample x, which is
implicitly sampled from the model distribution (Pmodel = ν). Commonly, a deep neural network
is utilized to characterize the generator. However, we have some constraints on the configuration
of the corresponding neural network. If we want Pmodel to have complete support on X , the
dimension of the generator should be at least as large as the dimension of X [2].
In a similar fashion, discriminator D is also a differentiable function, whose objective is to catego-
rize samples accurately as real and fake. The discriminator is also naturally characterized by a deep
neural network. Again, it has some restrictions on the configuration of its corresponding network.
It has to use only real and fake samples as entries and assigns a probability score D(x) ∈ [0, 1] for
each x [2]. Here, notice that the generator never sees the real data and only uses random vector z
as input, while the discriminator uses both real, and the generator’s output.

A simple derivation of the loss functions
Before starting the definition of the loss functions, note that in the classical GANs architectures,
the design of the discriminator loss functions L(D) always remains the same. They differ only by
the cost function for the generator, L(G) [2]. The loss function introduced in the original study [1]
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is obtained from the binary cross-entropy formula as follows

L(ŷ, y) =
[
y · log(ŷ) + (1 − y) · log(1 − ŷ)

]
. (1)

Here, y and ŷ correspond to the original and fake data, respectively.

In the training of the discriminator, the label of data assigned by the real data µ(x) is y = 1
(real/observed data) and ŷ = D(x). Then, by substituting this into Eq. (1), we have

L(D(x), 1) = log(D(x)), (2)

and for the data sampled from the generator, the label is y = 0 (fake data) and ŷ = D(G(z)).
Similarly, by substituting these into Eq. (1), we end up with

L(D(G(z)), 0) = log(1 − D(G(z))).

In this setting, the goal of the discriminator is to accurately classify its input as fake or real.
Therefore, the given loss functions for G and D have to be maximized. Then, the final loss function
of D is denoted as

L(D) = max
[

log(D(x)) + log(1 − D(G(z)))
]

. (3)

At this stage, it is important to remember that the generator is competing against the discriminator.
Hence, the generator aims to minimize the optimization problem given in Eq. (3), and consequently,
its loss function evolves to

L(G) = min
[

log(D(x)) + log(1 − D(G(z))
]
. (4)

Now, let us combine the loss functions (3) and (4). By combining these two equations, we obtain a
min-max problem as

L = min
G

max
D

[
log(D(x)) + log(1 − D(G(z)))

]
. (5)

Here, it is worth emphasizing that the loss function in Eq. (5) is valid only for a single data point.
Therefore, to consider the entire dataset, we need to consider the expectation of the combined loss
function as

min
G

max
D

V(D, G) = min
G

max
D

[
Ex∼µ[log(D(x))] +Ez∼γ[log(1 − D(G(z)))]

]
. (6)

The min-max formulation introduced in Eq. (6) is a concise one-liner function that intuitively
captures the adversarial nature of the competition between the players G and D. However, in
practice, individual loss functions are defined for both players since the gradient of y = log(x) is
steeper around x = 0 than y = log(1 − x). This means that trying to maximize log(D(G(z))), or
equivalently minimizing − log(D(G(z))) leads to quicker and more significant improvements in
the generator performance than attempting to minimize log(1 − D(G(z))).



240 | Mathematical Modelling and Numerical Simulation with Applications, 2023, Vol. 3, No. 3, 234–255

2 Mathematical description of vanilla GANs

The adversarial game introduced in the previous section can be expressed mathematically by a
min-max task for a target function defined by the discriminator D(x) : R : 7−→ [0, 1] and generator
G : Rd 7−→ Rn. Here, it is clear that G transforms the random vector z ∈ Rd sampled from γ

into generated (fake) samples G(z). Then, D attempts to distinguish the generated samples from
the training samples that are supposed to be sampled from µ while G attempts to generate new
samples that are identical in distribution to the data that we use in the training of GANs [3].

In the original study [1], a target loss function is introduced as

V(D, G) := Ex∼µ[log(D(x))] +Ez∼γ[log(1 − D(G(z)))],

where E represents the expectation concerning the distribution appointed in the subscript. We can
avoid the subscript if there is no confusion.

The vanilla GAN solves the min-max problem given in Eq. (6). Heuristically, for a given G, the
optimization problem maxD V(D, G) reveals the optimal D to reject outputs G(z) by assigning
higher probabilities to samples from µ and low probabilities to outputs G(z). In contrast, for
a given D, minG V(D, G), the optimization problem reveals the optimal G, and therefore, the
outputs G(z) attempt to deceive D by assigning high probabilities for G(z) [3].

Then, let us define y = G(z) ∈ Rn having a distribution defined as ν := γ ◦ G−1, and the random
vector z ∈ Rd is from the γ distribution family. Thus, we may rearrange V(D, G) in terms of D
and ν as follows

Ṽ(D, ν) : = Ex∼µ[log(D(x))] +Ez∼γ[log(1 − D(G(z)))]

= Ex∼µ[log(D(x))] +Ey∼ν[log(1 − D(G(y)))] (7)

=

∫
Rn

log(D(x))dµ(x) +
∫

Rn
log(1 − D(y))dν(y).

Then, the min-max problem defined in Eq. (6) evolves to

min
G

max
D

V(D, G) = min
G

max
D

 ∫
Rn

log(D(x))dµ(x) +
∫

Rn
log(1 − D(y))dν(y)

. (8)

Now, suppose that the distributions µ and ν have densities given as p(x) and q(x), respectively.
Note that this can only happen under the condition of d ≥ n. This condition is necessary for GANs
to ensure that the discriminator is sufficiently powerful to distinguish real samples from generated
ones. When d ≥ n, the discriminator possesses a greater number of parameters compared to the
sample size in the training dataset. Consequently, this asymmetry facilitates the discriminator’s
ability to effectively differentiate between real and generated samples. If d < n, the discriminator
may not effectively learn to distinguish real from generated samples, resulting in poor-quality
generated samples.

By using the densities, we obtain

V(D, ν) =

∫
Rn

(
log(D(x))p(x) + log(1 − D(x))q(x)

)
dx.
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With the help of the current evolution, the min-max problem given in Eq. (6) evolves to

min
G

max
D

V(D, G) = min
G

max
D

∫
Rn

(
log(D(x))p(x) + log(1 − D(x))q(x)

)
dx.

From the evolved problem, notice that the equation is equal to minν maxD Ṽ(D, ν) under the
condition ν = γ ◦ G−1 for some generator G.

Proposition 1 ([1]). For distributions µ and ν on Rn having densities p(x) and q(x), respectively

max
D

V(D, ν) = max
D

∫
Rn

(
log(D(x))p(x) + log(1 − D(x))q(x)

)
dx

is achieved by Dp,q(x) = p(x)
p(x)+q(x) for x ∈ supp(µ) ∪ supp(ν).

Proof Let us define the integrand as

f (D(x)) = log(D(x))p(x) + log(1 − D(x))q(x).

To find the optimal solution, we look at the first order condition d f (D(x))
dD(x) = 0 and second order

condition d f 2(D(x))
dD(x)2 = 0. Hence, let us start with

d f (D(x))
dD(x)

=
p(x)
D(x)

−
q(x)

1 − D(x)
= 0.

By solving this equality for D(x) we find the critical point

Dp,q(x) =
p(x)

p(x) + q(x)
.

Now, let us compute the second derivative

d2 f (D(x)
dD(x)2 =

−p(x)
D(x)2 −

q(x)
(1 − D(x))2 .

Then, it is obvious that the second derivative is strictly negative for at least one of p(x) or q(x)
being positive. Therefore, we find the optimal solution Dp,q(x) as

Dp,q(x) =
p(x)

p(x) + q(x)
.

■

As a result of Proposition 1, we can give the following remark immediately.

Remark 1. The discriminator optimal solution of the min-max problem satisfies Dp,q(x) = p(x)
p(x)+q(x) ∈

[0, 1], and this is the requirement for the optimal discriminator.

Note that the optimal solution makes the following sense intuitively:
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• If some sample x is favorably actual, we may anticipate p(x) to be close to one and q(x) to
converge at zero. Hence, the optimal D assigns one to such samples.

• For a generated sample x = G(z), we anticipate the optimal D to assign zero since p(G(z)) has
to be close to zero. When we train G to its optimal value, density q(x) gets very close to density
p(x), i.e. we obtain Dp,q(G(z)) ≈ 0.5.

As a consequence of Proposition 1, we can introduce the following theorem immediately.

Theorem 1. Suppose p(x) is a probability density function defined on space Rn. Additionally, consider
a probability distribution ν having a density function denoted as q(x) and a discriminator function
D : Rn 7−→ [0, 1] as usual. Then, we have a min-max problem as follows [3],

min
ν

max
D

Ṽ(D, ν) = min
ν

max
D

∫
Rn

(
log(D(x))p(x) + log(1 − D(x))q(x)

)
dx, (9)

and, we reach a solution with a special choice of q(x) = p(x) and D(x) = 1
2 , ∀x ∈ supp(p).

Proof Let us now assume p(x) = q(x) for all x ∈ supp(p). Then, we have D̄(x) = 1/2 and∫
Rn log(1/2)p(x)dx =

∫
Rn log(1/2)q(x)dx = − log(2) as both p and q are probability densities.

For this special choice of p, q, and D, we obtain

Ṽ(D, ν) = − log(4).

Note further that by the definition of the Jensen-Shannon divergence, we have

0 ≤ JS(p||q) = 0.5(KL(p||0.5(p + q)) + KL(q||0.5(p + q))

= 2 log(2) +
∫

Rn

(
p(x) log

(
p(x)

p(x) + q(x)

)
+ q(x) log

(
q(x)

p(x) + q(x)

))
dx

= Ṽ(D, ν) + log(4).

Therefore, Ṽ(D, ν) cannot be smaller than − log(4). Thus, we have proved that q(x) = p(x) – and
thus D̄(x) = 1/2 – yields the minimum possible value of Ṽ(D, v) for any ν for the given choice of
D(x) = p(x)/(p(x) + q(x)). Consequently, we end up with the desired result. ■

Theorem 1 reveals that the solution to the min-max problem given by Eq. (9) is the result we
seek under the hypothesis of the distributions having the same densities. Theorem 1 holds for all
distributions in general.

Theorem 2. Suppose that µ again is a probability distribution function given on space Rn as in Theorem 1.
Then, for a probability distribution ν and a discriminator D : Rn 7−→ [0, 1], we can introduce a min-max
problem as follows [3]

min
ν

max
D

Ṽ(D, ν) = min
ν

max
D

∫
Rn

(
log(D(x))dµ(x) + log(1 − D(x))dν(x)

)
, (10)

whose solution is achieved with the special choice ν = µ and D(x) = 1
2 µ−a.e.

Proof We first show that with the special choice of ν = µ and D(x) = 1
2 µ-almost everywhere, the

min-max problem in Equation (10) is solved.
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First, let’s consider the objective function Ṽ(D, ν):

Ṽ(D, ν) =

∫
Rn

(
log(D(x))dµ(x) + log(1 − D(x))dν(x)

)
.

Substituting ν = µ and D(x) = 1
2 , we have:

Ṽ(D, ν) =

∫
Rn

(
log
(

1
2

)
µ(x) + log

(
1 −

1
2

)
µ(x)

)

=

∫
Rn

(
− log(2)µ(x)− log

(
1
2

)
µ(x)

)

= − log(2)
∫

Rn
µ(x)dx + log

(
1
2

) ∫
Rn

µ(x)dx.

Since µ is a probability distribution function, the integral
∫

Rn dµ(x) is equal to 1. Therefore, the
objective function simplifies to:

Ṽ(D, ν) = − log(2) + log
(

1
2

)
= −2 log(2).

Hence, with the choice of ν = µ and D(x) = 1
2 µ-almost everywhere, the objective function

Ṽ(D, ν) is minimized. To complete the proof, we need to show that for any other choice of ν and
D, the objective function Ṽ(D, ν) is not smaller than 0.Let us consider an arbitrary choice of ν ′

and D ′ (where ν ′ ̸= µ or D ′ ̸= 1
2 µ-almost everywhere). Without loss of generality, assume that

there exists a set A ⊂ Rn with positive measure such that D ′(x) ̸= 1
2 for all x ∈ A. Since µ is

a probability distribution function, we have µ(A) > 0. Therefore, we can rewrite the objective
function as:

Ṽ(D ′, ν ′) =

∫
Rn

(
log(D ′(x))dµ(x) + log(1 − D ′(x))dν ′(x)

)
≥

∫
A

(
log
(

D ′(x)
)

dµ(x) + log
(

1 − D ′(x)
)

dν ′(x)
)

.

Now, consider the term log(D ′(x))dµ(x) for x ∈ A. Since D ′(x) ̸= 1
2 for all x ∈ A, we have

log(D ′(x)) < 0 for all x ∈ A. Therefore, log(D ′(x))dµ(x) < 0 for x ∈ A. On the other hand,
consider the term log(1 − D ′(x))dν ′(x) for x ∈ A. Since D ′(x) ̸= 1

2 for all x ∈ A, we have
1 − D ′(x) ̸= 1

2 for all x ∈ A. Therefore, log(1 − D ′(x)) < 0 for all x ∈ A. Since ν ′ is a probability
distribution, dν ′(x) ≥ 0 for all x. Hence, log(1 − D ′(x))dν ′(x) ≤ 0 for x ∈ A. Combining these
results, we have log(D ′(x))dµ(x)+ log(1− D ′(x))dν ′(x) < 0 for x ∈ A. Therefore, Ṽ(D ′, ν ′) < 0.
Since ν ′ and D ′ were chosen arbitrarily, we can conclude that for any other choice of ν and D, the
objective function Ṽ(D, ν) is not smaller than 0. Hence, the solution to the min-max problem in
Equation (10) is achieved with the special choice ν = µ and D(x) = 1

2 µ-almost everywhere. This
completes the proof. ■

Like many min-max problems, we may utilize the alternative optimization algorithm to find an
optimal solution to the problem introduced by Eq. (9) that alternates by updating the discriminator
and density q. Here, the updating process contains first updating the discriminator for density
q, and second, updating density q with recently updated D. Notice that updating density q
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means updating the generator. This process is repeated until we find an equilibrium point for the
optimization.

Proposition 2. If in each step of the training process, D is qualified to achieve an optimum point given
q(x), which is pursued by an update of approximating density q(x) to further develop the criterion of
minimization given as

min
q

∫
Rn

(
log(D(x))p(x) + log(1 − D(x))q(x)

)
dx.

At this stage, the approximating density q converges to the target density p.

Proof First, we show that if the discriminator D is qualified to achieve an optimum point given
q(x) in each step of the training process, then the approximating density q converges to the target
density p. Let us consider the objective function to be minimized:

min
q

∫
Rn

(
log(D(x))p(x) + log(1 − D(x))q(x)

)
dx.

In each step of the training process, the discriminator D is qualified to achieve an optimum point
given q(x). This means that for a fixed q(x), the discriminator D is updated to maximize the
objective function with respect to D. Let’s denote this updated discriminator as D∗

q . Now, let us
consider the objective function with the updated discriminator D∗

q :

min
q∗

∫
Rn

(
log(D∗

q (x))p(x) + log(1 − D∗
q (x))q(x)

)
dx.

Since the discriminator D∗
q is optimized for a fixed q(x), the objective function becomes:

minq

∫
Rn

(
log(D∗

q (x))p(x) + log(1 − D∗
q (x))q(x)

)
dx

= min
q

(∫
Rn

(
log(D∗

q (x))p(x)
)

dx + min
(∫

Rn

(
log(1 − Dq(

∗x))q(x)
)

dx
))

.

The first term minq
∫

Rn

(
log(Dq(x))p(x)

)
dx does not depend on q(x) and can be treated as a

constant. Therefore, minimizing this term is equivalent to maximizing
∫

Rn

(
log(Dq(x))p(x)

)
dx.

Similarly, the second term minq
∫

Rn

(
log(1 − Dq(x))q(x)

)
dx does not depend on p(x) and can be

treated as a constant.
Therefore, minimizing this term is equivalent to maximizing

∫
Rn

(
log(1 − Dq((x))q(x)

)
dx. Since

the objective function is the sum of these two terms, minimizing the objective function is equivalent
to maximizing both

∫
Rn

(
log(Dq(x))p(x)

)
dx and

∫
Rn

(
log(1 − Dq(x))q(x)

)
dx.

Now, let us consider the first term
∫

Rn

(
log(Dq(x))p(x)

)
dx. Since Dq(x) is optimized for a fixed

q(x), it can be considered as a constant with respect to p(x). Therefore, maximizing this term is
equivalent to maximizing

∫
Rn p(x)dx.

Similarly, let us consider the second term
∫

Rn

(
log(1 − Dq(x))q(x)

)
dx. Since Dq(x) is optimized

for a fixed q(x), it can be considered as a constant with respect to q(x). Therefore, maximizing
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this term is equivalent to maximizing
∫

Rn q(x)dx. Since the objective function is the sum of these
two terms, maximizing the objective function is equivalent to maximizing both

∫
Rn p(x)dx and∫

Rn q(x)dx.

Now, let us consider the convergence of the approximating density q to the target density p. As we
maximize the objective function, we aim to maximize both

∫
Rn p(x)dx and

∫
Rn q(x)dx. To achieve

this, the approximating density q needs to converge to the target density p. Therefore, if in each
step of the training process, the discriminator D is qualified to achieve an optimum point given
q(x), then the approximating density q converges to the target density p.
This completes the proof. ■

In each step of the process, first, we find the optimal discriminator D∗(x) for the current density
q(x). Later, update density q(x) given the currently updated discriminator D(x) to improve the
accuracy. Repeating such a process finally leads us to the desired solution. In practice, nevertheless,
we infrequently focus on optimizing discriminator D for a provided generator G. Instead, we
generally focus on updating D a little while ago swapping to update generator G.

It is worth emphasizing here that the unconstrained min-max problems given by Eqs. (9) and (10)
are not the same as the original min-max problem introduced in Eq. (6) or the equivalent to
Eq. (7), where the probability distribution ν is constrained to ν = γ ◦ G−1. However, it is useful
in applications to suppose Eqs. (6) and (7) exhibit identical properties introduced in Theorem 2
and Proposition 2. We can suppose the same, even after further restricting the discriminator and
generator functions are neural networks defined as D = Dω and G = Gθ as instead. Then, set
νθ = γ ◦ G−1

θ . Under this setting, the min-max problem becomes minθ maxω V(Dω, Gθ), where

V(Dω, Gθ) = Ex∼µ[log(Dω(x))] +Ez∼γ[log(1 − Dω(Gθ(z))] (11)

=

∫
Rn

(
log(Dω(x))dµ(x) + log(1 − Dω(x))dνθ(x)

)
.

Eq. (11) is the key to executing the fundamental optimization problem. Here, since we do not
know the explicit form of µ (target distribution), we should approximate the expectations through
sample averages. Thus, Eq. (11) helps us to find an approximation to V(Dω, Gθ). More precisely,
suppose a set A that is a subset of samples drawn from the training/original dataset χ (a minibatch)
defined above and suppose a set B that is a minibatch of samples in space Rd sampled from γ.
Under these assumptions, we can approximate as [3]

Ex∼µ[log(Dω(x))] ≈ 1
|A|

∑
x∈A

log(Dω(x)),

Ez∼γ[log(1 − Dω(Gθ(z)))] ≈ 1
|B|

∑
z∈B

log(1 − Dω(Gθ(z))).

Note that a minibatch in the GANs framework refers to a small subset of training examples fed
to the network in each training iteration. The minibatch size is typically chosen to balance the
computational efficiency of training and the quality of GANs. Smaller minibatches can lead to
faster training; however, they may result in a noisier gradient estimate and slower convergence. On
the other hand, larger minibatches can provide a more accurate gradient estimate; however, they
may require more memory and computational resources to process. During training, generator and
discriminator networks are trained simultaneously by optimizing their respective loss functions
using backpropagation. The minibatches of real data samples and generated samples are used
to compute the discriminator’s loss, while the generator’s loss is computed using the generated
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samples only. By using minibatches in GANs, the networks can efficiently learn the complex
distribution of the data and generate high-quality synthetic samples.

3 f-divergence and f-GAN concepts

Recall our motivating problem defined for GAN having a probability distribution µ, known simply
for the training samples at hand. We want to find a distribution ν through an iterative process.
By beginning with a probability distribution ν and iteratively updating ν, we approximate the
target distribution µ with ν. To approximate µ, first, we need to measure the distance between
distributions µ and ν. The vanilla GAN uses the discriminator to approximate target distribution
µ. However, we can use other measures to identify the distance between distributions.

f-divergence

We can measure the dissimilarity between any two distributions, in our case target distribution µ

and approximated distribution ν, with the Kullback-Leibler (KL) divergence. Let p(x) and q(x)
be the corresponding probability density functions of µ and ν defined on Rn. Then, the distance
between densities p and q is defined in the following form

DKL(p∥q) :=
∫

Rn
log
(

p(x)
q(x)

)
p(x)dx.

Here, notice that DKL(p∥q) is finite only if q(x) ̸= 0 on supp(p) almost everywhere. At this stage,
we can conclude the following results for KL-divergence [4]:

• If p(x) > q(x), x is a point in the real data with a high probability. This case is the heart of the
‘mode dropping’ phenomenon. It occurs when we have large regions having high values of p,
whereas having small values in q. Here, it is important to remark that if p(x) > 0 and q(x) → 0,
the integrand of DKL rises to infinity very quickly. This means that such a cost function sets an
exceptionally elevated cost to the generator’s distribution that does not cover some data parts.

• If p(x) < q(x), x has a low chance of being a data point, instead of a high chance of being a
generated point. It is faced when we observe the generator producing an unrealistic image.If
we observe p(x) → 0 and q(x) > 0 we find that the value inside the DKL shifts to 0. This means
that such a cost function pays an exceptionally low cost for generating fake samples.

Remark 2. Regarding GANs, DKL(p∥q) has a unique minimum at p(x) = q(x). Furthermore, it does not
require knowing the unknown density p(x) to estimate. However, it is impressive to notice that DKL(p∥q)
is not symmetrical for p(x) and q(x) [3, 4].

Even though KL-divergence is widely used in the applications of GAN, there are other measures to
identify the dissimilarity between distributions. For instance, the Jensen-Shannon (JS) divergence
is given as

DJS(p∥q) :=
1
2

DKL(p∥M) +
1
2

DKL(q∥M),

where M = p(x)+q(x)
2 is a divergence measure derived from KL-divergence.

The most significant benefit of JS-divergence is that it is well-defined for any densities p(x), and
q(x) and symmetric concerning the densities (DJS(p∥q) = DJS(q∥p)) while KL-divergence is not
symmetric.
Following Proposition 1, the minimization part of the min-max problem in the context of the
vanilla GAN is exactly the minimization over density q of DJS(p∥q) for a given p. As things stand,
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DKL and DJS divergences are both particular cases of the f − divergence where a more general
form is introduced in [5] for such divergence measures.
Consider a strictly convex function f (x) with a domain I ⊆ R that satisfies f (1) = 0. Additionaly,
for computation purposes, we interiorize f (x) = +∞, ∀x /∈ I convention. Then, we can introduce
the f-divergence concept as introduced in [3].

Definition 1. Consider two probability density functions p(x) and q(x) defined on space Rn. Then, the
f − divergence between these two densities is

D f (p∥q) = Ex∼q

[
f
(

p(x)
q(x)

)]
=

∫
Rn

f
(

p(x)
q(x)

)
q(x)dx,

where we adopt f ( p(x)
q(x) )q(x) = 0 if q(x) = 0.

Remark 3. Since the f − divergence is not symmetric (D f (p∥q) ̸= D f (q∥p)) in general, we can confuse
which density divides and which density in the fraction. If we obey the original setting introduced in [5],
then the definition of D f (p∥q) will be our D f (q∥p). In this study, we adopt the definition introduced
in [7], where the f-GAN concept is first introduced.

Proposition 3. Suppose f (·) is a strictly convex function defined on I ⊆ R and f (1) = 0. Further,
suppose either supp(p) ⊆ supp(q) (equivalent to p ≪ q) or f (x) > 0 for x ∈ [0, 1]. Then, for
D f (p∥q) ≥ 0 and D f (p∥q) = 0, the necessary and sufficient condition is p(x) = q(x).

Proof Using the convexity property of function f and Jensen’s inequality, we have

D f (p∥q) = Ex∼q

[
f
(

p(x)
q(x)

)]
≥ f

(
Ex∼q

[
p(x)
q(x)

])
= f

( ∫
supp(q)

p(x)dx
)
= f (r),

where the equality holds if and only if the ratio q(x)/p(x) is a constant or function f is linear on
the range of the ratio p(x)/q(x). The range of p(x)/q(x) depends on the probability distributions
p(x) and q(x) being considered. In general, the ratio p(x)/q(x) can take any positive value, zero,
or infinity, depending on the values of p(x) and q(x) for a given x. However, in the context of
importance sampling, it is common to consider the ratio p(x)/q(x) as a weighting function for
sampling from the target distribution p(x). In this case, the p(x)/q(x) range is typically restricted
to a finite interval to ensure that the importance weights are bounded and can be effectively used
for sampling.
Function f is a strictly convex function, so it may only be previous or for that matter, we should
have p(x) = rq(x) on supp(q) for the equality to hold. Suppose we have the r ≤ 1 condition. If
we have supp(p) ⊆ supp(q), then we obtain r = 1, and hence, we have D f (p∥q) ≥ 0. Such an
equality holds if and only if we have p = q. Suppose f (t) > 0, ∀t ∈ [0, 1), then we also have
D f (p∥q) ≥ f (r) ≥ 0. For r < 1, we have D f (p∥q) ≥ f (r) ≥ 0. Therefore, if D f (p∥q) = 0, the
conditions r = 1 and p = q hold. ■
At this stage, we should note that f − divergence can be specified for arbitrary probability distri-
butions µ and ν on probability space Ω. Let τ be a third probability distribution that satisfies
µ, ν ≪ τ, more specifically both µ and ν are absolutely continuous concerning the third probability
distribution τ. For instance, suppose τ = 1

2 (µ + ν). Let p = dµ
dτ and q = dν

dτ be Radon-Nikodym
derivatives of p and q, respectively. We characterize the f − divergence of probability distributions
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µ and ν as [3]

D f (µ∥ν) :=
∫

Ω
f
(

p(x)
q(x)

)
q(x)dτ = Ex∼ν

 f
(

p(x)
q(x)

). (12)

Here, once more we adopt the convention f
(

p(x)
q(x)

)
q(x) = 0 if q(x) = 0. Here, it is clear that this

definition is free from the choice of the probability measure τ.
In the application of the f − divergence, the greatest difficulty is the unknown explicit expression
of the target distribution denoted by µ. Hence, in the vanilla GAN setting, to calculate the
f − divergence (D f (p∥q)), we should express the divergence in terms of the average of samples.
In [6], this problem is solved with the help of the convex conjugate of the convex function at hand.

Definition 2. Suppose f (·) is a convex function on the interval defined as I ⊆ R. The convex conjugate of f
is simply a generalization of the celebrated Legendre transform. The convex conjugate f ∗ : R 7−→ R∪ {±∞}

is given as [3]

f ∗(y) = sup
t∈I

{
ty − f (t)

}
.

We can introduce the following remark as an immediate result of the definition.

Remark 4. The convex conjugate of convex functions is also called the Fenchel transform or Fenchel-
Legendre transform.

As we mentioned above, we may extend the convex conjugate f ∗ to R by defining f (x) = +∞ for
all x /∈ I. Therefore, a more precise indication of f ∗ is illustrated in the following lemma.

Lemma 1. Let f (x) be a strictly convex and continuously differentiable function on I ⊆ R, where
I◦ = (a, b) with a, b ∈ [−∞,+∞]. Then [3],

f ∗(y) =


y f ′−1(y), y ∈ f ′(I◦)

limt 7→b−(ty − f (t)), y ≥ limt 7→b− f ′(t)

limt 7→a+(ty − f (t)), y ≤ limt 7→a+ f ′(t).

Proof Define g(t) = ty − f (t). Then, g′(t) = y − f ′(t) on I ⊆ R, which is strictly decreasing since
f (t) is convex. Here, g(t) is a function that is strictly concave on the domain defined with I. Note
that, if y = f ′(t∗) for some t∗ ∈ I◦, t∗ is called a critical point of function g. Therefore, t∗ has to
be a global maximum of g. Therefore, g(t) reaches its maximum at point t = t∗ = f ′−1(y). Now,
suppose y is not in the range of f ′, in that case, g′(t) > 0 or g′(t) < 0 on I◦. Suppose the case
g′(t) > 0 ∀t ∈ I◦. Here, it is clear that the supremum of function g(t) is attained while t 7→ b−

because g(t) is a monotonously increasing function. In a similar fashion, the second case g′(t) < 0,
∀t ∈ I◦ may be derived. ■
Based on Lemma 1, we can give the following remark:

Remark 5. Note that +∞ is a potential f ∗ value. Hence, the domain of f ∗ (Dom( f ∗)) is characterized as
sets where f ∗ is finite.

A result of Lemma 1, under the assumption that f is a continuously differentiable function,
supt∈I{ty − f (t)} is achieved for some t ∈ I if and only if, y is in the range of f ′(t). Such a result is
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clear when y ∈ f ′(I◦), however, it is arguable relatively effortlessly for finite boundary points in
domain I. More commonly, without the differentiability assumption, supt∈I{ty − f (t)} is achieved
if and only if y ∈ ∂ f (t) for some t ∈ I (∂ f (t) is set of subderivatives). We summarize some of the
important properties of the convex conjugate in the following proposition [3]:

Proposition 4. Let f (x) be a convex function defined on R having a range R ∪ {±∞}. Then, its convex
conjugate f ∗ is a convex and lower-semi continuous function. Moreover, if f is a lower-semi continuous
function, f satisfies Fenchel duality f = ( f ∗)∗.

Calculation of f-divergence using the convex dual

To calculate the f − divergence from samples, [6] proposes using the convex dual of function f . Let
µ and ν be probability two measures that satisfy µ, ν ≪ τ for some probability measure τ, with
p = dµ/dτ and q = dν/dτ. In the best scenario of µ ≪ ν, by f (x) = ( f ∗)∗(x), we retain

D f (µ∥ν) : =

∫
Ω

f
(

p(x)
q(x)

)
q(x)dτ(x)

=

∫
Ω

sup
t
{t

p(x)
q(x)

− f ∗(t)}q(x)dτ(x) (13)

=

∫
Ω

sup
t
{tp(x)− f ∗(t)q(x)}dτ(x)

≥
∫

Ω

(
T(x)p(x)− f ∗(T(x))q(x)

)
dτ(x)

= Ex∼µ[T(x)]−Ex∼ν[ f ∗(T(x))],

where T(·) denotes any Borel function. Therefore, by considering T overall Borel functions, one
obtains

D f (µ∥ν) ≥ sup
T

(
Ex∼µ[T(x)]−Ex∼ν[ f ∗(T(x))]

)
. (14)

In addition, ∀x, supt{t
p(x)
q(x) − f ∗(t)} is achieved for some t = T∗(x) if p(x)

q(x) is in the f ∗ subderivatives
range [6]. Hence, if it holds for ∀x, we obtain

D f (µ∥ν) = Ex∼ν[T∗(x)]−Ex∼µ[ f ∗(T∗(x))].

Such equality holds, generally under some light conditions.

Theorem 3. Let f (·) be a strictly convex and continuously differentiable function on the domain I ⊆ R

and let µ and ν be Borel two probability distributions on space Rn that satisfy µ ≪ ν. Then, we have [6]

D f (µ∥ν) = sup
T

(
Ex∼µ[T(x)]−Ex∼ν[ f ∗(T(x))]

)
, (15)

where supT is considered an overall Borel functions defined as T : Rn 7−→ Dom( f ∗). In addition, if the
probability measure p satisfies p(x) ∈ I, ∀x, T∗(x) := f ′(p(x)) is an optimizer of Eq. (15).

Proof We have obtained the upper bound for the problem in Eq. (14) showing the lower bound
part will finish the proof. Let p(x) = dµ(x)/dν(x). Let us analyze Eq. (13) in detail by assuming
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q(x) = 1, and supt

{
tp(x)− f ∗(t)

}
for each x. Let us express gx(t) = tp(x)− f ∗(t), S = Dom( f ∗)

and suppose S◦ = (a, b) where a, b ∈ R ∪ {±∞}. Then, we can introduce a sequence Tk(x) as
follows:
If density function p(x) is in the range of f ∗′, say for instance p(x) = f ∗′(tx), we formed Tk(x) =
tx ∈ S. If p(x)− f ∗′ > 0 for all t, then, gx(t) is a strictly increasing function. Hence, the supremum
of gx(t) is achieved at the upper boundary point b. Therefore, we assign Tk(x) = bk ∈ S, where
bk 7→ b−. Here, if p(x)− f ∗′(t) < 0, ∀t, gx(t) becomes a strictly decreasing function. Therefore,
in this case, the supremum of gx(t) is achieved at the lower boundary point a, and we assign
Tk(x) = ak ∈ S, where ak 7→ a+. By Lemma 1 and its proof, we know that

lim
k 7→∞

(
Tk(x)p(x)− f ∗(Tk(x))

)
= sup

t
{tp(x)− f ∗(t)}.

Thus,

lim
k 7→∞

(
Ex∼ν[Tk(x)]−Ex∼µ[ f ∗(Tk(x))]

)
= D f (µ∥ν).

To show the proof of the last, suppose p(x) ∈ I. Then, again by Lemma 1, define s(t) = f ′−1(t) for
t in the range of f ′, then we can write

f ∗′(t) =
(

ts(t)− f (s(t))
)′

= s(t) + ts′(t)− f ′(s(t))s′(t) = s(t).

Hence, we have g′x(t) = p(x) − f ∗′(t) = p(x) − f ′−1(t). Then, gx(t) has a maximum at t =

f ′(p(x)). This result proves that T∗ = f ′(p(x)) is an optimizer for Eq. (15). ■
Note that Theorem 3 holds for only µ ≪ ν. However, one may give the following theorem for
other cases.

Theorem 4. Let f (t) be a convex function where the domain of f ∗ includes (a,∞) for some a ∈ R. Let µ

and ν be two Borel probability measures on Rn that satisfy µ ≪̸ ν. Then,

sup
T

(
Ex∼µ[T(x)]−Ex∼ν[ f ∗(T(x))]

)
= +∞,

holds. Here, supT is considered an overall Borel function defined as T : Rn 7−→ Dom( f ∗).

Proof Consider a new distribution defined as τ = 1
2 (µ + ν). Then, these two densities satisfy

µ, ν ≪ τ. Moreover, let p = dµ/dτ and q = dν/dτ be the Radon-Nikodym derivatives of the
given densities. Here, we know that µ ≪̸ ν. Therefore, we can find a set S0 with µ(S0) > 0 on
which q(x) = 0. Now, fix a point t0 in the domain of f ∗. Let us define Tk(x) = k for x ∈ S0, and
Tk(x) = t0 otherwise. Then we can introduce,

Ex∼µ[Tk(x)]−Ex∼ν[ f ∗(Tk(x))] ≥ kµ(S0)− f ∗(t0)(1 − ν(S0)) 7−→ +∞
holds. This result leads us to the desired proof. ■
At this stage, notice that the domain of f ∗ has no boundary from above, and Eq. (15) is not satisfied
unless we have µ ≪ ν. In many studies, we face a singular target distribution µ, as the training
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data we are handling might have a lower-dimensional manifold. Hence, we can introduce the
following theorem.

Theorem 5. Consider a function f (·) that is a lower semicontinuous convex function and the domain I∗ of
f ∗ has sup I∗ = b∗ < +∞. Let µ and ν be two Borel probability measures on space Rn, and µ = µs + µab,
where µs ⊥ ν and µab ≪ ν. Then [3],

sup
T

(
Ex∼µ[T(x)]−Ex∼ν[ f ∗(T(x))]

)
= D f (µ∥ν) + b∗µs(R

n),

where supT is carried over all Borel functions given as T : Rn 7−→ Dom( f ∗).

Proof First, let us define τ = 1
2 (µ + ν). Then, it is clear that µ, ν ≪ τ. Here, µ = µab + µs

decomposition is unique and assured by the celebrated Lebesgue decomposition theorem, where
µab ≪ ν and µs ⊥ ν. Furthermore, let pab = dµab/dτ, ps = dµs/dτ, and q = dν/dτ be the
Radon-Nikodym derivatives of the densities. Here, we can divide Rn into Rn = Ω ∪ Ωc, where
Ω = supp(q). Then, we have q(x) = pab(x) = 0 for x ∈ Ωc since we have µs ⊥ ν. Hence,

sup
T

(
Ex∼µ[T(x)]−E[ f ∗(Tk(x))]

)
= sup

T

∫
Ω

(
T(x)pab(x)− f ∗(T(x)))q(x)

)
dτ

+ sup
T

∫
Ωc

T(x)pab(x)dτ

= sup
T

∫
Ω

(
T(x)

pab(x)
q(x)

− f ∗(T(x))
)

q(x)dτ + b∗µs(Ωc)

=

∫
Ω

f
(

pab(x)
q(x)

)
q(x)dτ + b∗µs(R

n)

=

∫
Ω

f
(

p(x)
q(x)

)
q(x)dτ + b∗µs(R

n)

= D f (µ∥ν) + b∗µs(R
n).

■

Variational divergence minimization (VDM) with f-GANs

It is possible to generalize the standard vanilla GAN with the help of f − divergence measures. For
a given probability distribution µ, f -GAN aims to minimize the distance between distributions via
D f (µ∥ν), concerning the probability distribution ν. Fulfilled in the sample space, f -GAN solves
the min-max problem given as

min
ν

sup
T

(
Ex∼ν[T(x)]−Ex∼µ[ f ∗(T(x))]

)
. (16)

The f -GAN framework came on to stage primarily in [7], and the optimization problem given in
Eq. (16) guides us to the (VDM).
Note that the VDM looks identical to the min-max problem given for the vanilla GAN. Here,
the Borel function T is named a critic function, or shortly a critic. With the assumption µ ≪ ν,
by Theorem 3 it is equal to minν D f (µ∥ν). As we mentioned earlier, one possible problem of
the f-GAN is facing µ ≪̸ ν in Theorem 4. Then, Eq. (16) is generally not equal to minν D f (µ∥ν).
Luckily, some particularly selected f , such a case is not a problem anymore.
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Theorem 6. Suppose f (t) is such a function that is lower semicontinuous and strictly convex, and the
domain denoted as I∗ of convex conjugate f ∗ satisfies sup I∗ = b∗ ∈ [0,∞). Additionally, suppose that
f is a continuously differentiable function on its domain and satisfies f (t) > 0, ∀t ∈ (0, 1), and let µ be
Borel probability measures on space Rn. Under these assumptions, we obtain our unique optimizer for [7]

inf
ν

sup
T

(
Ex∼ν[T(x)]−Ex∼µ[ f ∗(T(x))]

)
,

as ν = µ. Here, supT is assessed overall Borel functions T : Rn 7−→ Dom( f ∗) while infν is assessed
overall potential Borel probability measures.

Proof From Theorem 5, for any Borel probability measure ν, we can write the following

sup
T

(
Ex∼µ[T(x)]−Ex∼ν[ f ∗(T(x))]

)
= D f (µ∥ν) + b∗µs(R

n) ≥ D f (µ∥ν).

By Proposition 3, such equality holds if and only if ν = µ. Consequently, ν = µ becomes our
unique optimizer for GANs. ■

Some remarks on special solutions
Remark 6. Suppose that both the density functions p(x) and q(x) satisfy p(x) = q(x). Then, the optimal
value becomes D∗(x) = 1/2. For such a special case, we have a loss function as [1]

L(G∗, D∗) =

∫
Rn

(
p(x) log(D∗(x)) + q(x) log(1 − D∗(x))

)
dx

= log(
1
2
)

∫
x

p(x)dx + log(
1
2
)

∫
Rn

q(x)dx

= −2log(2).

Furthermore, if we calculate JS divergence, we have

DJS(µ∥ν) =
1
2

DKL

(
µ∥µ + ν

2

)
+

1
2

DKL

(
ν∥µ + ν

2

)
=

1
2

(
log(2) +

∫
Rn

p(x) log
(

p(x)
p(x) + q(x)

)
dx
)

+
1
2

(
log(2) +

∫
Rn

q(x) log
(

q(x)
p(x) + q(x)

)
dx
)

=
1
2

(
log(4) + L(G, D∗)

)
. (17)

By rearranging Eq. (17), we find

L(G, D∗) = 2DJS(µ∥ν)− 2 log(2).

As an immediate result, we can also give the following remark.

Remark 7. Under the assumptions given in the preceding remark, the followings hold [3]:

• Fundamentally, the objective of a GAN loss function is to quantify the similarity between the generated
data distribution ν and the real sample distribution µ by using DJS under the optimal discriminator D
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condition. The best generator (G∗) imitates the distribution of real data, which leads us to the minimum
given as L(G∗, D∗) = −2 log 2.

• If we train the discriminator D until it convergences, its error approximates 0. This indicates that the
DJS between the distributions has reached its maximum (it is easy to see that 0 ≤ DJS(µ∥ν) ≤ ln(2)).
We can find it only if their distributions are not continuous (meaning: their densities are not absolutely
continuous functions) or the distributions have disjoint supports. One potential reason behind the
noncontinuity of the distribution is if their supports rely on low-dimensional manifolds. For such a case,
there is substantial empirical and theoretical evidence to believe that the generated data distribution ν is
focused on a low-dimensional manifold for many datasets.

• If both µ and ν rest in low-dimensional manifolds, they are almost undoubtedly disjoint. If the distribu-
tions have disjoint supports, we can always find a perfect discriminator that divides real and fake samples
100% accurately.

4 Concluding remarks

In this study, we discovered and explored the mathematical background of GANs to illustrate
a deep understanding of them for further extensions. Hence, in this study, we took a detailed
tour of the mathematics behind GANs. After the celebrated work of Goodfellow et al. [1], new
adversarial training objectives and techniques for generative modeling have been developed,
such as Wasserstein GANs [8, 9]. Furthermore, GANs have been widely applied to new fields
of research, including mathematical finance [10–12], time series generation [13, 14], audio syn-
thesis [15], and fraud detection in financial datasets [16]. The underlying mathematics for these
models are obviously different from what we have discussed above, but the study is a good
starting point nonetheless.
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