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1. Introduction 

Multi-criteria decision making is a method used in complex decision processes and mathematical modelling, 
where many factors are taken into account. In this process, the evaluation and ranking of alternatives based on 
decision-makers' preferences and priorities are targeted. For this purpose, the weighting of the criteria that are 
the subject of decision-makers' preferences needs to be determined. 

When examining the MCDM literature, it is possible to come across many methods for determining weight 
coefficients. In addition to these methods, in this research, a method is developed to determine the objective 
weight coefficients of variables based on the logarithmic function, which allows the analysis and modelling of 
variables in terms of their logarithmic relationships. Therefore, the research focuses on the analysis and 
modelling potential of logarithmic functions because it is known that logarithmic functions are used in different 
fields and are effective in solving various problems. In this context, the first aim of the research is to present a 
new method for calculating the weight coefficients of criteria according to decision alternatives within the scope 
of MCDM. The second aim is to popularize the use of logarithmic functions and increase awareness of their 
potentials, as logarithmic functions play an important role in solving and analyzing complex problems. 

Objective weighting methods and logarithmic functions are explained in the literature of the research. The 
method section describes the analysis of the proposed method with the dataset. In the conclusion section, the 

In the literature of multi-criteria decision making (MCDM), there are 
many methods related to the measurement of weight coefficients of 
criteria. In this study, a mathematical model based on the logarithmic 
effect among criteria (Logarithmic Effect-Based Measurement, LEBM) is 
proposed to contribute to the MCDM literature and to calculate the 
weight coefficients of criteria. The dataset used in the study consists of 
criterion values belonging to the Logistics Performance Index (LPI) of 18 
countries in the G20 group. According to the analysis results, the 
proposed method is considered successful in calculating the objective 
weight coefficients of criteria for countries. Additionally, the proposed 
method is compared with other objective weighting methods (ENTROPY, 
CRITIC, SD, SVP, LOPCOW, and MEREC) within the scope of 
sensitivity analysis. The findings indicate that the rankings of LPI weight 
coefficients measured using the proposed method are similar to those 
measured using the MEREC method, and the relationship between the 
LPI weight coefficients determined using the proposed method and the 
MEREC method is positive, significant, and strong. Therefore, it is 
believed that the proposed method will contribute both to the logarithmic 
function and the MCDM literature 
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findings of the proposed method are evaluated, and a comparison is made with other objective weight 
determination techniques. 

2. Literature 

The selection of decision alternatives is a fundamental part of many decision-making processes. However, when 
choosing among different alternatives, situations arise where each alternative performs differently on different 
criteria. Therefore, it is important to accurately determine the weights of criteria in order to compare the 
performance of decision alternatives and select the most suitable one (Saaty, 2008). This is because traditionally, 
in multi-criteria decision-making problems, the importance of criteria is determined using weight coefficients 
(Ecer, 2020). 

In the literature of Multi-Criteria Decision Making (MCDM), methods for determining weight coefficients are 
generally divided into subjective and objective approaches. This distinction is based on the sources of 
information used in determining the weight coefficients and the subjective or objective nature of the decision 
process (Ecer, 2020). 

The fundamental characteristic of subjective weight coefficients is that they are based on decision-makers' 
experiences and evaluations made through their personal opinions. Therefore, since decision-makers create 
values based on their subjective thoughts, these values vary among individuals (Baş, 2021). These weight 
coefficients are usually obtained based on expert opinions. However, subjective evaluations by experts can lead 
to errors and biases in the decision process. On the other hand, objective approaches do not consider decision-
makers' inconsistencies and uncertainties. Naturally, using mathematical models based on the information in the 
decision matrix, the weights of criteria can be calculated. In other words, objective weighting methods take into 
account the structure of the available data in the evaluation process (Ecer, 2020). 

When examining the literature on Multi-Criteria Decision Making (MCDM), one can come across several 
objective weighting methods. These methods can be referred to as ENTROPY, CRITIC, CILOS, IDOCRIW, 
SD, SVP, MEREC, and LOPCOW. The ENTROPY method is based on the concept of ENTROPY. In this sense, 
the more disorder a criterion has, the more distinct it will be from others and become the most important 
criterion. Therefore, the ENTROPY method can be effectively used in the decision-making process. After 
preparing the decision matrix in this method, the standard values of the decision matrix and the ENTROPY 
measurement of the criteria are used to determine the ENTROPY weights of the criteria (Ayçin, 2019). 

On the other hand, the CRITIC method is based on the relationships between criteria. By analyzing the 
relationships between criteria, contradictions among them can be identified. Subsequently, the contradictions 
associated with the criteria are weighted using standard deviation, enabling the determination of the weight 
coefficient values of the criteria. In the method, first, a decision matrix is created. Then, the normalized values of 
the decision matrix are calculated. By analyzing the relationships between criteria based on the normalized 
values, the weights of the criteria can be measured (Diakoulaki et al., 1995). 

In the CILOS method, the relative importance of criteria is based on the extent of the impact deviation of other 
criteria from their ideal maximum and minimum values. Accordingly, if a criterion has a lower impact deviation, 
its weight coefficient increases. The method involves calculating the decision matrix, normalization, square 
matrix, and weight system matrix values in sequence, followed by solving a system of linear equations to 
determine the weight coefficients of the criteria (Zavadskas and Podvezko, 2016). 

The IDOCRIW method is composed of the combination of the ENTROPY and CILOS methods. The method is 
based on determining the relative impact of a missing index. Initially, the weight coefficients of the criteria are 
determined based on the ENTROPY and CILOS methods using the values of the decision matrix. Then, the 
ENTROPY and CILOS weights are merged to obtain the IDOCRIW weights (Ecer, 2020). 

The LOPCOW method relies on aggregating data from different dimensions to obtain appropriate or ideal 
weights. Additionally, this method aims to minimize the gaps between the most important and least important 
criteria. Furthermore, LOPCOW considers the interrelationships between criteria. In this method, the decision 
matrix is first prepared, and then the values of the decision matrix are normalized. Subsequently, the average 
square value as a percentage of the standard deviation of the criterion is calculated to eliminate the difference 
(gap) caused by the size of the data, and the weight coefficients of the criteria are measured (Ecer and Pamucar, 
2022). 

In the MEREC method, similar to other weighting methods, the decision matrix and the normalized decision 
matrix are first obtained. Then, the total performance values of the decision alternatives are calculated based on a 
natural logarithm-based structure. Subsequently, considering each decision alternative's value, the changes in the 
performance values of the other decision alternatives are determined again based on natural logarithm. At the 
end of the method, the weight values of the criteria are determined based on the calculation of the subtraction 



Altıntaş                                                                                                         JTOM(9)1, 215-232, 2025 

217 
 

effect on the criterion (sum of absolute deviations). Additionally, in the method, as the influence of criteria on 
decision alternatives increases, the weight coefficients of the criteria also increase (Keshavarz-Ghorabaee et al., 
2021). 

The SD method is based on the distance of criteria values from the arithmetic mean of the criteria. In this 
method, first, the normalization of the decision matrix is achieved based on the decision matrix values. Then, the 
standard deviation values for each criterion are determined to determine the weights of the criteria (Uludağ and 
Doğan, 2021). In the SVP method, the weights of the criteria are measured by calculating the variances of the 
criteria based on the decision matrix values (Demir et al., 2021).  

The SECA method allows for the determination of both the performance of decision alternatives and the weight 
coefficients of criteria relative to decision alternatives. In this method, the decision matrix values are 
standardized, and subsequently, disagreement degrees and standardization values are calculated using standard 
deviation. Based on this, the weights of the criteria can be calculated by solving a multi-objective linear model 
through the optimization of the model (Keshavarz-Ghorabaee et al., 2018). 

The DEMATEL method is a subjective weight determination method based on the relationship between criteria. 
For this purpose, the effects of criteria on each other are determined based on subjective evaluations, where 0 
represents no effect, 1 represents low effect, 2 represents moderate effect, 3 represents high effect, and 4 
represents very high effect. This information is used to create a direct relationship matrix. Subsequently, the 
standard relationship matrix, total relationship matrix, relationship diagram, threshold value, and finally, the 
weight coefficients of the criteria are determined (Gobus and Fontela, 1972). Altıntaş (2021) emphasized that 
instead of subjective evaluations in the direct relationship matrix, the effects of criteria on each other can be 
determined using the Somers' d correlation coefficient, allowing for the objective calculation of the weight 
coefficients of the criteria. 

In the MCDA literature, the objective weights of criteria reveal two fundamental characteristics. The first one 
can be defined as the intensity of contrast in performance of decision alternatives on each criterion or the 
difference between maximum and minimum values among criteria. The second one is the distinctiveness or 
conflict among criteria. By revealing and utilizing these two characteristics, which are stored as inherent 
information in the data defining the multi-criteria problem, decision-makers can benefit in the decision-making 
process (Ecer, 2020). 

In addition to these, another characteristic can be attributed to the potential of criteria to influence each other 
based on quantitative outcomes. If one criterion has a low-level positive influence on another criterion, activities 
can be developed concerning the influencing criterion for the improvement of the influenced criterion. 
Conversely, if the positive influence of one criterion on another leads to a decrease in the development of the 
influenced criterion, initiatives can be established to reduce or minimize the influence of the influencing criterion 
on the influenced criterion. Therefore, based on this logic, strategies, policies, and recommendations for the 
development of criteria can be provided concerning the interrelationships among criteria belonging to any 
concept. In this regard, logarithmic functions can be used for measuring the weight coefficients of criteria. 
Because based on logarithmic functions, the values of criteria influencing each other can be determined as 
dependent and independent variables (Karagöz, 2017). 

Logarithmic functions were introduced by John Napier in the late 16th century. Furthermore, logarithmic 
functions played a crucial role in accurately calculating the orbits and motions of planets. Logarithm, in 
mathematical terms, represents a power that needs to be raised to a base to obtain a given number, as it is an 
exponentiation in reverse (Önalan, 2010). For a given 𝑏 ∈  𝑅ା and𝑏 ≠ 𝑅ା, the logarithmic function(𝑓(𝑥) =
𝑙𝑜𝑔𝑥), denoted as𝑓(𝑥) = 𝑏௫, is the inverse of the exponential function𝑓: 𝑅 → 𝑅ା, that is one-to-one and onto, 
where the base b is used. The domain of the function consists of positive real numbers, and the range consists of 
the set of real numbers (Kartal et al., 2014; Balaban, 2015; Kuruüzüm and Çetin, 2015; Eroğlu, 2017; Barnett et 
al., 2015). 

Logarithmic functions offer several benefits in capturing the interactions between variables. Firstly, logarithmic 
functions are useful for transforming and smoothing data sets. Particularly in cases where data varies widely 
across a range, applying logarithmic transformation can make the data more homogeneous and amenable to 
analysis or normalization (Cleveland, 1994; Johnson and Wichern, 2007; Tabachnick and Fidell, 2013). 
Secondly, logarithmic scaling emphasizes proportional magnitudes. When the y-axis of a graph is scaled 
logarithmically, it enhances the visibility of proportional magnitudes (Tufte, 2001). Thirdly, logarithmic 
functions simplify certain mathematical operations. Specifically, multiplication and division operations can be 
transformed into addition and subtraction through logarithmic conversion, simplifying calculations in certain 
scenarios (Kutner, 2004). 
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In the literature, numerous studies can be found on the applications of logarithmic functions. Olefir and 
Lastovsky (2021) analyzed mathematical methods for forecasting under market conditions using logarithmic 
functions. Guo et al. (2020) utilized logarithmic functions to maximize the weighted sum rate (WSR) for all 
users by jointly designing the beamforming and phase vector of RIS elements. Verma et al. (2020) employed 
logarithmic functions to identify consumer food waste in an internationally comparable manner, based on food 
supply, energy deficiency, and consumer welfare. Zeng et al. (2021) proposed a weighted induced logarithmic 
distance-based method to address multi-attribute decision-making (MADM) problems using q-ROFS 
information. Choi et al. (2019) used logarithmic functions to model the bounding boxes (bbox) of YOLOv3, one 
of the most representative one-stage detectors, with Gaussian parameters and redesigned the loss function to 
improve detection accuracy while supporting real-time operation. 

3. Method 

3.1. Data Set and Analysis of the Study 

The data set of the study consists of the LPI (Logistics Performance Index) component data for 18 countries in 
the G20 group for the year 2023. In the study, the proposed method was used to calculate the weight coefficients 
of the LPI components. For convenience, the abbreviations of the LPI components are shown in Table 1. 

Table 1. LPI Components and Component Abbreviations 

LPI Components Component Abbreviations 

Customs LPI1 

Infrastructure LPI2 

International Shipments LPI3 

Logistics Competence and Quality LPI4 

Timeliness Score LPI5 

Tracking and Tracing LPI6 

3.1. Data Set and Analysis of the Study 

The data set of the study consists of the LPI (Logistics Performance Index) component data for 18 countries in 
the G20 group for the year 2023. In the study, the proposed method was used to calculate the weight coefficients 
of the LPI components. For convenience, the abbreviations of the LPI components are shown in Table 1. 

3.2. Proposed Method: Logarithmic Effect Based Measurement (LEBM) 

The relationship between two variables can be explained using various modeling approaches and functions. 
These functions can include linear, quadratic, compound, growth, logarithmic, cubic, S-shaped, exponential, 
inverse, power, and logistic functions. Depending on the roles of the variables as dependent and independent 
variables, their relationships can be represented by equations using the SPSS program (Karagöz, 2020).  

In the proposed method, the relationships between the criteria are established based on logarithmic functions. 
Logarithmic functions are effective tools in data transformation and smoothing. Particularly, in cases where data 
vary widely, logarithmic transformation can make the data more homogeneous and enable analysis without 
losing information (Johnson and Wichern, 2007). Therefore, within the scope of the LEBM method, logarithmic 
functions are utilized to examine the relationships between two variables.  

When the logarithmic function between two variables is determined using the SPSS program, the extent to which 
the independent variable's variation, between its maximum and minimum values in the dataset, affects the 
dependent variable can be calculated through definite integration. This calculation reveals the overall change 
induced by the independent variable on the dependent variable or the extent of its influence. 

𝑓ᇱ(𝑥) Is called the antiderivative or indefinite integral of the function𝑓(𝑥). Since𝑓ᇱ(𝑥) =
𝑑𝑓(𝑥)

𝑑𝑥
ൗ , it can be 

written as𝑓ᇱ(𝑥)𝑑𝑥 = 𝑑𝑓(𝑥). This expression is represented using the infinite and continuous summation 
symbol∫ , as∫ 𝑓ᇱ(𝑥)𝑑𝑥 = ∫ 𝑑𝑓(𝑥). From this equation, the equation ∫ 𝑓ᇱ(𝑥)𝑑𝑥 = 𝑓(𝑥)  can be obtained. 

Therefore, the function to be integrated is𝑓ᇱ(𝑥). Furthermore, ∫ 𝑓(𝑥)𝑑𝑥 = 𝐹(𝑥) + 𝐶 where ∫ 𝑓(𝑥)𝑑𝑥 =




𝐹(𝑏) − 𝐹(𝑎)  represents the definite integral. Here, ''a'' represents the lower limit of the integral, and ''b'' 
represents the upper limit (Kartal, 2014). Thus, after determining the logarithmic relationships between the 
criteria using the logarithm function (𝑦 = 𝑘𝑥 + 𝑡 ∗ log (𝑥)), the extent to which the variation of the independent 
variable x between the limits ''a'' and ''b'' affects or changes the dependent variable ''y'' can be measured using 
definite integration. Based on this, the implementation steps of the proposed method are explained below. 
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Step 1: Obtaining the Decision Matrix 

i: 1, 2, 3...n, where n represents the number of decision alternatives 

j: 1, 2, 3,...m, where m represents the number of criteria 

D: Decision matrix 

C: Criterion 

dij: The decision matrix is constructed according to Equation 1, where "𝑖" represents the i-th decision alternative 
on the j-th criterion. 

𝐷 = ൣ𝑑൧
௫

 =

⎣
⎢
⎢
⎢
⎡
𝐶ଵ

𝑥 ଵଵ

𝐶ଶ

𝑥 ଵଶ

⋯
𝐶

𝑥 ଵ

𝑥ଶଵ

⋮
𝑥ଵ

𝑥ଶଶ

⋮
𝑥ଶ

⋯
⋮

⋯

𝑥ଶ

⋮
𝑥 ⎦

⎥
⎥
⎥
⎤

                                                                                                             (1)         

Step 2: Generation of Logarithmic Functions 

Based on the number of criteria, m, logarithmic functions (𝑦 = 𝑘𝑥 + 𝑡 ∗ log(𝑥)) are generated for the variables 

up to a quantity of ቄ2. 𝐶(𝑚, 2) = 2.
!

ଶ!.(ିଶ)!
ቅ using SPSS assistance (CURVE ESTIMATION), considering the 

logarithmic relationship between them. 

(1)  𝑓(𝐶ଵ) = 𝐶ଶ, 𝑓(𝐶ଵ) = 𝐶ଷ, … …  𝑓(𝐶ଵ) = 𝐶                                                                                                                   (2)   

 

(2) 𝑓(𝐶ଶ) = 𝐶ଵ, 𝑓(𝐶ଶ) = 𝐶ଷ, … …  𝑓(𝐶ଶ) = 𝐶                                                                                                                    (3) 

 

(3) 𝑓(𝐶ଷ) = 𝐶ଵ, 𝑓(𝐶ଷ) = 𝐶ଶ, … …  𝑓(𝐶ଷ) = 𝐶                                                                                                                    (4) 

⋮ ⋮ ⋮
⋮ ⋮ ⋮
⋮ ⋮ ⋮

                   
⋮ ⋮ ⋮
⋮ ⋮ ⋮
⋮ ⋮ ⋮

                    
⋮ ⋮ ⋮
⋮ ⋮ ⋮
⋮ ⋮ ⋮

 

(𝑚) 𝑓(𝐶) = 𝐶ଵ, 𝑓(𝐶) = 𝐶ଶ, … …  𝑓(𝐶) = 𝐶ିଵ                                                                                                           (5) 

 

Third Step: Calculation of Logarithmic Impact Value between Criteria 

In this step, the extent to which an independent variable (one criterion) influences or changes a dependent 
variable (another criterion) is determined by evaluating the independent variable's effect within the range of its 
maximum and minimum values using definite integral calculation. Here, k represents the logarithmic impact 
value of one criterion on the other. It is important to ensure the absolute value of the impact values after the 
integral calculation. 

(1)  𝑓(𝐶ଵ) = 𝐶ଶ , න (𝑓ᇱ(𝐶ଵ)) 𝑑𝑥

భೌೖೞ.

భ.

= ห𝑘భ→మ
ห                                                                                                                (6) 

(2)  𝑓(𝐶ଵ) = 𝐶ଷ , න (𝑓ᇱ(𝐶ଵ)) 𝑑𝑥

భೌೖೞ.

భ.

= ห𝑘భ→య
ห                                                                                                                (7) 

(3)  𝑓(𝐶ଵ) = 𝐶ସ , න (𝑓ᇱ(𝐶ଵ)) 𝑑𝑥

భೌೖೞ.

భ.

= ห𝑘భ→ర
ห                                                                                                                (8) 

⋮ ⋮ ⋮
⋮ ⋮ ⋮
⋮ ⋮ ⋮

                   
⋮ ⋮ ⋮
⋮ ⋮ ⋮
⋮ ⋮ ⋮

                    
⋮ ⋮ ⋮
⋮ ⋮ ⋮
⋮ ⋮ ⋮

 

൬
𝑚!

(𝑚 − 2)!
൰  𝑓(𝐶) = 𝐶ିଵ , න (𝑓ᇱ(𝐶)) 𝑑𝑥

ೌೖೞ.

.

= ห𝑘→షభ
ห                                                                                   (9) 
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The absolute value of the impact value of one criterion on another criterion is emphasized above. This is because 
in this method, what matters is not the direction of the influence between criteria, but rather the magnitude of the 
influence. 

Fourth Step: Calculation of the Total Logarithmic Impact Values of Each Criterion (𝑇) 

In this step, the logarithmic impact values of a criterion on other criteria are summed to measure the overall 
logarithmic impact value of a criterion on the other criteria. 

(1) 𝑓𝑜𝑟 𝐶ଵ ห𝑘భ→మ
ห + ห𝑘భ→య

ห + ห𝑘భ→ర
ห … … + ห𝑘భ→

ห =  ቚ𝑘భ→ೕశభ
ቚ

ିଵ

ୀଵ

 = 𝑇భ
                                             (10) 

(2) 𝑓𝑜𝑟 𝐶ଶ𝑖ç𝑖𝑛 ห𝑘మ→భ
ห + ห𝑘మ→య

ห + ห𝑘మ→ర
ห … … + ห𝑘మ→

ห = ቌ  ቚ𝑘మ→ೕశభ
ቚ

ିଵ

ୀଶ

ቍ − ห𝑘భ→మ
ห

= 𝑇మ
                                                                                                                                                           (11) 

(3) 𝑓𝑜𝑟 𝐶ଷ ห𝑘య→భ
ห + ห𝑘య→మ

ห + ห𝑘య→ర
ห … … + ห𝑘య→

ห = ቌ  ቚ𝑘య→ೕశభ
ቚ

ିଵ

ୀଷ

ቍ − ห𝑘య→భ
ห − ห𝑘య→మ

ห

=  𝑇య
                                                                                                                                                          (12) 

⋮ ⋮ ⋮
⋮ ⋮ ⋮
⋮ ⋮ ⋮

                   
⋮ ⋮ ⋮
⋮ ⋮ ⋮
⋮ ⋮ ⋮

                    
⋮ ⋮ ⋮
⋮ ⋮ ⋮
⋮ ⋮ ⋮

 

(𝑚) 𝑓𝑜𝑟 𝐶 ห𝑘→భ
ห + ห𝑘→మ

ห + ห𝑘→య
ห … … + ห𝑘→షభ

ห = ቀ∑ ቚ𝑘→ೕ
ቚିଵ

ୀଵ ቁ − ห𝑘భ→
ห − ห𝑘మ→

ห −

⋯ . −ห𝑘షభ→
ห = 𝑇

                                                                                                                                                          (13)      

Fifth Step: Determination of Criterion Weight Values (𝑤)  

In this step, the total logarithmic impact value of each criterion on the other criteria is divided by the sum of the 
total logarithmic impact values of all criteria. This allows for the calculation of the weight coefficient of each 
criterion. 

𝑤 =
𝑇ೕ

∑ 𝑇ೕ


ୀଵ

                                                                                                                                                                            (14)     

The advantages of the LEBM method can be classified into two categories: quantity and quality. These 
advantages are explained below in bullet points: 

Quantity-Based Advantages of the LEBM Method: 

One of the key features of the method is that it does not require data normalization or standardization. In the 
second step, by using logarithmic functions, the data is already normalized, allowing for more homogeneous 
representation of data with wide-ranging variations. This enhances the analyzability of the data. The impact 
values between criteria in the second and third steps of the method are within the range of [-1, 0, 1] for each 
criterion. Additionally, when the data set is normalized, there is a difference between the impact values derived 
from the logarithmic functions between the criteria before and after normalization. Consequently, the impact 
values between the criteria, calculated using logarithmic functions based on the data set after normalization, 
diminish. As a result, when data normalization is performed, the logarithmic impact values between the criteria, 
determined based on the logarithmic functions, suffer from data loss. 

Another significant advantage of the method is its flexible nature, which allows for easy reflection of complex 
interactions and transformations among the criteria. 

The third advantage of the method is that logarithmic transformations reduce the influence of large values in the 
data set while making small values more pronounced. This process creates a more symmetrical distribution of 
the data set, thus establishing a more suitable structure for analysis and modeling. 

The fourth advantage of the method is that it prevents variables with large values from dominating variables with 
small values. This enables a fair evaluation among variables in decision-making processes. 

The fifth advantage of the method, the method reduces the impact of outliers and enhances the reliability of the 
analysis results. 
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Lastly, one of the important features of the method is that it focuses on determining the extent of the influence 
between criteria, rather than the direction of influence. This allows for a comprehensive understanding of the 
quantitative impact of criteria on each other. 

Qualitative-Based Advantages of the LEBM Method: 

Identification of Improvement Opportunities: Criteria with higher weights exert a greater influence on other 
criteria, making them suitable targets for identifying improvement opportunities. Understanding the relationships 
between criteria and determining their impact values indicate where improvement efforts should be concentrated. 
In other words, it allows for investigating the theoretical cause-and-effect relationships between criteria and 
determining the direction of their influence. Consequently, it becomes easier to identify which criteria should be 
prioritized or improved based on the decision alternatives. 

Prioritization: Determining the weights allows for prioritization among the criteria. Criteria with higher weights 
are considered more important compared to other criteria. This enables the identification of which criteria should 
receive greater focus in strategic planning and decision-making processes. 

Performance Evaluation: The weight coefficients can be utilized in the performance evaluation of the criteria. 
Criteria with higher weights are regarded as having a greater impact on the organization's or system's 
performance. This facilitates more effective performance evaluation and improvement efforts by concentrating 
on the most critical criteria. 

Strategic Planning: The weight coefficients contribute to the appropriate allocation of resources and efforts in the 
strategic planning process. By focusing on criteria with higher weights, more suitable strategies and actions can 
be identified to align with strategic objectives. This aids in the development of strategic plans aimed at 
enhancing the overall performance of the organization or system. 

The LEBM method has both advantages and disadvantages. One of the disadvantages is that, compared to many 
objective weighting methods in the literature, this method requires complex calculations for determining the 
weight coefficients of the criteria. Particularly as the number of criteria increases, the calculations can become 
more complicated due to the multitude of interaction values between criteria. Another disadvantage is the 
reliance on SPSS or other statistical software programs for identifying the logarithmic relationships between 
criteria. Without the SPSS program, the calculation of weight coefficients according to the method becomes 
more complex and time-consuming. A third disadvantage is that if there is no theoretical cause-and-effect 
relationship between the criteria, there may be limited opportunities for improving the criteria. Lastly, the fourth 
disadvantage is the need for transformation using Z-scores when values in the decision matrix are negative or 0 
to ensure that the values are positive and different from zero. This disadvantage is also present in the ENTROPY 
and MEREC methods, as both methods rely on logarithmic measurements. 

The LEBM method shares some similarities with the MEREC method in terms of the applied mathematical 
approaches. Firstly, both methods consider logarithmic effects. Another similarity is the identification of criteria 
with significant logarithmic effects as the most important criteria. The differences between the two methods are 
evident in their computational logic and equations. In the MEREC method, the logarithmic effects of criteria on 
decision alternatives are taken into account, rather than the effects of criteria on each other. In the LEBM 
method, on the other hand, the logarithmic effects of criteria on each other are evaluated. Additionally, in the 
MEREC method, the values of all criteria are taken into account when determining their effects on decision 
alternatives. In the LEBM method, however, only the logarithmic relationships between two criteria are 
determined. 

4. The Case Study (Conclusion) 

The application involved the utilization of the six component values that constitute the 2023 LPI for the 18 
countries in the G20 group. These respective component values are represented by equation 1 and are presented 
in Table 2. 

Table 2. Decision Matrix (LPI Component Values of Countries) 

Economies LPI1 LPI2 LPI3 LPI4 LPI5 LPI6 

Argentina 2,7 2,8 2,7 2,7 3,1 2,9 

Australia 3,7 4,1 3,1 3,9 3,6 4,1 

Canada 4,0 4,3 3,6 4,2 4,1 4,1 

China 3,3 4,0 3,6 3,8 3,7 3,8 

France 3,7 3,8 3,7 3,8 4,1 4,0 

Germany 3,9 4,3 3,7 4,2 4,1 4,2 
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India 3,0 3,2 3,5 3,5 3,6 3,4 

Indonesia 2,8 2,9 3,0 2,9 3,3 3,0 

Italy 3,4 3,8 3,4 3,8 3,9 3,9 

Japan 3,9 4,2 3,3 4,1 4,0 4,0 

Korea, Rep. 3,9 4,1 3,4 3,8 3,8 3,8 

Mexico 2,5 2,8 2,8 3,0 3,5 3,1 

Russia Fed. 2,4 2,7 2,3 2,6 2,9 2,5 

Saudi Arabia 3,0 3,6 3,3 3,3 3,6 3,5 

South Africa 3,3 3,6 3,6 3,8 3,8 3,8 

Türkiye 3,0 3,4 3,4 3,5 3,6 3,5 

United King. 3,5 3,7 3,5 3,7 3,7 4,0 

USA 3,7 3,9 3,4 3,9 3,8 4,2 

In the second step of the model, considering the presence of 6 components, the functional equation denoted by 

ቄ2. 𝐶(𝑚, 2) = 2.
!

ଶ!.(ିଶ)!
ቅ is used to illustrate the logarithmic relationships among the components, resulting in 

Equation 2. Therefore, in order to capture the interplay among the components, 30 logarithmic function 
equations (Equations 2, 3, 4, and 5) were established based on CURVE analysis using SPSS. These respective 
functions are indicated in Table 3. 

Table 3. Logarithmic Functions Derived Based on the Interrelationships between Components 

Independent 
Components 

Dependent 
Components 

Logarithmic Functions 
Independent 
Components 

Dependent 
Components 

Logarithmic Functions 

LPI1→ 

LPI2 y=-0,201 + 3,22 * log(x) 

LPI4→ 

LPI1 y=-0,739 + 3,202* log(x) 

LPI3 y=1,151+ 1,805 * log(x) LPI2 y=-0,777 + 3,474 * log(x) 

LPI4 y=0,151 + 2,892 * log(x) LPI3 y=0,482+ 2,221 * log(x) 

LPI5 y=1,544 + 1,797 * log(x) LPI5 y=1,018+ 2,100 * log(x) 

LPI6 y=0,191 + 2,918 * log(x) LPI6 y=-0,498 + 3,280 * log(x) 

LPI2→ 

LPI1 y=-0,630 + 3,093 * log(x) 

LPI5→ 

LPI1 y=-2,692 + 4,628 * log(x) 

LPI3 y=0,902 + 1,875 * log(x) LPI2 y=-2,714 + 4,880 * log(x) 

LPI4 y=-0,259 + 3,011 * log(x) LPI3 y=-1,358 + 3,583 * log(x) 

LPI5 y=1,348 + 1,826* log(x) LPI4 y=2,715 + 4,851 * log(x) 

LPI6 y=0,160+ 2,991 *  log(x) LPI6 y=-2,579 + 4,802 * log(x) 

LPI3→ 

LPI1 y=0,193 + 2,961 * log(x) 

LPI6→ 

LPI1 y=-0,740 + 3,154 * log(x) 

LPI2 y=-0,176+ 3,205 * log(x) LPI2 y=-0,711 + 3,368 * log(x) 

LPI4 y=-0,308 + 3,284 * log(x) LPI3 y=0,476 + 2,191 * log(x) 

LPI5 y=0,937+ 2,312 * log(x) LPI4 y=-0,539 + 3,204* log(x) 

LPI6 y=-0,266 + 3,309* log(x) LPI5 y=1,050 + 2,042 * log(x) 

In the third stage of the method, logarithmic impact values between criteria were calculated using equations 6, 7, 
8, and 9. The calculations of the impact values of LPI1 criterion on other criteria are explained below. The 
measurement of impact values for other LPI components is shown in Appendix A. 

 f(LPI1)=LPI2  

𝑓(𝑥) = 𝑦 = −0,201 +  3,22 𝑙𝑜𝑔(𝑥) 

𝑓ᇱ(𝑥) = 161. 𝑙𝑜𝑔(𝑒)/(50𝑥) 


161𝑙𝑜𝑔(𝒆)

50𝑥
𝑑𝑥 = 𝑙𝑜𝑔(𝒆) ൬

161𝑙𝑛(2)
25

 − 161𝑙𝑛(2.4)
50

൰ = 0,714

ସ

ଶ.ସ

 

 f(LPI1)=LPI3 

𝑓(𝑥) = 𝑦 = 1.151 +  1.805 𝑙𝑜𝑔(𝑥) 
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𝑓ᇱ(𝑥) =
361𝑙𝑜𝑔(𝒆)

200𝑥
 


361𝑙𝑜𝑔(𝒆)

200𝑥
𝑑𝑥 = 𝑙𝑜𝑔(𝒆) ൬

361𝑙𝑛(2)
100

 − 361𝑙𝑛(2.4)
200

൰ = 0,400

ସ

ଶ.ସ

 

 f(LPI1)=LPI4 

𝑓(𝑥) = 𝑦 = 0.151 +  2.892 𝑙𝑜𝑔(𝑥) 

𝑓ᇱ(𝑥) =
723𝑙𝑜𝑔(𝒆)

250𝑥
= 0,642 


723𝑙𝑜𝑔(𝒆)

250𝑥
𝑑𝑥

ସ

ଶ.ସ

= 𝑙𝑜𝑔(𝒆) ൬
723𝑙𝑛(2)

125
 − 723𝑙𝑛(2.4)

250
൰ = 0,642 

 f(LPI1)=LPI5 

𝑓(𝑥) = 𝑦 = 1.544 +  1.797 𝑙𝑜𝑔(𝑥) 

𝑓ᇱ(𝑥) =
1797𝑙𝑜𝑔(𝒆)

1000𝑥
 


1797𝑙𝑜𝑔(𝒆)

1000𝑥
𝑑𝑥 = 𝑙𝑜𝑔(𝒆) ൬

1797𝑙𝑛(2)
500

 − 1797𝑙𝑛(2.4)
1000

൰ = 0,399

ସ

ଶ.ସ

 

 f(LPI1)=LPI6 

𝑓(𝑥) = 𝑦 = 0.191 +  2.918 𝑙𝑜𝑔(𝑥) 

𝑓ᇱ(𝑥) =
1459𝑙𝑜𝑔(𝒆)

500𝑥
 


1459𝑙𝑜𝑔(𝒆)

500𝑥
𝑑𝑥 = 𝑙𝑜𝑔(𝒆) ൬

1459𝑙𝑛(2)
250

 − 1459𝑙𝑛(2.4)
500

൰ = 0,647

ସ

ଶ.ସ

 

 

In the fourth step of the method, the total logarithmic impact values of each criterion were calculated using 
equations 10, 11, 12, and 13, and they are presented in Table 3. 

Table 3. Sum of Logarithmic Impact Values of LPI Components on Each Other 

Independent 
Component 

Dependent 
Components 

Effect  
Value 

Absolute 
Value     

Independent 
Component 

Dependent 
Components 

Effect  
Value 

Absolute 
Value     

LPI1→ 

LPI2 0,714 0,714 

LPI4→ 

LPI1 0,667 0,667 

LPI3 0,400 0,400 LPI2 0,724 0,724 

LPI4 0,642 0,642 LPI3 0,463 0,463 

LPI5 0,399 0,399 LPI5 0,437 0,437 

LPI6 0,647 0,647 LPI6 0,683 0,683 

    Total 2,802     Total 2,974 

LPI2→ 

LPI1 0,625 0,625 

LPI5→ 

LPI1 0,696 0,696 

LPI3 0,379 0,379 LPI2 0,734 0,734 

LPI4 0,609 0,609 LPI3 0,539 0,539 

LPI5 0,369 0,369 LPI4 0,730 0,730 

LPI6 0,604 0,604 LPI6 0,722 0,722 

    Total 2,586     Total 3,421 

LPI3→ LPI1 0,611 0,611 LPI6→ LPI1 0,711 0,711 
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LPI2 0,662 0,662 LPI2 0,759 0,759 

LPI4 0,678 0,678 LPI3 0,494 0,494 

LPI5 0,477 0,477 LPI4 0,722 0,722 

LPI6 0,683 0,683 LPI5 0,469 0,469 

    Total 3,111     Total 3,155 

Furthermore, in Equation 14, the weight coefficients (degrees of importance) of the criteria are calculated, and 
the values are presented in Table 4. 

Table 4. Weighting Coefficients of the Components. 

LPI Components Total Effects w Ranking 

LPI1 2,802 0,155244 5 

LPI2 2,586 0,143277 6 

LPI3 3,111 0,172314 3 

LPI4 2,974 0,164774 4 

LPI5 3,421 0,189540 1 

LPI6 3,155 0,174802 2 

Total 18,04 ------  ------  

Upon examining Table 4, the weighting coefficients of the LPI components are ranked as follows LPI5, LPI6, 
LPI3, LPI4, LPI1, and LPI2. 

In the study, sensitivity analysis of the LEBM method was conducted in terms of methodology. Sensitivity 
analysis in the context of MCDA can be performed by comparing the values and rankings obtained by applying 
different criteria weighting methods to the same data (Gigovič, 2016). Accordingly, for the sensitivity analysis, 
the weighting coefficients of the LPI components were measured and ranked based on commonly used objective 
weighting methods in the literature, such as ENTROPY, CRITIC, SD (Standard Deviation), SVP (Statistical 
Variance Procedure), MEREC, and LOPCOW. The corresponding values are presented in Table 5. 

Table 5. Values for Other Methods of Calculating Objective Weighting Coefficients 

LPI 
ENTROPY CRITIC SD 

Value Ranking Value Ranking Value Ranking 

LPI1 0,222945 1 0,148589 3 0,196204 1 

LPI2 0,210584 2 0,122964 4 0,190162 2 

LPI3 0,128961 5 0,319406 1 0,147672 5 

LPI4 0,181127 3 0,082131 6 0,175726 3 

LPI5 0,076881 6 0,218173 2 0,115892 6 

LPI6 0,179502 4 0,108738 5 0,174343 4 

LPI 
SVP LOPCOW MEREC 

Value Ranking Value Ranking Value Ranking 

LPI1 0,200716 2 0,154187 5 0,149797 5 

LPI2 0,22458 1 0,141623 6 0,132971 6 

LPI3 0,111106 5 0,193551 1 0,179704 3 

LPI4 0,187108 4 0,158815 4 0,151747 4 

LPI5 0,084873 6 0,166201 3 0,188583 2 

LPI6 0,191619 3 0,185623 2 0,197197 1 

When Tables 4 and 5 are examined together, it is observed that the ranking of the LPI criterion weighting 
coefficients determined according to the LEBM method differs from the LPI criterion rankings generated by 
other methods. Furthermore, according to Table 5, the ranking of LPI criterion weighting coefficient values 
measured using the LEBM method is consistent with the ranking of decision alternatives as 1 for SVP, 4 for 
LOPCOW, and 5 for MEREC. In the context of sensitivity analysis, a visual representation of the differentiation 
distances between the weighting coefficient values of LPI components calculated according to the LEBM 
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method and other criterion weighting determination methods, based on the values specified in Table 5, was 
created. The corresponding visual is presented in Figure 1. 

 

Figure 1. Discrimination Distance Visualization Based on Methods 

Upon examining Figure 1, it is observed that the LEBM method has different positions in the space compared to 
other methods. Additionally, according to Figure 1, it is determined that the LEBM method is closest to the 
LOPCOW and MEREC methods. In relation to this, the correlation values between the weighting coefficient 
values of the LPI components calculated within the scope of the methods are presented in Table 6. 

Table 6. Correlation Values between Weighting Coefficient Values of Identified LPI Components 
based on Methods 

Methods LEBM ENTROPY CRITIC SD SVP LOPCOW MEREC 

LEBM 1             

ENTROPY -0,879** 1           

CRITIC 0,423 -0,635** 1         

SD -0,876** 0,999** -0,628** 1       

SVP -0,848** 0,959** -0,781** 0,957** 1     

LOPCOW 0,652** -0,493* 0,575* -0,465* -0,555* 1   

MEREC 0,889** -0,678** 0,393 -0,669* -0,652* 0,838** 1 

p*<.05, p**<.01 

When Table 6 is examined, it is observed that the relationships between the weighting coefficient values of LPI 
components measured within the LEBM ENTROPY, SD, and SVP methods are significant, negative, and high. 
In contrast, it is observed that the weighting coefficients of LPI criteria calculated according to the LEBM 
method have a positive, insignificant, and weak relationship with the weighting coefficients of LPI criteria 
measured using the CRITIC method, a positive, significant, and moderate relationship with the weighting 
coefficients of LPI criteria measured using the LOPCOW method, and a positive, significant, and high-level 
relationship with the weighting coefficients of LPI criteria measured using the MEREC method. 

In addition to that, 10 scenarios were created by assigning different quantities to the LPI values of countries, and 
the degrees of importance of LPI criteria were measured according to the methods within the scope of these 
scenarios. Upon examining the scenarios, it was found that none of the weighting coefficients of the criteria 
determined by the ENTROPY, CRITIC, SD, and SVP methods were consistent with the ranking of the weighting 
coefficient values of LPI components calculated using the LEBM method. Within the LOBCOW method, the 
ranking of 4 criteria in 7 scenarios and 3 criteria in 3 scenarios, and within the MEREC method, the ranking of 5 
criteria in all 10 scenarios, showed consistency with the ranking of LPI criterion weighting coefficient values 
measured using the LEBM method. Furthermore, it has been determined that the correlation values among the 
weighting coefficient values of LPI criteria determined according to the methods in the created scenarios are 
generally consistent with the correlation values shown in Table 6. 
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5. Results and Discussion        

Multi-criteria decision making is a widely used method for solving complex decision problems. This method 
aims to make choices among different alternatives by considering a set of criteria. However, the importance of 
each criterion may vary, and therefore, it is important to weight the criteria. Determining the weights allows for 
an objective and unbiased approach in the decision-making process, clarifying the relationships and priorities 
among the criteria. This enables more consistent and reliable results to be obtained in the decision-making 
process. Consequently, many researchers have developed new methods for calculating the weight coefficients of 
criteria. Each method has contributed to the literature of Multiple Criteria Decision Making (MCDM) by 
employing different techniques. Furthermore, as new techniques for determining the weight coefficients of 
criteria continue to emerge, there is an increasing specialization in calculating these weights. Therefore, in this 
study, a new method based on logarithmic functions (Logarithmic ENTROPY-Based Method or LEBM) is 
proposed for calculating the weight coefficients of criteria. 

The underlying logic of the LEBM method is to establish logarithmic effects among the criteria. Considering the 
advantages of logarithmic functions and the proposed method (flattening the data structure, equalizing 
differences in magnitudes, reducing the impact of outliers in the dataset, linearizing relationships), the effects 
among the criteria can be calculated, and the criterion with the highest cumulative effect can be evaluated as the 
most important criterion. The most important criterion has the potential to influence other criteria, thus activities 
or measures related to the most important criterion can contribute to the development of other criteria. 
Additionally, a system can be developed to determine the strategies for decision alternatives in relation to the 
most important criterion(s). 

The dataset of the study consisted of the Logistics Performance Index (LPI) data of 18 countries in the G20 
group for the year 2023. First, the weight coefficients of the LPI components measured by the LEBM method 
were calculated. Second, the weight coefficients of the LPI components measured by the LEBM method were 
compared with the weight coefficients of the LPI criteria measured by other objective weighting methods 
(ENTROPY, CRITIC, Standard Deviation, Statistical Variance Procedure, MEREC, and LOPCOW) within the 
scope of sensitivity analysis using the same dataset. According to the findings, the weight coefficient rankings of 
the LPI criteria determined according to the LEBM method were observed to be different from the weight 
coefficient rankings of the LPI components measured by the ENTROPY, CRITIC, Standard Deviation, 
Statistical Variance Procedure, MEREC, and LOPCOW methods. The ranking of the weight coefficients of the 
LPI components determined by the LEBM method was consistent with the ranking of the weight coefficients of 
the LPI components determined by the MEREC method to the highest extent. In the continuation of the 
sensitivity analysis, a discrimination distance visualization of the weight coefficients of the LPI components 
determined according to the methods was created. According to the findings, it was determined that the LEBM 
method was closest to the MEREC and LOPCOW methods in the space. 

Furthermore, the correlation values between the weight coefficients of the LPI criteria measured by the LEBM 
method and the weight coefficients of the criteria measured by other weighting methods were calculated. 
According to the findings, significant relationships were found between the weight coefficients of the LPI 
criteria determined within the scope of the LEBM method and the weight coefficients of the LPI components 
measured by the ENTROPY, CRITIC, Standard Deviation, Statistical Variance Procedure, LOPCOW, and 
MEREC methods. In this context, it was determined that the weight coefficients of the LPI components 
determined within the scope of the LEBM method were negatively and highly correlated with the LPI 
components calculated by the ENTROPY, Standard Deviation, and Statistical Variance Procedure methods. 
Furthermore, positive and moderate-to-high relationships were observed between the weight coefficients of the 
LPI components determined by the LEBM method and the weight coefficients of the LPI components 
determined by the CRITIC, LOPCOW, and MEREC methods, respectively, except for the CRITIC method. 
However, it was found that the relationship between the weight coefficients of the LPI determined by the LEBM 
method and the weight coefficients of the LPI determined by the CRITIC method was insignificant. 

In addition, different quantities were assigned to the LPI values of countries within the framework of 10 
scenarios. In each scenario, the ranking of the LPI criteria determined by the proposed method showed the 
highest consistency with the rankings determined by the MEREC method. Furthermore, it was determined that 
the importance degrees of the LPI components determined by the methods within the scenarios, where different 
values were assigned to the LPI criteria, were very similar to the relationship quantity values calculated by the 
methods based on the original LPI values. 

In conclusion, this analysis attempts to demonstrate that the weights of criteria can be measured using the LEBM 
method within the framework of MCDM literature. The proposed method is considered to provide a valuable 
tool for the objective evaluation of the performance of decision alternatives. The research findings can serve as 
an important reference for researchers and decision-makers in the relevant field. Consequently, it is evaluated 
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that the research results will encourage a greater focus on logarithmic functions in mathematical modeling 
processes in academic circles, businesses, and other organizations. Additionally, it is concluded that the LEBM 
method is an effective tool for decision-makers in the selection and decision-making processes regarding the 
performance of decision alternatives. 
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LPI2 

 f(LPI2)=LPI1  

deriv(− 0.63 + 3.093 log(𝑥) , 𝑥) =
3093log(𝒆)

1000𝑥
 


3093log(𝒆)

1000𝑥
𝑑𝑥

ସ.ଷ

ଶ.

= log(𝒆) ቆ
3093ln(4.3) − 3093ln(2.7)

1000
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 f(LPI2)=LPI3  

deriv(0.902 + 1.875 log(𝑥) , 𝑥) =
15log(𝒆)
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LPI3 

 f(LPI3)=LPI1  

deriv(0.193 + 2.961 log(𝑥) , 𝑥) =
2961log(𝒆)

1000𝑥
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2961log(𝒆)
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2961ln(3.7) − 2961ln(2.3)
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deriv(1.018 + 2.1 log(𝑥) , 𝑥) =
21log(𝒆)

10𝑥
 


21log(𝒆)

10𝑥
𝑑𝑥 = log(𝒆) ቆ

21ln(4.2) − 21ln(2.6)

10
ቇ = 0,437

ସ.ଶ

ଶ.

 

 f(LPI4)=LPI6 

deriv(− 0.498 + 3.28 log(𝑥) , 𝑥) =
82log(𝒆)

25𝑥
 


82log(𝒆)

25𝑥
𝑑𝑥 = log(𝒆) ቆ

82ln(4.2) − 82ln(2.6)

25
ቇ = 0,683

ସ.ଶ

ଶ.

 

LPI5 

 f(LPI5)=LPI1 

deriv(− 2.692 + 4.628 log(𝑥) , 𝑥) =
1157log(𝒆)

250𝑥
 


1157log(𝒆)

250𝑥
𝑑𝑥

ସ.ଵ

ଶ.ଽ

= log(𝒆) ቆ
1157ln(4.1) − 1157ln(2.9)

250
ቇ = 0,696 

 f(LPI5)=LPI2  

deriv(− 2.714 + 4.88 log(𝑥) , 𝑥) =
122log(𝒆)

25𝑥
 


122log(𝒆)

25𝑥
𝑑𝑥

ସ.ଵ

ଶ.ଽ

= log(𝒆) ቆ
122ln(4.1) − 122ln(2.9)

25
ቇ = 0,734 

 f(LPI5)=LPI3 

deriv(− 1.358 + 3.583 log(𝑥) , 𝑥) =
3583log(𝒆)

1000𝑥
 


3583log(𝒆)

1000𝑥
𝑑𝑥 = log(𝒆) ቆ

3583ln(4.1) − 3583ln(2.9)

1000
ቇ = 0,539

ସ.ଵ

ଶ.ଽ

 

 f(LPI5)=LPI4 

deriv(2.715 + 4.851 log(𝑥) , 𝑥) =
4851log(𝒆)

1000𝑥
 


4851log(𝒆)

1000𝑥
𝑑𝑥

ସ.ଵ

ଶ.ଽ

= log(𝒆) ቆ
4851ln(4.1) − 4851ln(2.9)

1000
ቇ = 0,730 

 f(LPI5)=LPI6 

deriv(− 2.579 + 4.802 log(𝑥) , 𝑥) =
2401log(𝒆)

500𝑥
 


2401log(𝒆)

500𝑥
𝑑𝑥 = log(𝒆) ቆ

2401ln(4.1) − 2401ln(2.9)

500
ቇ = 0,722

ସ.ଵ

ଶ.ଽ

 

LPI6 

 f(LPI6)=LPI1 

deriv(− 0.74 + 3.154 log(𝑥) , 𝑥) =
1577log(𝒆)

500𝑥
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1577log(𝒆)

500𝑥
𝑑𝑥 = log(𝒆) ቆ

1577ln(4.2) − 1577ln(2.5)

500
ቇ = 0,711

ସ.ଶ

ଶ.ହ

 

 f(LPI6)=LPI2 

deriv(− 0.711 + 3.368 log(𝑥) , 𝑥) =
421log(𝒆)

125𝑥
 


421log(𝒆)

125𝑥
𝑑𝑥

ସ.ଶ

ଶ.ହ

= log(𝒆) ቆ
421ln(4.2) − 421ln(2.5)

125
ቇ = 0,759 

 f(LPI6)=LPI3 

deriv(0.476 + 2.191 log(𝑥) , 𝑥) =
2191log(𝒆)

1000𝑥
 


2191log(𝒆)

1000𝑥
𝑑𝑥

ସ.ଶ

ଶ.ହ

= log(𝒆) ቆ
2191ln(4.2) − 2191ln(2.5)

1000
ቇ = 0,494 

 f(LPI6)=LPI4 

deriv(− 0.539 + 3.204 log(𝑥) , 𝑥) =
801log(𝒆)

250𝑥
 


801log(𝒆)

250𝑥
𝑑𝑥 = log(𝒆) ቆ

801ln(4.2) − 801ln(2.5)

250
ቇ = 0,722

ସ.ଶ

ଶ.ହ

 

 

 f(LPI6)=LPI5 

deriv(1.05 + 2.042 log(𝑥) , 𝑥) =
1021log(𝒆)

500𝑥
 


1021log(𝒆)

500𝑥
𝑑𝑥 = log(𝒆) ቆ

1021ln(4.2) − 1021ln(2.5)

500
ቇ = 0,469

ସ.ଶ

ଶ.ହ
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