
Yogesh BEEHARRY et al. / IU-JEEE Vol. 17(2), (2017), 3399-3415

Received on: 16.01.2017

Accepted on: 23.06.2017

Performance of Bit-Level Decoding Algorithms for Binary LTE Turbo Codes

with Early Stopping

Yogesh BEEHARRY1, Tulsi Pawan FOWDUR 1, Krishnaraj M. S. SOYJAUDAH 1

1Department of Electrical and Electronic Engineering, University of Mauritius, Réduit, Mauritius

y.beeharry@uom.ac.mu, p.fowdur@uom.ac.mu, ssoyjaudah@uom.ac.mu

Abstract: Turbo codes apply an iterative message passing mechanism between two concatenated decoders. Their

astounding performance has led to their widespread adoption in several communication standards such as Long Term

Evolution, and Code Division for Multiple Access 2000. This paper gives an overview of three bit-level decoding Max-

Log-MAP algorithms with Sign Difference Ratio-based early stopping that can be used with Long Term Evolution Turbo

Codes. A detailed computational complexity analysis is given for the three methods. It is observed that the complexity of

the decoding methods decrease significantly as the Eb/N0 increases when Sign Difference Ratio is used. Moreover, the Bit

Error Rate performance of the methods was also assessed and compared for different modulation schemes. Results show

that the different methods perform differently in the waterfall and error-floor regions with different modulation schemes.

Moreover, the computational complexity analysis show that Method 2 requires fewer overall number of computations

compared to Methods 1 and 3.

Keywords: LTE Turbo Codes, Max-Log-MAP Turbo Decoding, Computational Complexity Analysis.

1. Introduction

Turbo codes are a class of error correcting codes in

coding theory and consist of two concatenated decoders

passing messages iteratively between each other. They

are used in several communication standards such as

Long Term Evolution (LTE), and Code Division for

Multiple Access (CDMA) 2000. The Turbo decoding

algorithms are the Maximum A-Posteriori Probability

(MAP), Logarithmic MAP (Log-MAP), and the

Maximum Log-MAP (Max Log-MAP) algorithms. The

MAP algorithm was the initially presented Turbo

decoding algorithm in [1]. However, due to its

numerical instability and high computational

complexity, the Log-MAP algorithm was proposed by

researchers. The Max Log-MAP algorithm was brought

forward with the aim of having additional reduction in

computational complexity. The trade-off accompanied

by this reduction is a slight degradation in error

performance. There exists this computational

complexity issue of Turbo decoding algorithms and

several papers have proposed variants to address this

problem. In [2], a complexity analysis with three

symbol-level decoding algorithms for duo-binary Turbo

codes was performed. The work in [3] focussed on the

decoder complexity for LTE downlink Turbo code and

proposed the application of a decoding framework with

adaptive complexity. The author of [4] has proposed a

new substitute to the conventional Logarithmic Bahl-

Cocke-Jelinek-Raviv (Log-BCJR) algorithm for Turbo

decoding. It has been shown that the proposed algorithm

which is compatible with all Turbo codes, can provide

throughputs and latencies of up to 6.86 times better than the

conventional algorithms when employed with Turbo codes

of the LTE and WiMAX standards with a trade-off of

slightly increased resource requirement and computational

complexity. The authors of [5], investigated the

computational complexity of Turbo decoding with multiple-

input multiple-output (MIMO) detection. Results

demonstrated the suitability of the proposed decoder for

parallel and pipeline architectures which can meet the

requirements for high throughput.

Schemes like iterative detection or early stopping are

employed in the decoding process to prevent unnecessary

additional iterations with the aim to reduce the decoding

complexity of Turbo codes. For example, in [6], the authors

proposed early stopping mechanisms using a predicted

decoding threshold. These techniques have been categorised

into two groups. One is soft-bit decision based, such as

absolute LLR measurements [7] and Cross Entropy (CE) [8].

The second class is hard-bit decision based, such as Sign

Change Ratio (SCR) [9] and Sign-Difference Ratio (SDR)

[10]. These mechanisms help reducing the computational

complexity by not performing additional unnecessary

iterations. The report of [11] presents a stopping criterion

used with the Turbo decoder of the LTE standard with the

objective of reducing the power and energy consumption. A

configuration of the decoder to use 1, 2, 4, 8, or 16 MAP

decoders in parallel can be performed. This has shown to

mailto:y.beeharry@uom.ac.mu
mailto:p.fowdur@uom.ac.mu
mailto:ssoyjaudah@uom.ac.mu

Yogesh BEEHARRY et al. / IU-JEEE Vol. 17(2), (2017), 3399-3415

3400

help achieve a throughput of 110Mb/s for 7 iterations

when operating at a clock frequency of 200 MHz. The

work of [12] proposed two early stopping mechanisms

based on the regression angle computed at every half-

iteration and the Pearson’s correlation coefficient for the

low and high 𝐸𝑏 𝑁0⁄ range respectively.

This paper gives an overview of bit-level decoding

Max-Log-MAP algorithms with the different equations

used for Binary LTE Turbo codes together with SDR-

based early stopping mechanism. The computations

involved in the three decoding techniques are explicitly

detailed and an analysis of the complexity has been

provided. Simulation results with different modulation

schemes reveal that the different decoding techniques

perform differently in the waterfall and error floor

regions with different modulation schemes.

The organisation of the paper is as the following. The

different decoding methods and results for LTE Turbo

codes with Max Log-MAP decoding algorithm are

presented in Section 2. The simulation results are

presented in Section 3 and Section 4 concludes the

paper.

2. Binary LTE Turbo Codes

Figure 1 depicts the complete encoding structure for

Binary LTE Turbo codes [13], [14].

D1 D2 D3

QPP

INTERLEAVER

Π

D1 D2 D3

S0

P1

P2

Sub-Block

Interleaving

d0 d1 d2

Interlacing

d1,d2,d1,d2,d1,d2, ...

MUXModulation

AWGN
Rt

d0,d0,d0,...d1,d2,d1,d2,d1,d2, ...

c

RSC 1

RSC 2

Figure 1. Binary LTE Turbo Codes Transmitter System [13]

The information bits are sent to an LTE Turbo

encoder consisting of a parallel concatenation of two

Recursive Systematic Convolutional (RSC) encoders,

RSC1 and RSC2, separated by an interleaver (П). A

Quadratic Polynomial Permutation (QPP) interleaver is

employed in the design of the LTE Turbo encoding

system. The interleaved permutation with a QPP

interleaver is obtained using a quadratic polynomial.

The relationship between the output index z and input

index π(z) is expressed by the following equation [14]:

𝜋(𝑧) = (𝑓1. 𝑧 + 𝑓2. 𝑧
2) 𝑚𝑜𝑑 𝐾 (1)

Where,

𝑓1 and 𝑓2 are the permutation coefficients,

K is the size of the information block.

After the encoding process, each of the three output

streams S0, P1, and P2 is interleaved with its own sub-block

interleaver resulting in d0, d1, and d2 respectively. Sub-block

interleaving is performed as follows:

a. The input block is written row-wise in a rectangular

matrix to form a 𝑅𝑠 by 𝐶𝑠 matrix.

b. A permutation is performed on the columns of this

matrix.

c. A column-wise read is performed on the permuted

matrix to obtain the output.

The number of columns, 𝐶𝑠, is fixed to 32 and the number

of rows, 𝑅𝑠, is (K / 32). The inter-column permutation is

achieved using the Bit-Reversal-Order (BRO) pattern given

below:

𝑄(𝑗)= [0, 16, 8, 24, 4, 20, 12, 28, 2, 18, 10, 26, 6, 22, 14, 30,

1, 17, 9, 25, 5, 21, 13, 29, 3, 19, 11, 27, 7, 23, 15, 31]

𝑄(𝑗) is the original column position of the 𝑗th permuted

column.

LTE Turbo coded standard performs multiplexing such

that the rearranged systematic bits, d0, are placed in the

beginning followed by bit-by-bit interlacing of the two

rearranged parity streams, d1 and d2, in order to form a single

output buffer [14]. The resulting bit-stream is then sent to the

modulation block to be mapped to the corresponding

constellation.

The modulated signal is then transmitted over an AWGN

channel. The received noisy symbols are demodulated, sub-

block de-interleaved and de-interlaced.

Figure 2 shows a typical Turbo decoding framework with

an early stopping mechanism. The Turbo decoder is made up

of two decoders concatenated with an interleaver similar to

the one in the encoder. Decoder 1 accepts 𝑟0 and 𝑟1 which

are noisy versions of S0 and P1, obtained after modulation

and transmission over the channel. Decoder 2 accepts

𝑟0̅̅ ̅ which is the interleaved version of 𝑟0 and 𝑟2 which is the

noisy version of P2. 𝛬1𝑒(𝑡)and 𝛬2𝑒(𝑡) are the extrinsic

information generated by the decoders. 𝛬1(𝑡) and 𝛬2(𝑡) are

the Log Likelihood Ratio (LLR) output from Decoders 1 and

2 respectively.

DEC1

π
π

SDR STOPPING
Mechanism

DEC2

T1

π-1

SDR STOPPING
Mechanism

T2

π-1
HD

T1 T2

Figure 2. Generic Turbo decoding structure. Source: [1]

The extrinsic and a-posteriori LLRs from each of Decoders

1 and 2 are fed to the SDR stopping mechanism block. A

signal T1 is generated to stop the decoding at Decoder 1 and

Yogesh BEEHARRY et al. / IU-JEEE Vol. 17(2), (2017), 3399-3415

3401

a signal T2 is generated to stop the decoding at Decoder

2. The scale factor for each decoder 𝑑 at iteration 𝑛 is

computed as follows:

𝑆𝑑𝑛 =
1

N
∑ 𝑓(∧𝑑𝑒

(𝑛), ∧𝑑
(𝑛))𝑁

𝑡=1 (2)

Where,

𝑓(∧𝑑𝑒
(𝑛), ∧𝑑

(𝑛)) = 1 if ∧𝑑𝑒
(𝑛), and ∧𝑑

(𝑛)
have the same sign,

otherwise 𝑓(∧𝑑𝑒
(𝑛), ∧𝑑

(𝑛)) = 0,

𝑁 is the frame size in bits.

The complexity breakdown for the SDR based scale

factor at each half-iteration is shown in Table 2

Table 1. Complexity breakdown for one SDR-based scale

factor

 Comp() Add() Div() Total

SDR Scale

Factor
𝑁 𝑁 − 1 1 2𝑁

Where,

Comp() refers to the Comparison operations,

Add() refers to the Addition operations, and

Div() refers to the Division operations.

Depending on which signal has been generated, the hard

decision is performed on the correponding a-posteriori

LLR to estimate the transmitted information. The

decoding equations for the max Log-MAP algorithm are

presented in the sub-sections 2.1, 2.2 and 2.3.

2.1. Max Log-MAP Turbo Decoding: Method 1

The decoding equations based on the Max-Log MAP

algorithm used for the first decoder are [14], [13], [15]:

 𝛾𝑡
1(𝑖)(𝑙′, 𝑙) =

𝑙𝑜𝑔 [𝑝𝑡
1(𝑖). 𝑒𝑥𝑝 (−

[𝑟0𝑡−𝑆0𝑡]
2+[𝑟1𝑡−𝑃1𝑡]

2

2𝜎2
)] =

 𝑙𝑜𝑔[𝑝𝑡
1(𝑖)] − (

[𝑟0𝑡−𝑆0𝑡]
2+[𝑟1𝑡−𝑃1𝑡]

2

2𝜎2
) (3)

Where,

𝛾𝑡
1(𝑖)(𝑙′, 𝑙) is the branch transition probability for

decoder 1 from state l’ to state l of bit i (i = 0 or 1) at

time instant t.

𝑝𝑡
1(𝑖) is the a-priori probability of bit i resulting from the

channel extrinsic information and input to the first

decoder.

𝑟0𝑡 𝑎𝑛𝑑 𝑟1𝑡 are the soft bits which have been de-

mapped and correspond to the bipolar equivalent of the

transmitted systematic bits, 𝑆0𝑡 and first parity bits, 𝑃1𝑡

respectively.

σ2 is the noise variance.

The complexity breakdown for the branch transition

probability is shown in Table 2. The number of

computations is for one branch transition.

Table 2. Complexity breakdown for one branch transition

metric of Decoder 1 with Method 1

 Log() Add() Sub() Mult() Total

Branch

Transition

Metric

1 1 3 2 6

Where,

Log() refers to the Logarithmic operations,

Sub() refers to the Subtraction operations, and

Mult() refers to the Multiplication operations.

The forward recursive variable, 𝛼𝑡
1(𝑙), for a decoder with

MS states at state l and time t is computed as follows [16]

[17]:

𝛼𝑡
1(𝑙) = max (𝛼𝑡−1

1 (𝑙) + 𝛾𝑡
1(𝑖)(𝑙′, 𝑙)) 𝑓𝑜𝑟 0 ≤ 𝑙′ ≤ MS − 1

 (4)

The max () operator outputs the maximum of the two

forward metrics pertaining to each bit 𝑖 for each of the state 𝑙.
The complexity breakdown for the forward recursive

variable at each state 𝑙 is shown in Table 3.

Table 3. Complexity breakdown for one Forward recursive

variable of Decoder 1 with Method 1

 Max() Add() Total

Forward

Recursive

Variable

1 2 3

The backward recursive variable, 𝛽𝑡
1(𝑙), is computed as

follows [16] [17]:

𝛽𝑡
1(𝑙) = max (𝛽𝑡−1

1 (𝑙′) + 𝛾𝑡
1(𝑖)(𝑙, 𝑙′)) , 𝑓𝑜𝑟 0 ≤ 𝑙′ ≤ MS −

1 (5)

The complexity breakdown for the backward recursive

variable for each state 𝑙′ is shown in Table 4.

Table 4. Complexity breakdown for one Backward recursive

vatiable of Decoder 1 with Method 1

 Max() Add() Total

Backward

Recursive

Variable

1 2 3

The Log-Likelihood Ratio (LLR), 𝛬1
(𝑟)(𝑡) for the first

decoder at time t and iteration r is computed as [16] [17]:

𝛬1
(𝑟)(𝑡) = max (𝛼𝑡−1

1 (𝑙′) + 𝛾𝑡
1(1)(𝑙, 𝑙′) + 𝛽𝑡

1(𝑙)) −

max (𝛼𝑡−1
1 (𝑙′) + 𝛾𝑡

1(0)(𝑙, 𝑙′) + 𝛽𝑡
1(𝑙)) 𝑓𝑜𝑟 0 ≤ 𝑙′ ≤

MS − 1 (6)

The complexity breakdown for the LLR variable is shown

in Table 5.

Table 5. Complexity breakdown for the Log-Likelihood Ratio of

Decoder 1 with Method 1

Yogesh BEEHARRY et al. / IU-JEEE Vol. 17(2), (2017), 3399-3415

3402

 Max() Add() Sub() Total

Log

Likelihood

Ratio

2 32 1 35

The extrinsic information 𝛬1𝑒
(𝑟)(𝑡) for the first decoder

at time t and iteration r is computed as [16] [17]:

𝛬1𝑒
(𝑟)(𝑡) = 𝛬1

(𝑟)(𝑡) −
2

𝜎2
𝑟0𝑡 − 𝛬2̅𝑒

(𝑟−1)(𝑡) (7)

Where,

𝛬2̅𝑒
(𝑟−1)(𝑡) is the de-interleaved version of the extrinsic

information for the second decoder at time t and iteration

(r-1). For the first iteration, 𝛬2̅𝑒
(𝑟−1)(𝑡), is initialized to

zero. The complexity breakdown for an extrinsic LLR

variable is shown in Table 6.

Table 6. Complexity breakdown for an extrinsic LLR of

Decoder 1 with Method 1

 Sub() Total

Extrinsic Log

Likelihood Ratio

2 2

The a-priori probability for the second decoder, 𝑝𝑡
2(𝑖)

is computed as follows:

𝑝𝑡
2(𝑖) =

{

exp (�̅�1𝑒

(𝑟)
(𝑡))

1+ exp (�̅�1𝑒
(𝑟)
(𝑡))

 𝑓𝑜𝑟 𝑖 = 1

1

1+ exp (�̅�1𝑒
(𝑟)
(𝑡))

 𝑓𝑜𝑟 𝑖 = 0
 (8)

Where, 𝛬1̅𝑒
(𝑟)(𝑡) is the interleaved version of 𝛬1𝑒

(𝑟)(𝑡).

The complexity breakdown required for the a-priori

probability is shown in Table 7.

Table 7. Complexity breakdown for the a-priori probability

of Decoder 1 with Method 1

 Exp() Add() Div() Total

Log

Likelihood

Ratio

3 2 2 7

Where,

Exp() refers to the exponential operations, and

Div() refers to the division operations.

The computations for the second decoder can now be

started. The decoding equations based on the Max-Log

MAP algorithm used for the second decoder are as

presented in [16] [17]. The branch metric [15] is given

as:

𝛾𝑡
2(𝑖)(𝑙′, 𝑙) =

𝑙𝑜𝑔 [𝑝𝑡
1(𝑖). 𝑒𝑥𝑝 (−

[𝑟0̅̅̅̅ 𝑡−S0𝑡
̅̅ ̅̅ ̅]2+[𝑟2𝑡−P2𝑡]

2

2𝜎2
)] =

 𝑙𝑜𝑔[𝑝𝑡
2(𝑖)] − (

[𝑟0̅̅̅̅ 𝑡−S0𝑡
̅̅ ̅̅ ̅]2+[𝑟2𝑡−P2𝑡]

2

2𝜎2
) (9)

Where,

𝛾𝑡
2(𝑖)(𝑙′, 𝑙) is the branch transition probability for decoder 2

from state l’ to state l of bit i (i = 0 or 1) at time instant t.

𝑝𝑡
2(𝑖) is the a-priori probability of bit i derived from the

channel extrinsic information and input to the second

decoder.

𝑟0̅̅ ̅𝑡 𝑎𝑛𝑑 𝑟2𝑡 are the de-mapped soft bits corresponding to the

bipolar equivalent of the interleaved systematic bits, 𝑆0𝑡
̅̅ ̅̅ and

second parity bits, 𝑃2𝑡 respectively.

σ2 is the noise variance.

The complexity breakdown for the branch transition

probability is similar to that for the first decoder as shown in

Table 2. The forward recursive variable, 𝛼𝑡
2(𝑙), for a decoder

with 𝑀𝑆 states at state l and time t is computed as the

following [16] [17]:

𝛼𝑡
2(𝑙) = max (𝛼𝑡−1

2 (𝑙) + 𝛾𝑡
2(𝑖)(𝑙′, 𝑙)) , 𝑓𝑜𝑟 0 ≤ 𝑙′ ≤ 𝑀𝑆 −

1 (10)

The complexity breakdown for the forward recursive

variable is similar to that for the first decoder as shown in

Table 3. The backward recursive variable, 𝛽𝑡
2(𝑙), is

computed as follows [16] [17]:

𝛽𝑡
2(𝑙) = max (𝛽𝑡−1

2 (𝑙′) + 𝛾𝑡
2(𝑖)(𝑙, 𝑙′)) 𝑓𝑜𝑟 0 ≤ 𝑙′ ≤ 𝑀𝑆 −

1 (11)

The complexity breakdown for the backward recursive

variable is similar to that for the first decoder as shown in

Table 4. The Log-Likelihood Ratio (LLR), 𝛬2
(𝑟)(𝑡) for the

second decoder at time t and iteration r is computed as [16]

[17]:

𝛬2
(𝑟)(𝑡) = max (𝛼𝑡−1

2 (𝑙′) + 𝛾𝑡
2(1)(𝑙, 𝑙′) + 𝛽𝑡

2(𝑙)) −

max (𝛼𝑡−1
2 (𝑙′) + 𝛾𝑡

2(0)(𝑙, 𝑙′) + 𝛽𝑡
2(𝑙)) 𝑓𝑜𝑟 0 ≤ 𝑙′ ≤

𝑀𝑆 − 1 (12)

The complexity breakdown for a LLR variable is similar

to that for the first decoder as shown in Table 4. The extrinsic

information, 𝛬2𝑒
(𝑟)(𝑡), for the second decoder at time t and

iteration r is computed as [16] [17]:

𝛬2𝑒
(𝑟)(𝑡) = 𝛬2

(𝑟)(𝑡) −
2

𝜎2
𝑟0̅̅ ̅𝑡 − 𝛬1̅𝑒

(𝑟−1)(𝑡) (13)

Where, 𝛬1̅𝑒
(𝑟−1)(𝑡) is the interleaved extrinsic information for

the first decoder at time t and iteration r.

The complexity breakdown for an extrinsic LLR variable

is similar to that for the first decoder as shown in Table 6.

The a-priori probability for the first decoder, 𝑝𝑡
1(𝑖) is

computed as follows:

𝑝𝑡
1(𝑖) =

{

exp (�̅�2𝑒

(𝑟)
(𝑡))

1+ exp (�̅�2𝑒
(𝑟)
(𝑡))

 𝑓𝑜𝑟 𝑖 = 1

1

1+ exp (�̅�2𝑒
(𝑟)
(𝑡))

 𝑓𝑜𝑟 𝑖 = 0
 (14)

Where,

𝛬2̅𝑒
(𝑟)(𝑡) is the de-interleaved version of 𝛬2𝑒

(𝑟)(𝑡).

Yogesh BEEHARRY et al. / IU-JEEE Vol. 17(2), (2017), 3399-3415

3403

The number of computations required for the a-priori

probability is similar to that for the first decoder as

shown in Table 7. For the second iteration, the same

computations are repeated by the first and second

decoders with the updated values of the a-priori

probabilities.

2.2. Max Log-MAP Turbo Decoding: Method 2

In [18], an approximate Log BCJR algorithm has

been presented. The decoding equations are presented

next.

𝑦𝑡
𝑟 = 𝑙𝑜𝑔 (

𝑃(𝑟0𝑡=1)

𝑃(𝑟0𝑡=0)
) = 𝑟0𝑡 + 𝛬2̅𝑒

(𝑟−1)(𝑡) (15)

Where,

𝑦𝑡
𝑟 is the soft decisions of the received bit 𝑟0𝑡.

𝛬2̅𝑒
(𝑟−1)(𝑡) is the de-interleaved extrinsic LLR from

decoder 2 in the previous iteration.

The transition state branch metrics are computed as

below:

𝛾𝑠,𝑡
1(𝑖)(𝑙′, 𝑙) = 𝑦𝑡

𝑟 (16)

𝛾𝑝,𝑡
1(𝑖)(𝑙′, 𝑙) = 𝑟1𝑡 (17)

Where,

𝛾𝑠,𝑡
1(𝑖)(𝑙′, 𝑙) is the branch transition metric for the

systematic information,

𝛾𝑝,𝑡
1(𝑖)(𝑙′, 𝑙) is the branch transition metric for the parity

information, and

𝑟1𝑡 is the received noisy parity information from the

first encoder.

The complexity breakdown for one branch transition

metric is shown in Table 8.

Table 8. Complexity breakdown for a branch transition

metric of Decoder 1 with Method 2

 Add() Total

Branch

Transition

Metric

1 1

The forward recursive variable, 𝛼𝑡
1(𝑙), for a decoder

with 𝑀𝑆 states at state l and time t is computed as follows

[18]:

𝛼𝑡
1(𝑙) = max (𝛼𝑡−1

1 (𝑙′) + 𝛾𝑠,𝑡
1(𝑖)(𝑙′, 𝑙) +

 𝛾𝑝,𝑡
1(𝑖)(𝑙′, 𝑙)) 𝑓𝑜𝑟 0 ≤ 𝑙′ ≤ 𝑀𝑆 − 1 (18)

The number of computations required for one

forward recursive variable is shown in Table 9.

Table 9. Complexity breakdown for a forward recursive

variable of Decoder 1 with Method 2

 Max() Add() Total

Forward

Recursive

Variable

1 4 5

The backward recursive variable, 𝛽𝑡
1(𝑙), is computed as

follows [18]:

𝛽𝑡
1(𝑙) = max (𝛽𝑡−1

1 (𝑙′) + 𝛾𝑠,𝑡
1(𝑖)(𝑙, 𝑙′) +

 𝛾𝑝,𝑡
1(𝑖)(𝑙′, 𝑙)) 𝑓𝑜𝑟 0 ≤ 𝑙′ ≤ 𝑀𝑆 − 1 (19)

The complexity breakdown required for one backward

recursive variable is shown in Table 10.

Table 10. Complexity breakdown for a backward recursive

variable of Decoder 1 with Method 2

 Max() Add() Total

Backward

Recursive

Variable

1 4 5

The un-coded extrinsic log confidences are computed as

the following:

𝛿𝑡
1(𝑖)(𝑙, 𝑙′) = 𝛼𝑡

1(𝑙) + 𝛾𝑝,𝑡
1(𝑖)(𝑙′, 𝑙) + 𝛽𝑡

1(𝑙) (20)

The complexity breakdown for the un-coded extrinsic log

confidences is shown in Table 11.

Table 11. Complexity breakdown for the un-coded extrinsic log

confidences of Decoder 1 with Method 2

 Add() Total

Un-coded extrinsic

Log confidences

2 2

The un-coded Extrinsic Log-Likelihood Ratio (LLR),

𝛬1𝑒
(𝑟)(𝑡) for the first decoder at time t and iteration r is

computed as [18]:

𝛬1𝑒
(𝑟)(𝑡) = max (𝛿𝑡

1(1)(𝑙, 𝑙′)) − max (𝛿𝑡
1(0)(𝑙, 𝑙′)) 𝑓𝑜𝑟 0 ≤

𝑙′ ≤ 𝑀𝑆 − 1 (21)

The complexity breakdown for the un-coded extrinsic

LLRs is shown in Table 12.

Table 12. Complexity breakdown for the un-coded extrinsic LLRs

of Decoder 1 with Method 2

 Max() Sub() Total

Un-coded

extrinsic

LLRs

2 1 3

The systematic and extrinsic information are interleaved

to be fed to the second decoder:

𝛬1𝑒
(𝑟)̅̅ ̅̅ ̅
(𝑡) = 𝜋 (𝛬1𝑒

(𝑟)(𝑡)) (22)

Yogesh BEEHARRY et al. / IU-JEEE Vol. 17(2), (2017), 3399-3415

3404

𝑟0𝑡̅̅ ̅̅ = 𝜋(𝑟0𝑡)
(23)

The un-coded a-priori input information for the

second decoder is computed as the following:

𝑧𝑡
𝑟 = 𝑟0𝑡̅̅ ̅̅ + 𝛬1𝑒

(𝑟)̅̅ ̅̅ ̅
(𝑡) (24)

The second decoder can now be started. The

transition state branch metric is computed as below:

𝛾𝑠,𝑡
2(𝑖)(𝑙′, 𝑙) = 𝑧𝑡

𝑟 (25)

𝛾𝑝,𝑡
2(𝑖)(𝑙′, 𝑙) = 𝑟2𝑡 (26)

𝛾𝑠,𝑡
2(𝑖)(𝑙′, 𝑙) is the branch transition metric for the

systematic information and second decoder

𝛾𝑝,𝑡
2(𝑖)(𝑙′, 𝑙) is the branch transition metric for the parity

information and second decoder

The complexity breakdown for the branch transition

probability is similar to that for the first decoder as

shown in Table 7. The forward recursive

variable, 𝛼𝑡
2(𝑙), for a decoder with MS states at state l

and time t is computed as follows [18]:

𝛼𝑡
2(𝑙) = max (𝛼𝑡−1

2 (𝑙′) + 𝛾𝑠,𝑡
2(𝑖)(𝑙′, 𝑙) +

 𝛾𝑝,𝑡
2(𝑖)(𝑙′, 𝑙)) 𝑓𝑜𝑟 0 ≤ 𝑙′ ≤ 𝑀𝑆 − 1 (27)

The complexity breakdown for the forward recursive

variable is similar to that for the first decoder as shown

in Table 8. The backward recursive variable, 𝛽𝑡
1(𝑙), is

computed as follows [18]:

𝛽𝑡
2(𝑙) = max (𝛽𝑡−1

2 (𝑙′) + 𝛾𝑠,𝑡
2(𝑖)(𝑙, 𝑙′) +

 𝛾𝑝,𝑡
2(𝑖)(𝑙′, 𝑙)) 𝑓𝑜𝑟 0 ≤ 𝑙′ ≤ 𝑀𝑆 − 1 (28)

The complexity breakdown for the backward

recursive variable is similar to that for the first decoder

as shown in Table 10 The un-coded extrinsic log

confidences are computed as the following:

𝛿𝑡
2(𝑖)(𝑙, 𝑙′) = 𝛼𝑡

2(𝑙) + 𝛾𝑝,𝑡
2(𝑖)(𝑙′, 𝑙) + 𝛽𝑡

2(𝑙) (29)

The complexity breakdown for the un-coded extrinsic

log confidences is similar to that for the first decoder as

shown in Table 11. The un-coded Extrinsic Log-

Likelihood Ratio (LLR), 𝛬2𝑒
(𝑟)(𝑡) for the second decoder

at time t and iteration r is computed as [18]:

 𝛬2𝑒
(𝑟)(𝑡) = max (𝛿𝑡

2(1)(𝑙, 𝑙′)) −

max (𝛿𝑡
2(0)(𝑙, 𝑙′)) 𝑓𝑜𝑟 0 ≤ 𝑙′ ≤ 𝑀𝑆 − 1 (30)

The complexity breakdown for the un-coded extrinsic

LLRs is similar to that for the first decoder as shown in

Table 12. The extrinsic information is de-interleaved to

be fed to the first decoder:

𝛬2𝑒
(𝑟)̅̅ ̅̅ ̅
(𝑡) = 𝜋−1 (𝛬2𝑒

(𝑟)(𝑡)) (31)

The a-priori LLR to be fed to the first decoder is computed

as:

 𝑦𝑡
𝑟+1 = 𝑟0𝑡 + 𝛬2̅𝑒

(𝑟)(𝑡) (32)

The a-posteriori LLR computation to be used in the hard-

decision process is as the following:

𝛬2
(𝑟)(𝑡) = 𝛬2𝑒

(𝑟)̅̅ ̅̅ ̅
(𝑡) + 𝑟0𝑡 + 𝛬1𝑒

(𝑟−1)(𝑡) (33)

For the second iteration, the same computations are

repeated by both decoders with the updated values of the a-

priori LLRs.

2.3. Max Log-MAP Turbo Decoding: Method 3

This decoding method is depicted in [19] and [20].

 𝛾𝑡
1(𝑖)(𝑙′, 𝑙) = (

𝑆0𝑡

2
) . (𝛬2𝑒

(𝑟−1)̅̅ ̅̅ ̅̅ ̅̅
(𝑡)) +

𝐿𝑐

2
[(𝑟0𝑡). (𝑆0𝑡) +

 (𝑟1𝑡). (𝑃1𝑡)] (34)

Where,

𝛾𝑡
1(𝑖)(𝑙′, 𝑙) is the branch transition probability for decoder 1

from state l’ to state l of bit t (t = 0 or 1) at time instant t.

S0𝑡 is the systematic information bit at time instant t.

𝑟0𝑡 𝑎𝑛𝑑 𝑟1𝑡 are the soft bits which have been de-mapped

and correspond to the bipolar equivalent of the transmitted

systematic bits, 𝑆0𝑡 and first parity bits, 𝑃1𝑡 respectively.

𝐿𝑐 =
2

𝜎2
 is the channel reliability estimate and σ2 is the noise

variance.

The complexity breakdown for one branch transition

probability is shown in Table 13.

Table 13. Complexity breakdown for a branch transition metric of

Decoder 1 with Method 3

 Add() Mult() Div() Total

Branch

Transition

Metric

2 3 1 6

The forward recursive variable, 𝛼𝑡
1(𝑙), for a decoder with

𝑀𝑆 states at state l and time t is computed as follows [16]

[17]:

𝛼𝑡
1(𝑙) = max (𝛼𝑡−1

1 (𝑙) + 𝛾𝑡
1(𝑖)(𝑙′, 𝑙)) , 𝑓𝑜𝑟 0 ≤ 𝑙′ ≤ 𝑀𝑆 −

1 (35)

The complexity breakdown for the forward recursive

variable is similar to that for the first decoder with Method 1

as shown in Table 3. The backward recursive variable, 𝛽𝑡
1(𝑙),

is computed as follows [16] [17]:

𝛽𝑡
1(𝑙) = max (𝛽𝑡−1

1 (𝑙′) + 𝛾𝑡
1(𝑖)(𝑙, 𝑙′)) 𝑓𝑜𝑟 0 ≤ 𝑙′ ≤ 𝑀𝑆 −

1 (36)

Yogesh BEEHARRY et al. / IU-JEEE Vol. 17(2), (2017), 3399-3415

3405

The complexity breakdown for one backward

recursive variable is similar to that for the first decoder

of Method 1 as shown in Table 4. The Log-Likelihood

Ratio (LLR), 𝛬1
(𝑟)(𝑡) for the first decoder at time t and

iteration r is computed as [16] [17]:

𝛬1
(𝑟)(𝑡) = max (𝛼𝑡−1

1 (𝑙′) + 𝛾𝑡
1(1)(𝑙, 𝑙′) + 𝛽𝑡

1(𝑙)) −

max (𝛼𝑡−1
1 (𝑙′) + 𝛾𝑡

1(0)(𝑙, 𝑙′) + 𝛽𝑡
1(𝑙)) 𝑓𝑜𝑟 0 ≤ 𝑙′ ≤

𝑀𝑆 − 1
(37)

The complexity breakdown for the LLRs is similar to

that for the first decoder of Method 1 as shown in Table

5. The extrinsic information 𝛬1𝑒
(𝑟)(𝑡) for the first decoder

at time t and iteration r is computed as [16] [17]:

 𝛬1𝑒
(𝑟)(𝑡) = 𝛬1

(𝑟)(𝑡) −
2

𝜎2
𝑟0𝑡 − 𝛬2̅𝑒

(𝑟−1)(𝑡) (38)

Where,

𝛬2̅𝑒
(𝑟−1)(𝑡) is the de-interleaved version of the extrinsic

information for the second decoder at time t and iteration

(r-1).

The complexity breakdown for the extrinsic LLRs is

similar to that for the first decoder of Method 1 as shown

in Table 6. The a-priori probability for the second

decoder, 𝑝𝑡
2(𝑖) is computed as follows:

 𝑝𝑡
2(𝑖) =

{

exp (�̅�1𝑒

(𝑟)
(𝑡))

1+ exp (�̅�1𝑒
(𝑟)
(𝑡))

 𝑓𝑜𝑟 𝑖 = 1

1

1+ exp (�̅�1𝑒
(𝑟)
(𝑡))

 𝑓𝑜𝑟 𝑖 = 0
 (39)

Where,

𝛬1̅𝑒
(𝑟)(𝑡) is the interleaved version of 𝛬1𝑒

(𝑟)(𝑡).
The complexity breakdown for the a-priori

probability is similar to that for the first decoder of

Method 1 as shown in Table 7. The decoding operation

for the second decoder can now be started. The decoding

equations based on the Max-Log MAP algorithm used

for the second decoder are [19], [20]:

𝛾𝑡
2(𝑖)(𝑙′, 𝑙) = (

𝑆0𝑡
̅̅ ̅̅ ̅

2
) . (𝛬1𝑒

(𝑟−1)̅̅ ̅̅ ̅̅ ̅̅
(𝑡)) +

𝐿𝑐

2
[(𝑟0̅̅ ̅𝑡). (𝑆0𝑡

̅̅ ̅̅) +

 (𝑟2𝑡). (𝑃2𝑡)] (40)

Where,

𝛾𝑡
2(𝑖)(𝑙′, 𝑙) is the branch transition probability for

decoder 2 from state l’ to state l of bit t (t = 0 or 1) at

time instant t.

𝑆0𝑡
̅̅ ̅̅ is the interleaved systematic information bit at time

instant t.

𝑟0̅̅ ̅𝑡 𝑎𝑛𝑑 𝑟2𝑡 are the de-mapped soft bits corresponding

to the bipolar equivalent of the interleaved systematic

bits, 𝑆0𝑡
̅̅ ̅̅ and second parity bits, 𝑃2𝑡 respectively.

𝐿𝑐 =
2

𝜎2
 is the channel reliability estimate and σ2 is the

noise variance.

The complexity breakdown for the branch transition

probability is similar to that for the first decoder as shown in

Table 13. The forward recursive variable, 𝛼𝑡
2(𝑙), for a

decoder with MS states at state l and time t is computed as the

following [16] [17]:

𝛼𝑡
2(𝑙) = max (𝛼𝑡−1

2 (𝑙) + 𝛾𝑡
2(𝑖)(𝑙′, 𝑙)) 𝑓𝑜𝑟 0 ≤ 𝑙′ ≤ 𝑀𝑆 − 1

(41)

The complexity breakdown for the forward recursive

variable is shown in Table 3. The backward recursive

variable, 𝛽𝑡
2(𝑙), is computed as follows [16] [17]:

𝛽𝑡
2(𝑙) = max (𝛽𝑡−1

2 (𝑙′) + 𝛾𝑡
2(𝑖)(𝑙, 𝑙′)) 𝑓𝑜𝑟 0 ≤ 𝑙′ ≤ 𝑀𝑆 −

1 (42)

The complexity breakdown for the backward recursive

variable is shown in Table 4. The Log-Likelihood Ratio

(LLR), 𝛬2
(𝑟)(𝑡) for the second decoder at time t and iteration

r is computed as [16] [17]:

𝛬2
(𝑟)(𝑡) = max (𝛼𝑡−1

2 (𝑙′) + 𝛾𝑡
2(1)(𝑙, 𝑙′) + 𝛽𝑡

2(𝑙)) −

max (𝛼𝑡−1
2 (𝑙′) + 𝛾𝑡

2(0)(𝑙, 𝑙′) + 𝛽𝑡
2(𝑙)) 𝑓𝑜𝑟 0 ≤ 𝑙′ ≤

𝑀𝑆 − 1 (43)

The complexity breakdown for the LLRs is shown in

Table 5. The extrinsic information, 𝛬2𝑒
(𝑟)(𝑡), for the second

decoder at time t and iteration r is computed as [19], [20]:

𝛬2𝑒
(𝑟)(𝑡) = 𝛬2

(𝑟)(𝑡) −
2

𝜎2
𝑟0̅̅ ̅𝑡 − 𝛬1̅𝑒

(𝑟−1)(𝑡) (44)

Where,

𝛬1̅𝑒
(𝑟−1)(𝑡) is the interleaved extrinsic information for the first

decoder at time t and iteration r-1.

The complexity breakdown for the extrinsic LLRs is

shown in Table 6. The a-priori probability for the first

decoder, 𝑝𝑡
1(𝑖) is computed as follows:

 𝑝𝑡
1(𝑖) =

{

exp (�̅�2𝑒

(𝑟)
(𝑡))

1+ exp (�̅�2𝑒
(𝑟)
(𝑡))

 𝑓𝑜𝑟 𝑖 = 1

1

1+ exp (�̅�2𝑒
(𝑟)
(𝑡))

 𝑓𝑜𝑟 𝑖 = 0
 (45)

The complexity breakdown for the a-priori probability is

shown in Table 7. For the second iteration, the same

computations are repeated by the first and second decoders

with the updated values of the a-priori probabilities.

2.4. Analysis of Computational Complexity

In this section, a comparison of the computational

complexities for the three decoding methods of binary LTE

Turbo codes has been performed. The complexity break-

downs at each half-iteration for Methods 1, 2 and 3 with

respect to the number of computations are shown in Table

14,

Table 15 and

Yogesh BEEHARRY et al. / IU-JEEE Vol. 17(2), (2017), 3399-3415

3406

Table 16 respectively. An explanation on the values

obtained for the metrics of Method 1 computed over one

half-iteration is given next. Table 2 shows the number

of computations for a single branch transition metric of

equation (3). There are 𝑁 transitions in all in the trellis

and each transition in the trellis consists of 16 branch

transition metrics. Hence, the branch transition metrics

are scaled by a factor of 16 and 𝑁. The number of

computations for the forward recursive variable of

equation (4) and backward recursive variable of

equation (5) as shown in Table 3 and Table 4

respectively are multiplied by 8 and 𝑁 since there are 8 states

for each transition over a total packet length of 𝑁. Table 5
shows the computations for the a-posteriori LLRs of

equation (6) which have to be multiplied by 𝑁 for the whole

packet length. The computations of the extrinsic LLRs of

equation (7) as shown in Table 6 are also multiplied by 𝑁.

Similarly, the computations of the a-posteriori probabilities

of equations (8) as shown in Table 7 are multiplied by the

packet length, 𝑁.

Table 14. Computational complexity breakdown for Method 1 at one half-iteration

 Comp() Log() Exp() Max() Add() Sub() Mult() Div() Total

Branch

Transition

Metric

0 1 x 16 x 𝑁 0 0 1 x 16 x 𝑁 3 x 16 x 𝑁 2 x 16 x 𝑁 0 112 𝑁

Forward

Metric
0 0 0 1 x 8 x 𝑁 2 x 8 x 𝑁 0 0 0 24 𝑁

Backward

Metric
0 0 0 1 x 8 x 𝑁 2 x 8 x 𝑁 0 0 0 24 𝑁

A-Posteriori

LLR
0 0 0 2 x 𝑁 32 x 𝑁 1 x 𝑁 0 0 35 𝑁

Extrinsic LLR 0 0 0 0 0 2 x 𝑁 0 0 2 𝑁

A-Posteriori

Probabilities
0 0 3 x 𝑁 0 2 x 𝑁 0 0 2 x 𝑁 7 𝑁

SDR Scale

Factor
𝑁 0 0 0 𝑁 − 1 0 0 1 2𝑁

TOTAL 𝑁 16 𝑁 3 𝑁 18𝑁 83 𝑁 -1 51𝑁 32𝑁 2 𝑁 +1 206𝑁

The values obtained for the metrics computed over

one half-iteration for Method 2 are explained next. The

number of computations for the branch transition metric

of equations (16–17) shown in Table 8 are multiplied by

8 and 𝑁 to compute the transitions pertaining to the

systematic information bits equal to 1. The number of

mathematical computations for the forward recursive

variable, backward recursive variable and un-coded extrinsic

log confidences are multiplied by the number of states, 8, and

the packet length, 𝑁. The computations of the extrinsic LLRs

of equation (21) as shown in Table 11 are multiplied by the

packet length, 𝑁.

Table 15. Computational complexity breakdown for Method 2 at one half-iteration

 Comp() Max() Add() Sub() Div() Total

Branch Transition

Metric
0 0 1 x 8 x 𝑁 0 0 8𝑁

Forward Metric 0 1 x 8 x 𝑁 4 x 8 x 𝑁 0 0 40 𝑁

Backward Metric 0 1 x 8 x 𝑁 4 x 8 x 𝑁 0 0 40 𝑁

Un-coded Extrinsic

Log Confidences
0 0 2 x 8 x 𝑁 0 0 16 𝑁

Extrinsic LLR 0 2 x 𝑁 0 1 x 𝑁 0 3 𝑁

SDR Scale Factor 𝑁 0 𝑁 − 1 0 1 2𝑁

TOTAL 𝑁 18𝑁 89 𝑁 -1 1𝑁 1 109 𝑁

Yogesh BEEHARRY et al. / IU-JEEE Vol. 17(2), (2017), 3399-3415

3407

The values obtained for the metrics computed for

Method 3 over one half-iteration are explained next. The

number of mathematical computations for the branch

transition metric of equation (34) shown in Table 13 are

multiplied by 16 and 𝑁 as explained for Method 1. The

computations for the forward recursive variable, backward

recursive variable, a-posteriori LLRs, extrinsic LLRs and a-

posteriori probabilities are exactly as explained for Method

1.

Table 16. Computational complexity breakdown for Method 3 at one half-iteration

 Comp() Exp() Max() Add() Sub() Mult() Total

Branch Transition

Metric
0 0 0 2 x 16 x 𝑁 0 3 x 16 x 𝑁 80 𝑁

Forward Metric 0 0 1 x 8 x 𝑁 2 x 8 x 𝑁 0 0 24𝑁

Backward Metric 0 0 1 x 8 x 𝑁 2 x 8 x 𝑁 0 0 24𝑁

A-Posteriori LLR 0 0 2 x 𝑁 32 x 𝑁 1 x 𝑁 0 35𝑁

Extrinsic LLR 0 0 0 0 2 x 𝑁 0 2𝑁

A-Posteriori

Probabilities
0 3 x 𝑁 0 7 x 𝑁 0 0 10𝑁

SDR Scale Factor 𝑁 0 0 𝑁 − 1 0 1 2𝑁

TOTAL 𝑁 3 𝑁 18𝑁 104𝑁-1 3𝑁 48𝑁+1 177𝑁

The total number of different computations required

for each of the decoding method can be compared to

analyse the number of computations as shown in Table 17.

Table 17. Total of the number of computations for the different operation at one half-iteration for the 3 Methods

 Comp() Log() Exp() Max() Add() Sub() Mult() Div() TOTAL

Method 1 𝑁 16𝑁 3 𝑁 18𝑁 83𝑁-1 51𝑁 32𝑁 2 𝑁 +1 206 𝑁

Method 2 𝑁 0 0 18𝑁 89𝑁-1 1𝑁 0 1 109 𝑁

Method 3 𝑁 0 3 𝑁 18𝑁 104𝑁-1 3𝑁 48𝑁 1 177 𝑁

Table 16 shows that the number of mathematical

operations required by Methods 1, 2 and 3 are 7, 3, and

5 respectively. Clearly, Method 2 requires fewer

mathematical operations compared to Methods 1 and 3.

Method 1 requires 16𝑁 Logarithm operations while

Methods 2 and 3 require none. 3𝑁 exponential

operations are required by bot h Methods 1 and 3 while

Method 2 requires none. All the 3 methods require the

same number of Max operations, i.e 18 𝑁. Method 3

requires the maximum number of addition operations

which is 103 𝑁 followed by Method 2 which requires

88N and finally Method 1 which needs 82𝑁. The

number of subtraction operations is highest for Method

1, i.e 51 𝑁 followed by Methods 3 and 2 which require

3 𝑁 and 1 𝑁 subtraction operations respectively. Only

Methods 1 and 3 require multiplication operations of

32 𝑁 and 48 𝑁 respectively. 2 𝑁 division operations are

required by Method 1 only.

3. Simulation Results

In this section, the performances of the different decoding

methods are compared. Three modulation schemes have

been used, namely: Binary Phase Shift Keying (BPSK),

Quadrature Phase Shift Keying (QPSK), and 16-Quadrature

Amplitude Modulation (QAM). An interleaver size of 6144

bits has been used in all the simulations. The parameters for

the LTE Turbo code used are as follows [14]:

Generator: G = [1, g1/g2], where g1 = 15 and g2 = 13 in

Octal.

Code-rate = 1/3 and channel model: Complex AWGN.

QPP Interleaver parameters: 𝑓1= 283 and 𝑓2 = 480

Interleaver size, N = 6144 bits.

Maximum number of iterations, T = 12.

The BER performance of binary LTE Turbo codes with

BPSK modulation with early stopping is shown in Figure 3.

The overall number of computations at each 𝐸𝑏 𝑁0⁄ for each

decoding method is shown in Figure 5. A more detailed

breakdown of the total number of computations per

mathematical operation is shown in Figure 6.

Yogesh BEEHARRY et al. / IU-JEEE Vol. 17(2), (2017), 3399-3415

3408

Figure 3. BER performance for Binary LTE Turbo codes with BPSK modulation and SDR stopping

It can be observed from Figure 3 that all 3 decoding

methods have similar error performances for almost the

whole 𝐸𝑏 𝑁0⁄ range despite the differences in total

number of different mathematical operations required.

The performance of binary LTE Turbo codes with SDR

based early stopping in terms of the average number of

iterations required is shown in Figure 4.

Figure 4. Iterations performance for Binary LTE Turbo codes with BPSK modulation and SDR stopping

It can be observed from Figure 4 that all 3 decoding

methods require almost the same number of average

decoding iterations for the range 𝐸𝑏 𝑁0⁄ ≤ 0.7 dB

despite the differences in total number of different

mathematical operations required. For the range

𝐸𝑏 𝑁0⁄ > 0.7 dB Methods 1 and 3 require fewer average

decoding iterations as compared to Method 2. The overall

number of computations for binary LTE Turbo codes with

B-PSK modulation and SDR stopping is shown in Figure 5.

Yogesh BEEHARRY et al. / IU-JEEE Vol. 17(2), (2017), 3399-3415

3409

Figure 5. Overall computations for Binary LTE Turbo codes with BPSK modulation and SDR stopping

It can be observed from Figure 5 that all 3 decoding

methods have different overall number of computations.

Method 2 has the least number of overall computations

throughout the whole 𝐸𝑏 𝑁0⁄ range. Method 3 gives an

average gain of 3.3812x106 computations over Method

1. Method 2 gives an average gain of 1.1189x107

computations over Method 1. Method 2 gives an average

gain of 7.8075x106 computations over Method 3. The

breakdown of the overall number of computations per

mathematical operation is shown in Figure 6.

Figure 6. Breakdown of overall number of computation per mathematical operation for Binary LTE Turbo codes with BPSK

modulation and SDR stopping

It can be observed from Figure 6 that all 3 decoding

methods use approximately the same number of

maximum operations throughout the whole 𝐸𝑏 𝑁0⁄

range. Another observation is that eventhough Method

1 uses fewer addition operations than Methods 2 and 3

over the whole 𝐸𝑏 𝑁0⁄ range, there are the large numbers of

logarithm and division operations which are also used.

The BER performance of binary LTE Turbo codes with

Q-PSK modulation with SDR stopping is shown in Figure 7.

Yogesh BEEHARRY et al. / IU-JEEE Vol. 17(2), (2017), 3399-3415

3410

Figure 7. BER performance for Binary LTE Turbo codes with QPSK modulation with SDR stopping

It can be observed from Figure 7 that all 3 decoding

methods with SDR stopping have almost similar error

performances for the whole 𝐸𝑏 𝑁0⁄ range despite the

differences in total number of different mathematical

operations required. The average number of iterations for

binary LTE Turbo codes with QPSK modulation and SDR

stopping is shown in Figure 8.

Figure 8. Average iterations for Binary LTE Turbo codes with QPSK modulation and with SDR stopping

It can be observed from Figure 8 that all 3 decoding

methods have almost similar average number of

decoding iterations throught the whole 𝐸𝑏 𝑁0⁄ range.

The overall number of computations for binary LTE

Turbo codes with QPSK modulation and SDR stopping is

shown in Figure 9.

Yogesh BEEHARRY et al. / IU-JEEE Vol. 17(2), (2017), 3399-3415

3411

Figure 9. Breakdown of overall number of computation per mathematical operation for Binary LTE Turbo codes with QPSK

modulation and SDR stopping

It can be observed from Figure 9 that all 3 decoding

methods have different overall number of computations.

Method 2 has the least number of overall computations

throughout the whole Eb/N0 range. Method 3 gives an

average gain of 3.3510x106 computations over Method

1. Method 2 gives an average gain of 1.1417x107

computations over Method 1. Method 2 gives an average

gain of 8.0665x106 computations over Method 3.The

breakdown of the overall number of computations per

mathematical operation is shown in Figure 10.

Figure 10. BER performance for Binary LTE Turbo codes with QPSK modulation and SDR stopping

It can be observed from Figure 10 that all 3 decoding

methods use approximately the same number of

maximum operations throughout the whole 𝐸𝑏 𝑁0⁄

range. Another observation is that eventhough Method

1 uses fewer addition operations than Methods 2 and 3

over the whole 𝐸𝑏 𝑁0⁄ range, there are the large numbers of

logarithm and division operations which are also used.

The BER performance of binary LTE Turbo codes with

16-QAM and SDR stopping is shown in Figure 11.

Yogesh BEEHARRY et al. / IU-JEEE Vol. 17(2), (2017), 3399-3415

3412

Figure 11. BER performance for Binary LTE Turbo codes with 16-QAM and SDR stopping

It can be observed from Figure 11 that all 3 decoding

methods with SDR stopping have almost similar error

performances for the range 𝐸𝑏 𝑁0⁄ ≤ 2.4 dB despite the

differences in total number of different mathematical

operations required. For the range 𝐸𝑏 𝑁0⁄ > 2.4 dB,

Methods 2 and 3 outperform Method 1 with a gain of 0.1dB

on average. The average number of iterations for binary LTE

Turbo codes with 16-QAM and SDR stopping is shown in

Figure 12.

Figure 12. Average iterations for Binary LTE Turbo codes with 16-QAM and SDR stopping

It can be observed from Figure 12 that all 3 decoding

methods have almost similar average number of

decoding iterations throught the whole 𝐸𝑏 𝑁0⁄ range.

The overall number of computations for binary LTE Turbo

codes with 16-QAM and SDR stopping is shown in Figure

13.

Yogesh BEEHARRY et al. / IU-JEEE Vol. 17(2), (2017), 3399-3415

3413

Figure 13. Overall computations for Binary LTE Turbo codes with 16-QAM and SDR stopping

It can be observed from Figure 13 that all 3 decoding

methods have different overall number of computations.

Method 2 has the least number of overall computations

throughout the whole Eb/N0 range. Method 3 gives an

average gain of 2.8108x106 computations over Method

1. Method 2 gives an average gain of 9.9390x106

computations over Method 1. Method 2 gives an average

gain of 7.1282x106 computations over Method 3. The

breakdown of the overall number of computations per

mathematical operation is shown in Figure 14.

Figure 14. Breakdown of overall number of computation per mathematical operation for Binary LTE Turbo codes with 16-QAM and

SDR stopping

Yogesh BEEHARRY et al. / IU-JEEE Vol. 17(2), (2017), 3399-3415

3414

It can be observed from Figure 14 that all 3 decoding

methods use approximately the same number of

maximum operations throughout the whole 𝐸𝑏 𝑁0⁄

range. Another observation is that eventhough Method

1 uses fewer addition operations than Methods 2 and 3

over the whole 𝐸𝑏 𝑁0⁄ range, there are the large numbers

of logarithm and division operations which are also

used.

4. Conclusion

In this paper, a performance analysis of three

different iterative decoding techniques for the Max-Log

MAP algorithm with SDR-based early stopping has

been presented for binary LTE Turbo codes. Three

different decoding methods have been shown for Binary

LTE Turbo codes with BPSK, Q-PSK and 16-QAM. It

can be observed in Figure 3, that with BPSK

modulation, the three decoding methods have almost

similar performance over the whole 𝐸𝑏 𝑁0⁄ range. From

Figure 7, it can be observed that with QPSK modulation,

the three decoding methods have almost similar

performance over the whole 𝐸𝑏 𝑁0⁄ range. Finally, in

Figure 11, it can be observed that with 16-QAM,

Methods 2 and 3 outperform Method 1 with a gain of

0.1dB on average for the range 𝐸𝑏 𝑁0⁄ > 2.4 dB. The

different schemes perform differently in the waterfall

and error floor regions for different modulation

schemes. From the breackdown of the overall

computations, it is observed that eventhough Method 1

uses fewer addition operations than Methods 2 and 3

over the whole 𝐸𝑏 𝑁0⁄ range, there are the large numbers

of logarithm and division operations which it uses. A

possible future work which can be envisaged from this

work would be to perform more in-depth analysis of the

decoding mechanisms for even higher order modulation

schemes and different code-rates. Another interesting

future work would be to provide an analytical proof of

the BER performances of these three Turbo decoding

techniques using EXtrinsic Information Transfer (EXIT)

charts.

5. Acknowledgements

The technical support of the University of Mauritius

and the financial support of the Tertiary Education

Commission is duly acknowledged.

6. References

[1] C. Berrou, A. Glavieux and P. Thitimajshima, "Near Shannon
limit error-correcting coding and decoding: Turbo codes," in

IEEE Trans., May 1993.

[2] Y. Beeharry, T. P. Fowdur and K. M. S. Soyjaudah, "Symbol
Level Decoding Algorithms for Duo-Binary Turbo codes,"

IIUM Journal (Article in Press), 2017.

[3] J. Geldmacher, K. Hueske, M. Kosakowski and J. Gotze,
"Application of syndrome based Turbo decoding with

adaptive computational complexity in LTE downlink,"

Advances in Radio Science, vol. 2012, no. 10, pp. 159 - 165,
2012.

[4] R. G. Maunder, "A Fully-Parallel Turbo Decoding

Algorithm," IEEE transactions on Communications, vol. 63,

no. 8, pp. 2762 - 2775, 2015.

[5] R. El Chall, F. Nouvel, M. Hélard and M. Liu, "Iterative
receivers combining MIMO detection with turbo decoding:

performance-complexity trade-offs," EURASIP Journal on

Wireless Communications and Networking, vol. 2015, no. 69,
pp. 1 - 19, 2015.

[6] F. Li and A. Wu, "On the New Stopping Criteria of Iterative
Turbo Decoding by Using Decoding Threshold," IEEE Trans.

on Signal Processing, vol. 55, no. 11, pp. 5506 - 5516, 2007.

[7] Z. Wang, H. Suzuki and K. K. Parhi, "VLSI implementation
issues of turbo decoder design for wireless applications,"

Proc. of IEEE Workshop Signal Process. Syst., pp. 503 - 512,

1999.

[8] J. Hagenauer, E. Offer and L. Papke, "Iterative decoding of

binary block and convolutional codes," IEEE Trans. Inf.

Theory, vol. 42, no. 2, pp. 429 - 445, 1996.

[9] R. Y. Shao, S. Lin and M. P. C. Fossorier, "Two Simple

Stopping Criteria for Turbo Decoding," IEEE Trans.

Commun., vol. 47, no. 8, pp. 1117 - 1120, 1999.

[10] Y. Wu, B. Woerner and J. Ebel, "A Simple Stopping Criterion

for Turbo Decoding," IEEE Commun. Lett., vol. 4, no. 8, pp.

258 - 260, 2000.

[11] L. Henrik, "Turbo Decoder with early stopping criteria," Lund

University Libraries, 2016.

[12] T. P. Fowdur, Y. Beeharry and K. M. S. Soyjaudah, "A novel
scaling and early stopping mechanism for LTE turbo code

based on regression analysis," Annals of Telecommunications,

pp. 1-20, 2016.

[13] "3GPP: Technical Specifications Rel. 8," 3GPP, 2009.

[14] F. Khan, LTE for 4G Mobile Broadband Air Interface

Technologies and Performance, Cambridge University Press,
2009.

[15] B. Vucetic and J. S. Yuan, Turbo Codes: Principles and

Applications, Kluwer Academic Publications, 2000, pp. 58-
75.

[16] T. P. Fowdur, Y. Beeharry and K. M. S. Soyjaudah,

"Performance of Turbo coded 64-QAM with Joint Source
Channel Decoding, Adaptive Scaling and Prioritised

Constellation Mapping," in CTRQ, 6th International

Conference on Communication Theory, Reliability and
Quality of Service, Venice, Italy, 2013.

[17] T. P. Fowdur, Y. Beeharry and K. M. S. Soyjaudah,

"Performance of LTE Turbo Codes with Joint Source Channel
Decoding, Adaptive Scalig and Prioritised QAM

Constellation Mapping," International Journal on Advances

in Telecommunications, vol. 6, no. 3 & 4, pp. 143 - 152, 2013.

[18] L. Li, "University of Southampton," 2015. [Online].

Available: http://users.ecs.soton.ac.uk/rm/wp-

content/liang_li_nine_month_report.pdf. [Accessed 18 April
2015].

[19] V. Tursenia, "Performance Comparison of Turbo Code in

WiMAX Sysetem with Various Detection techniques,"
International Journal of Engineering Research, vol. 2, no. 3,

pp. 232 - 236, 2013.

[20] S. A. Abrates, April 2004. [Online]. Available:
http://paginas.fe.up.pt/~sam/textos/From%20BCJR%20to%2

0turbo.pdf. [Accessed 01 May 2015].

Yogesh BEEHARRY et al. / IU-JEEE Vol. 17(2), (2017), 3399-3415

3415

Yogesh Beeharry is

currently a PhD student in

the field of error control

coding at the University of

Mauritius. He holds a BEng

(Hons) Electronics and

Communications

engineering with First class

honours from the

University of Mauritius. He

was also the recipient of the

Mrs. L. F. Lim Fat

Engineering Gold medal.

His main research interests

are: error control coding, Turbo codes and source and channel

coding.

Dr. T. P. Fowdur received

his BEng (Hons) degree in

Electronic and

Communication

Engineering with first class

honours from the

University of Mauritius in

2004. He was also the

recipient of a Gold medal

for having produced the

best degree project at the

Faculty of Engineering in

2004. In 2005 he obtained a full-time PhD scholarship from

the Tertiary Education Commission of Mauritius and was

awarded his PhD degree in Electrical and Electronic

Engineering in 2010 by the University of Mauritius. He is

presently a Senior Lecturer at the Department of Electrical and

Electronic Engineering at the University of Mauritius. His

research interests include Coding Theory, Multimedia and

Wireless Communications, Networking and Security.

Professor K. M. S.

Soyjaudah is a Professor of

Communications Engineering

at the University of Mauritius.

Professor Soyjaudah has a

number of publications in the

fields of Communications

engineering, error control

coding, information theory

among others.

