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Abstract: Turbo codes apply an iterative message passing mechanism between two concatenated decoders. Their 

astounding performance has led to their widespread adoption in several communication standards such as Long Term 

Evolution, and Code Division for Multiple Access 2000. This paper gives an overview of three bit-level decoding Max-

Log-MAP algorithms with Sign Difference Ratio-based early stopping that can be used with Long Term Evolution Turbo 

Codes. A detailed computational complexity analysis is given for the three methods. It is observed that the complexity of 

the decoding methods decrease significantly as the Eb/N0 increases when Sign Difference Ratio is used. Moreover, the Bit 

Error Rate performance of the methods was also assessed and compared for different modulation schemes. Results show 

that the different methods perform differently in the waterfall and error-floor regions with different modulation schemes. 

Moreover, the computational complexity analysis show that Method 2 requires fewer overall number of computations 

compared to Methods 1 and 3. 

Keywords: LTE Turbo Codes, Max-Log-MAP Turbo Decoding, Computational Complexity Analysis. 

 

1. Introduction 
 

Turbo codes are a class of error correcting codes in 

coding theory and consist of two concatenated decoders 

passing messages iteratively between each other. They 

are used in several communication standards such as 

Long Term Evolution (LTE), and Code Division for 

Multiple Access (CDMA) 2000. The Turbo decoding 

algorithms are the Maximum A-Posteriori Probability 

(MAP), Logarithmic MAP (Log-MAP), and the 

Maximum Log-MAP (Max Log-MAP) algorithms. The 

MAP algorithm was the initially presented Turbo 

decoding algorithm in [1]. However, due to its 

numerical instability and high computational 

complexity, the Log-MAP algorithm was proposed by 

researchers. The Max Log-MAP algorithm was brought 

forward with the aim of having additional reduction in 

computational complexity. The trade-off accompanied 

by this reduction is a slight degradation in error 

performance. There exists this computational 

complexity issue of Turbo decoding algorithms and 

several papers have proposed variants to address this 

problem. In [2], a complexity analysis with three 

symbol-level decoding algorithms for duo-binary Turbo 

codes was performed. The work in [3] focussed on the 

decoder complexity for LTE downlink Turbo code and 

proposed the application of a decoding framework with 

adaptive complexity. The author of [4] has proposed a 

new substitute to the conventional Logarithmic Bahl-

Cocke-Jelinek-Raviv (Log-BCJR) algorithm for Turbo 

decoding. It has been shown that the proposed algorithm 

which is compatible with all Turbo codes, can provide 

throughputs and latencies of up to 6.86 times better than the 

conventional algorithms when employed with Turbo codes 

of the LTE and WiMAX standards with a trade-off of 

slightly increased resource requirement and computational 

complexity. The authors of [5], investigated the 

computational complexity of Turbo decoding with multiple-

input multiple-output (MIMO) detection. Results 

demonstrated the suitability of the proposed decoder for 

parallel and pipeline architectures which can meet the 

requirements for high throughput. 

Schemes like iterative detection or early stopping are 

employed in the decoding process to prevent unnecessary 

additional iterations with the aim to reduce the decoding 

complexity of Turbo codes. For example, in [6], the authors 

proposed early stopping mechanisms using a predicted 

decoding threshold. These techniques have been categorised 

into two groups. One is soft-bit decision based, such as 

absolute LLR measurements [7] and Cross Entropy (CE) [8]. 

The second class is hard-bit decision based, such as Sign 

Change Ratio (SCR) [9] and Sign-Difference Ratio (SDR) 

[10]. These mechanisms help reducing the computational 

complexity by not performing additional unnecessary 

iterations. The report of [11] presents a stopping criterion 

used with the Turbo decoder of the LTE standard with the 

objective of reducing the power and energy consumption. A 

configuration of the decoder to use 1, 2, 4, 8, or 16 MAP 

decoders in parallel can be performed. This has shown to 
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help achieve a throughput of 110Mb/s for 7 iterations 

when operating at a clock frequency of 200 MHz. The 

work of [12] proposed two early stopping mechanisms 

based on the regression angle computed at every half-

iteration and the Pearson’s correlation coefficient for the 

low and high 𝐸𝑏 𝑁0⁄  range respectively. 

This paper gives an overview of bit-level decoding 

Max-Log-MAP algorithms with the different equations 

used for Binary LTE Turbo codes together with SDR-

based early stopping mechanism. The computations 

involved in the three decoding techniques are explicitly 

detailed and an analysis of the complexity has been 

provided. Simulation results with different modulation 

schemes reveal that the different decoding techniques 

perform differently in the waterfall and error floor 

regions with different modulation schemes. 

The organisation of the paper is as the following. The 

different decoding methods and results for LTE Turbo 

codes with Max Log-MAP decoding algorithm are 

presented in Section 2. The simulation results are 

presented in Section 3 and Section 4 concludes the 

paper. 

 

2. Binary LTE Turbo Codes 
 

Figure 1 depicts the complete encoding structure for 

Binary LTE Turbo codes [13], [14]. 
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Figure 1. Binary LTE Turbo Codes Transmitter System [13] 

 

The information bits are sent to an LTE Turbo 

encoder consisting of a parallel concatenation of two 

Recursive Systematic Convolutional (RSC) encoders, 

RSC1 and RSC2, separated by an interleaver (П). A 

Quadratic Polynomial Permutation (QPP) interleaver is 

employed in the design of the LTE Turbo encoding 

system. The interleaved permutation with a QPP 

interleaver is obtained using a quadratic polynomial. 

The relationship between the output index z and input 

index π(z) is expressed by the following equation [14]: 

 

𝜋(𝑧) = (𝑓1. 𝑧 + 𝑓2. 𝑧
2) 𝑚𝑜𝑑 𝐾                                   (1) 

 

Where, 

𝑓1 and 𝑓2 are the permutation coefficients, 

K is the size of the information block. 

After the encoding process, each of the three output 

streams S0, P1, and P2 is interleaved with its own sub-block 

interleaver resulting in d0, d1, and d2 respectively. Sub-block 

interleaving is performed as follows: 

a. The input block is written row-wise in a rectangular 

matrix to form a 𝑅𝑠 by 𝐶𝑠 matrix.  

b. A permutation is performed on the columns of this 

matrix.  

c. A column-wise read is performed on the permuted 

matrix to obtain the output. 

The number of columns, 𝐶𝑠, is fixed to 32 and the number 

of rows, 𝑅𝑠, is (K / 32). The inter-column permutation is 

achieved using the Bit-Reversal-Order (BRO) pattern given 

below: 

𝑄(𝑗)= [0, 16, 8, 24, 4, 20, 12, 28, 2, 18, 10, 26, 6, 22, 14, 30, 

1, 17, 9, 25, 5, 21, 13, 29, 3, 19, 11, 27, 7, 23, 15, 31] 

𝑄(𝑗) is the original column position of the 𝑗th permuted 

column.  

LTE Turbo coded standard performs multiplexing such 

that the rearranged systematic bits, d0, are placed in the 

beginning followed by bit-by-bit interlacing of the two 

rearranged parity streams, d1 and d2, in order to form a single 

output buffer [14]. The resulting bit-stream is then sent to the 

modulation block to be mapped to the corresponding 

constellation. 

The modulated signal is then transmitted over an AWGN 

channel. The received noisy symbols are demodulated, sub-

block de-interleaved and de-interlaced. 

Figure 2 shows a typical Turbo decoding framework with 

an early stopping mechanism. The Turbo decoder is made up 

of two decoders concatenated with an interleaver similar to 

the one in the encoder. Decoder 1 accepts 𝑟0 and 𝑟1 which 

are noisy versions of S0 and P1, obtained after modulation 

and transmission over the channel. Decoder 2 accepts 

𝑟0̅̅ ̅ which is the interleaved version of 𝑟0 and 𝑟2 which is the 

noisy version of P2. 𝛬1𝑒(𝑡)and 𝛬2𝑒(𝑡) are the extrinsic 

information generated by the decoders. 𝛬1(𝑡) and 𝛬2(𝑡) are 

the Log Likelihood Ratio (LLR) output from Decoders 1 and 

2 respectively. 
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Figure 2. Generic Turbo decoding structure. Source: [1] 

 

The extrinsic and a-posteriori LLRs from each of Decoders 

1 and 2 are fed to the SDR stopping mechanism block. A 

signal T1 is generated to stop the decoding at Decoder 1 and 
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a signal T2 is generated to stop the decoding at Decoder 

2. The scale factor for each decoder 𝑑 at iteration 𝑛 is 

computed as follows: 

𝑆𝑑𝑛 = 
1

N
∑ 𝑓(∧𝑑𝑒

(𝑛),  ∧𝑑
(𝑛))𝑁

𝑡=1        (2) 

Where, 

𝑓(∧𝑑𝑒
(𝑛),  ∧𝑑

(𝑛)) = 1 if ∧𝑑𝑒
(𝑛),  and  ∧𝑑

(𝑛)
have the same sign, 

otherwise 𝑓(∧𝑑𝑒
(𝑛),  ∧𝑑

(𝑛)) = 0, 

𝑁 is the frame size in bits. 

The complexity breakdown for the SDR based scale 

factor at each half-iteration is shown in Table 2 

 

Table 1.  Complexity breakdown for one SDR-based scale 

factor 

 

 Comp() Add() Div() Total 

SDR Scale 

Factor 
𝑁 𝑁 − 1 1 2𝑁 

 

Where, 

Comp() refers to the Comparison operations, 

Add() refers to the Addition operations, and 

Div() refers to the Division operations. 

Depending on which signal has been generated, the hard 

decision is performed on the correponding a-posteriori 

LLR to estimate the transmitted information. The 

decoding equations for the max Log-MAP algorithm are 

presented in the sub-sections 2.1, 2.2 and 2.3. 

 

2.1. Max Log-MAP Turbo Decoding: Method 1 
 

The decoding equations based on the Max-Log MAP 

algorithm used for the first decoder are [14], [13], [15]: 

 

  𝛾𝑡
1(𝑖)(𝑙′, 𝑙) =

𝑙𝑜𝑔 [𝑝𝑡
1(𝑖). 𝑒𝑥𝑝 (−

[𝑟0𝑡−𝑆0𝑡]
2+[𝑟1𝑡−𝑃1𝑡]

2

2𝜎2
)] =

 𝑙𝑜𝑔[𝑝𝑡
1(𝑖)] −  (

[𝑟0𝑡−𝑆0𝑡]
2+[𝑟1𝑡−𝑃1𝑡]

2

2𝜎2
)                         (3) 

 

Where, 

𝛾𝑡
1(𝑖)(𝑙′, 𝑙) is the branch transition probability for 

decoder 1 from state l’ to state l of bit i (i = 0 or 1) at 

time instant t. 

𝑝𝑡
1(𝑖) is the a-priori probability of bit i resulting from the 

channel extrinsic information and input to the first 

decoder. 

𝑟0𝑡  𝑎𝑛𝑑 𝑟1𝑡  are the soft bits which have been de-

mapped and correspond to the bipolar equivalent of the 

transmitted systematic bits, 𝑆0𝑡 and first parity bits, 𝑃1𝑡  

respectively.  

σ2 is the noise variance. 

The complexity breakdown for the branch transition 

probability is shown in Table 2. The number of 

computations is for one branch transition. 

 

Table 2. Complexity breakdown for one branch transition 

metric of Decoder 1 with Method 1 

 

 Log() Add() Sub() Mult() Total 

Branch 

Transition 

Metric 

1 1 3 2 6 

 

Where, 

Log() refers to the Logarithmic operations, 

Sub() refers to the Subtraction operations, and 

Mult() refers to the Multiplication operations. 
 

The forward recursive variable, 𝛼𝑡
1(𝑙), for a decoder with 

MS states at state l and time t is computed as follows [16] 

[17]: 

 

𝛼𝑡
1(𝑙) = max (𝛼𝑡−1

1 (𝑙) + 𝛾𝑡
1(𝑖)(𝑙′, 𝑙))   𝑓𝑜𝑟 0 ≤ 𝑙′ ≤ MS − 1

   (4) 

 

The max () operator outputs the maximum of the two 

forward metrics pertaining to each bit 𝑖 for each of the state 𝑙. 
The complexity breakdown for the forward recursive 

variable at each state 𝑙 is shown in Table 3. 

 
Table 3. Complexity breakdown for one Forward recursive 

variable of Decoder 1 with Method 1 

 

 Max() Add() Total 

Forward 

Recursive 

Variable 

1 2 3 

 

The backward recursive variable, 𝛽𝑡
1(𝑙), is computed as 

follows [16] [17]: 

 

𝛽𝑡
1(𝑙) = max (𝛽𝑡−1

1 (𝑙′) + 𝛾𝑡
1(𝑖)(𝑙, 𝑙′)) , 𝑓𝑜𝑟 0 ≤ 𝑙′ ≤ MS −

1                                                                                         (5) 

 

The complexity breakdown for the backward recursive 

variable for each state 𝑙′ is shown in Table 4. 

 
Table 4. Complexity breakdown for one Backward recursive 

vatiable of Decoder 1 with Method 1 

 

 Max() Add() Total 

Backward 

Recursive 

Variable 

1 2 3 

 

The Log-Likelihood Ratio (LLR), 𝛬1
(𝑟)(𝑡) for the first 

decoder at time t and iteration r is computed as [16] [17]: 

 

𝛬1
(𝑟)(𝑡) = max (𝛼𝑡−1

1 (𝑙′)  + 𝛾𝑡
1(1)(𝑙, 𝑙′)  + 𝛽𝑡

1(𝑙)) −

max (𝛼𝑡−1
1 (𝑙′)  +  𝛾𝑡

1(0)(𝑙, 𝑙′)  + 𝛽𝑡
1(𝑙))   𝑓𝑜𝑟 0 ≤ 𝑙′ ≤

MS − 1                                                                               (6) 

 

The complexity breakdown for the LLR variable is shown 

in Table 5. 

 
Table 5. Complexity breakdown for the Log-Likelihood Ratio of 

Decoder 1 with Method 1 
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 Max() Add() Sub() Total 

Log 

Likelihood 

Ratio 

2 32 1 35 

The extrinsic information 𝛬1𝑒
(𝑟)(𝑡) for the first decoder 

at time t and iteration r is computed as [16] [17]: 

 

𝛬1𝑒
(𝑟)(𝑡) =  𝛬1

(𝑟)(𝑡) − 
2

𝜎2
𝑟0𝑡 − 𝛬2̅𝑒

(𝑟−1)(𝑡)                   (7) 

 

Where,  

𝛬2̅𝑒
(𝑟−1)(𝑡) is the de-interleaved version of the extrinsic 

information for the second decoder at time t and iteration 

(r-1). For the first iteration, 𝛬2̅𝑒
(𝑟−1)(𝑡), is initialized to 

zero. The complexity breakdown for an extrinsic LLR 

variable is shown in Table 6. 

 
Table 6. Complexity breakdown for an extrinsic LLR of 

Decoder 1 with Method 1 

 

 Sub() Total 

Extrinsic Log 

Likelihood Ratio 

2 2 

 

The a-priori probability for the second decoder, 𝑝𝑡
2(𝑖) 

is computed as follows: 

 

𝑝𝑡
2(𝑖) =  

{
 

 
exp (�̅�1𝑒

(𝑟)
(𝑡))

1+ exp (�̅�1𝑒
(𝑟)
(𝑡))

 𝑓𝑜𝑟 𝑖 = 1

1

1+ exp (�̅�1𝑒
(𝑟)
(𝑡))

 𝑓𝑜𝑟 𝑖 = 0
                            (8) 

 

Where, 𝛬1̅𝑒
(𝑟)(𝑡) is the interleaved version of 𝛬1𝑒

(𝑟)(𝑡). 
 

The complexity breakdown required for the a-priori 

probability is shown in Table 7. 

 
Table 7. Complexity breakdown for the a-priori probability 

of Decoder 1 with Method 1 

 

 Exp() Add() Div() Total 

Log 

Likelihood 

Ratio 

3 2 2 7 

 

Where, 

Exp() refers to the exponential operations, and 

Div() refers to the division operations. 

The computations for the second decoder can now be 

started. The decoding equations based on the Max-Log 

MAP algorithm used for the second decoder are as 

presented in [16] [17]. The branch metric [15] is given 

as: 

 

𝛾𝑡
2(𝑖)(𝑙′, 𝑙) =

𝑙𝑜𝑔 [𝑝𝑡
1(𝑖). 𝑒𝑥𝑝 (−

[𝑟0̅̅̅̅ 𝑡−S0𝑡
̅̅ ̅̅ ̅]2+[𝑟2𝑡−P2𝑡]

2

2𝜎2
)] =

 𝑙𝑜𝑔[𝑝𝑡
2(𝑖)] −  (

[𝑟0̅̅̅̅ 𝑡−S0𝑡
̅̅ ̅̅ ̅]2+[𝑟2𝑡−P2𝑡]

2

2𝜎2
)                         (9) 

 

Where, 

𝛾𝑡
2(𝑖)(𝑙′, 𝑙) is the branch transition probability for decoder 2 

from state l’ to state l of bit i (i = 0 or 1) at time instant t. 

𝑝𝑡
2(𝑖) is the a-priori probability of bit i derived from the 

channel extrinsic information and input to the second 

decoder. 

𝑟0̅̅ ̅𝑡  𝑎𝑛𝑑 𝑟2𝑡  are the de-mapped soft bits corresponding to the 

bipolar equivalent of the interleaved systematic bits, 𝑆0𝑡
̅̅ ̅̅  and 

second parity bits, 𝑃2𝑡  respectively.  

σ2 is the noise variance. 

The complexity breakdown for the branch transition 

probability is similar to that for the first decoder as shown in 

Table 2. The forward recursive variable, 𝛼𝑡
2(𝑙), for a decoder 

with 𝑀𝑆 states at state l and time t is computed as the 

following [16] [17]: 

 

𝛼𝑡
2(𝑙) = max (𝛼𝑡−1

2 (𝑙) + 𝛾𝑡
2(𝑖)(𝑙′, 𝑙)) ,   𝑓𝑜𝑟 0 ≤ 𝑙′ ≤ 𝑀𝑆 −

1 (10) 

 

The complexity breakdown for the forward recursive 

variable is similar to that for the first decoder as shown in 

Table 3. The backward recursive variable, 𝛽𝑡
2(𝑙), is 

computed as follows [16] [17]: 

 

𝛽𝑡
2(𝑙) = max (𝛽𝑡−1

2 (𝑙′) + 𝛾𝑡
2(𝑖)(𝑙, 𝑙′))   𝑓𝑜𝑟 0 ≤ 𝑙′ ≤ 𝑀𝑆 −

1                                                                                       (11) 

 

The complexity breakdown for the backward recursive 

variable is similar to that for the first decoder as shown in 

Table 4. The Log-Likelihood Ratio (LLR), 𝛬2
(𝑟)(𝑡) for the 

second decoder at time t and iteration r is computed as [16] 

[17]: 

 

𝛬2
(𝑟)(𝑡) = max (𝛼𝑡−1

2 (𝑙′)  + 𝛾𝑡
2(1)(𝑙, 𝑙′)  +  𝛽𝑡

2(𝑙)) −

max (𝛼𝑡−1
2 (𝑙′)  +  𝛾𝑡

2(0)(𝑙, 𝑙′)  + 𝛽𝑡
2(𝑙))   𝑓𝑜𝑟 0 ≤ 𝑙′ ≤

𝑀𝑆 − 1                                                                             (12) 

 

The complexity breakdown for a LLR variable is similar 

to that for the first decoder as shown in Table 4. The extrinsic 

information, 𝛬2𝑒
(𝑟)(𝑡), for the second decoder at time t and 

iteration r is computed as [16] [17]: 

 

𝛬2𝑒
(𝑟)(𝑡) =  𝛬2

(𝑟)(𝑡) − 
2

𝜎2
𝑟0̅̅ ̅𝑡 − 𝛬1̅𝑒

(𝑟−1)(𝑡)                        (13) 

 

Where, 𝛬1̅𝑒
(𝑟−1)(𝑡) is the interleaved extrinsic information for 

the first decoder at time t and iteration r. 

The complexity breakdown for an extrinsic LLR variable 

is similar to that for the first decoder as shown in Table 6. 

The a-priori probability for the first decoder, 𝑝𝑡
1(𝑖) is 

computed as follows:  

 

𝑝𝑡
1(𝑖) =  

{
 

 
exp (�̅�2𝑒

(𝑟)
(𝑡))

1+ exp (�̅�2𝑒
(𝑟)
(𝑡))

 𝑓𝑜𝑟 𝑖 = 1

1

1+ exp (�̅�2𝑒
(𝑟)
(𝑡))

 𝑓𝑜𝑟 𝑖 = 0
                                 (14) 

 

Where, 

𝛬2̅𝑒
(𝑟)(𝑡) is the de-interleaved version of 𝛬2𝑒

(𝑟)(𝑡). 
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The number of computations required for the a-priori 

probability is similar to that for the first decoder as 

shown in Table 7. For the second iteration, the same 

computations are repeated by the first and second 

decoders with the updated values of the a-priori 

probabilities. 

 

2.2. Max Log-MAP Turbo Decoding: Method 2 
 

In [18], an approximate Log BCJR algorithm has 

been presented. The decoding equations are presented 

next. 

 

𝑦𝑡
𝑟 = 𝑙𝑜𝑔 (

𝑃(𝑟0𝑡=1)

𝑃(𝑟0𝑡=0)
) =  𝑟0𝑡 + 𝛬2̅𝑒

(𝑟−1)(𝑡)                 (15) 

 

Where, 

𝑦𝑡
𝑟  is the soft decisions of the received bit 𝑟0𝑡. 

𝛬2̅𝑒
(𝑟−1)(𝑡) is the de-interleaved extrinsic LLR from 

decoder 2 in the previous iteration. 

The transition state branch metrics are computed as 

below: 

 

𝛾𝑠,𝑡
1(𝑖)(𝑙′, 𝑙) =  𝑦𝑡

𝑟                                                        (16) 

 

𝛾𝑝,𝑡
1(𝑖)(𝑙′, 𝑙) =  𝑟1𝑡                                                       (17) 

 

Where, 

𝛾𝑠,𝑡
1(𝑖)(𝑙′, 𝑙) is the branch transition metric for the 

systematic information, 

𝛾𝑝,𝑡
1(𝑖)(𝑙′, 𝑙) is the branch transition metric for the parity 

information, and 

𝑟1𝑡 is the received noisy parity information from the 

first encoder. 

The complexity breakdown for one branch transition 

metric is shown in Table 8. 

 
Table 8. Complexity breakdown for a branch transition 

metric of Decoder 1 with Method 2 

 

 Add() Total 

Branch 

Transition 

Metric 

1 1 

 

The forward recursive variable, 𝛼𝑡
1(𝑙), for a decoder 

with 𝑀𝑆 states at state l and time t is computed as follows 

[18]: 

 

𝛼𝑡
1(𝑙) = max (𝛼𝑡−1

1 (𝑙′) + 𝛾𝑠,𝑡
1(𝑖)(𝑙′, 𝑙) +

 𝛾𝑝,𝑡
1(𝑖)(𝑙′, 𝑙))   𝑓𝑜𝑟 0 ≤ 𝑙′ ≤ 𝑀𝑆 − 1                          (18) 

 

The number of computations required for one 

forward recursive variable is shown in Table 9. 

 
Table 9. Complexity breakdown for a forward recursive 

variable of Decoder 1 with Method 2 

 

 Max() Add() Total 

Forward 

Recursive 

Variable 

1 4 5 

 

The backward recursive variable, 𝛽𝑡
1(𝑙), is computed as 

follows [18]: 

 

𝛽𝑡
1(𝑙) = max (𝛽𝑡−1

1 (𝑙′) + 𝛾𝑠,𝑡
1(𝑖)(𝑙, 𝑙′) +

 𝛾𝑝,𝑡
1(𝑖)(𝑙′, 𝑙))   𝑓𝑜𝑟 0 ≤ 𝑙′ ≤ 𝑀𝑆 − 1                          (19) 

 

The complexity breakdown required for one backward 

recursive variable is shown in Table 10. 

 
Table 10. Complexity breakdown for a backward recursive 

variable of Decoder 1 with Method 2 

 

 Max() Add() Total 

Backward 

Recursive 

Variable 

1 4 5 

 

The un-coded extrinsic log confidences are computed as 

the following: 

 

𝛿𝑡
1(𝑖)(𝑙, 𝑙′) =  𝛼𝑡

1(𝑙) +  𝛾𝑝,𝑡
1(𝑖)(𝑙′, 𝑙) + 𝛽𝑡

1(𝑙)                     (20) 

 

The complexity breakdown for the un-coded extrinsic log 

confidences is shown in Table 11. 

 
Table 11. Complexity breakdown for the un-coded extrinsic log 

confidences of Decoder 1 with Method 2 

 

 Add() Total 

Un-coded extrinsic 

Log confidences 

2 2 

 

The un-coded Extrinsic Log-Likelihood Ratio (LLR), 

𝛬1𝑒
(𝑟)(𝑡) for the first decoder at time t and iteration r is 

computed as [18]: 

 

𝛬1𝑒
(𝑟)(𝑡) = max ( 𝛿𝑡

1(1)(𝑙, 𝑙′)) − max (𝛿𝑡
1(0)(𝑙, 𝑙′))   𝑓𝑜𝑟 0 ≤

𝑙′ ≤ 𝑀𝑆 − 1                                                                     (21) 

 

The complexity breakdown for the un-coded extrinsic 

LLRs is shown in Table 12. 

 
Table 12. Complexity breakdown for the un-coded extrinsic LLRs 

of Decoder 1 with Method 2 

 

 Max() Sub() Total 

Un-coded 

extrinsic 

LLRs 

2 1 3 

 

The systematic and extrinsic information are interleaved 

to be fed to the second decoder: 

 

𝛬1𝑒
(𝑟)̅̅ ̅̅ ̅
(𝑡) =  𝜋 (𝛬1𝑒

(𝑟)(𝑡))                                                     (22) 
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𝑟0𝑡̅̅ ̅̅ = 𝜋(𝑟0𝑡)                                                                   
(23) 

 

The un-coded a-priori input information for the 

second decoder is computed as the following: 

 

𝑧𝑡
𝑟 = 𝑟0𝑡̅̅ ̅̅ +  𝛬1𝑒

(𝑟)̅̅ ̅̅ ̅
(𝑡)                                                 (24) 

 

The second decoder can now be started. The 

transition state branch metric is computed as below: 

 

𝛾𝑠,𝑡
2(𝑖)(𝑙′, 𝑙) =  𝑧𝑡

𝑟                                                        (25) 

 

𝛾𝑝,𝑡
2(𝑖)(𝑙′, 𝑙) =  𝑟2𝑡                                                      (26) 

 

𝛾𝑠,𝑡
2(𝑖)(𝑙′, 𝑙) is the branch transition metric for the 

systematic information and second decoder 

𝛾𝑝,𝑡
2(𝑖)(𝑙′, 𝑙) is the branch transition metric for the parity 

information and second decoder 

The complexity breakdown for the branch transition 

probability is similar to that for the first decoder as 

shown in Table 7. The forward recursive 

variable, 𝛼𝑡
2(𝑙), for a decoder with MS states at state l 

and time t is computed as follows [18]: 

𝛼𝑡
2(𝑙) = max (𝛼𝑡−1

2 (𝑙′) + 𝛾𝑠,𝑡
2(𝑖)(𝑙′, 𝑙) +

 𝛾𝑝,𝑡
2(𝑖)(𝑙′, 𝑙))   𝑓𝑜𝑟 0 ≤ 𝑙′ ≤ 𝑀𝑆 − 1                          (27) 

 

The complexity breakdown for the forward recursive 

variable is similar to that for the first decoder as shown 

in Table 8. The backward recursive variable, 𝛽𝑡
1(𝑙), is 

computed as follows [18]: 

 

𝛽𝑡
2(𝑙) = max (𝛽𝑡−1

2 (𝑙′) + 𝛾𝑠,𝑡
2(𝑖)(𝑙, 𝑙′) +

 𝛾𝑝,𝑡
2(𝑖)(𝑙′, 𝑙))   𝑓𝑜𝑟 0 ≤ 𝑙′ ≤ 𝑀𝑆 − 1                          (28) 

 

The complexity breakdown for the backward 

recursive variable is similar to that for the first decoder 

as shown in Table 10 The un-coded extrinsic log 

confidences are computed as the following: 

 

𝛿𝑡
2(𝑖)(𝑙, 𝑙′) =  𝛼𝑡

2(𝑙) +  𝛾𝑝,𝑡
2(𝑖)(𝑙′, 𝑙) + 𝛽𝑡

2(𝑙)              (29) 

 

The complexity breakdown for the un-coded extrinsic 

log confidences is similar to that for the first decoder as 

shown in Table 11. The un-coded Extrinsic Log-

Likelihood Ratio (LLR), 𝛬2𝑒
(𝑟)(𝑡) for the second decoder 

at time t and iteration r is computed as [18]: 

 𝛬2𝑒
(𝑟)(𝑡) = max ( 𝛿𝑡

2(1)(𝑙, 𝑙′)) −

max (𝛿𝑡
2(0)(𝑙, 𝑙′))   𝑓𝑜𝑟 0 ≤ 𝑙′ ≤ 𝑀𝑆 − 1                 (30) 

 

The complexity breakdown for the un-coded extrinsic 

LLRs is similar to that for the first decoder as shown in 

Table 12. The extrinsic information is de-interleaved to 

be fed to the first decoder: 

 

𝛬2𝑒
(𝑟)̅̅ ̅̅ ̅
(𝑡) =  𝜋−1 (𝛬2𝑒

(𝑟)(𝑡))                                          (31) 

 

The a-priori LLR to be fed to the first decoder is computed 

as: 

 

 𝑦𝑡
𝑟+1 = 𝑟0𝑡 + 𝛬2̅𝑒

(𝑟)(𝑡)                                             (32) 

 

The a-posteriori LLR computation to be used in the hard-

decision process is as the following: 

 

𝛬2
(𝑟)(𝑡) =  𝛬2𝑒

(𝑟)̅̅ ̅̅ ̅
(𝑡) + 𝑟0𝑡  +  𝛬1𝑒

(𝑟−1)(𝑡)                    (33) 

 

For the second iteration, the same computations are 

repeated by both decoders with the updated values of the a-

priori LLRs. 

 

2.3. Max Log-MAP Turbo Decoding: Method 3 
 

This decoding method is depicted in [19] and [20]. 

 

 𝛾𝑡
1(𝑖)(𝑙′, 𝑙) = (

𝑆0𝑡

2
) . (𝛬2𝑒

(𝑟−1)̅̅ ̅̅ ̅̅ ̅̅
(𝑡)) + 

𝐿𝑐

2
[(𝑟0𝑡). (𝑆0𝑡)  +

 (𝑟1𝑡). (𝑃1𝑡)]                                                                    (34) 

 

Where, 

𝛾𝑡
1(𝑖)(𝑙′, 𝑙) is the branch transition probability for decoder 1 

from state l’ to state l of bit t (t = 0 or 1) at time instant t. 

S0𝑡  is the systematic information bit at time instant t. 

𝑟0𝑡  𝑎𝑛𝑑 𝑟1𝑡  are the soft bits which have been de-mapped 

and correspond to the bipolar equivalent of the transmitted 

systematic bits, 𝑆0𝑡  and first parity bits, 𝑃1𝑡  respectively.  

𝐿𝑐 = 
2

𝜎2
 is the channel reliability estimate and σ2 is the noise 

variance. 

The complexity breakdown for one branch transition 

probability is shown in Table 13. 

 
Table 13. Complexity breakdown for a branch transition metric of 

Decoder 1 with Method 3 

 

 Add() Mult() Div() Total 

Branch 

Transition 

Metric 

2 3 1 6 

 

The forward recursive variable, 𝛼𝑡
1(𝑙), for a decoder with 

𝑀𝑆 states at state l and time t is computed as follows [16] 

[17]: 

 

𝛼𝑡
1(𝑙) = max (𝛼𝑡−1

1 (𝑙) + 𝛾𝑡
1(𝑖)(𝑙′, 𝑙)) , 𝑓𝑜𝑟 0 ≤ 𝑙′ ≤ 𝑀𝑆 −

1                                                                                       (35) 

 

The complexity breakdown for the forward recursive 

variable is similar to that for the first decoder with Method 1 

as shown in Table 3. The backward recursive variable, 𝛽𝑡
1(𝑙), 

is computed as follows [16] [17]: 

 

𝛽𝑡
1(𝑙) = max (𝛽𝑡−1

1 (𝑙′) + 𝛾𝑡
1(𝑖)(𝑙, 𝑙′))   𝑓𝑜𝑟 0 ≤ 𝑙′ ≤ 𝑀𝑆 −

1                                                                                       (36) 



 

Yogesh BEEHARRY  et al. / IU-JEEE Vol. 17(2), (2017), 3399-3415 

 

  

 

 

3405 

 

 

The complexity breakdown for one backward 

recursive variable is similar to that for the first decoder 

of Method 1 as shown in Table 4. The Log-Likelihood 

Ratio (LLR), 𝛬1
(𝑟)(𝑡) for the first decoder at time t and 

iteration r is computed as [16] [17]: 

 

𝛬1
(𝑟)(𝑡) = max (𝛼𝑡−1

1 (𝑙′)  + 𝛾𝑡
1(1)(𝑙, 𝑙′)  + 𝛽𝑡

1(𝑙)) −

max (𝛼𝑡−1
1 (𝑙′)  +  𝛾𝑡

1(0)(𝑙, 𝑙′)  + 𝛽𝑡
1(𝑙))   𝑓𝑜𝑟 0 ≤ 𝑙′ ≤

𝑀𝑆 − 1                                                                             
(37) 

 

The complexity breakdown for the LLRs is similar to 

that for the first decoder of Method 1 as shown in Table 

5. The extrinsic information 𝛬1𝑒
(𝑟)(𝑡) for the first decoder 

at time t and iteration r is computed as [16] [17]: 

 

 𝛬1𝑒
(𝑟)(𝑡) =  𝛬1

(𝑟)(𝑡) − 
2

𝜎2
𝑟0𝑡 − 𝛬2̅𝑒

(𝑟−1)(𝑡)                (38) 

 

Where,  

𝛬2̅𝑒
(𝑟−1)(𝑡) is the de-interleaved version of the extrinsic 

information for the second decoder at time t and iteration 

(r-1). 

The complexity breakdown for the extrinsic LLRs is 

similar to that for the first decoder of Method 1 as shown 

in Table 6. The a-priori probability for the second 

decoder, 𝑝𝑡
2(𝑖) is computed as follows: 

 

  𝑝𝑡
2(𝑖) =  

{
 

 
exp (�̅�1𝑒

(𝑟)
(𝑡))

1+ exp (�̅�1𝑒
(𝑟)
(𝑡))

 𝑓𝑜𝑟 𝑖 = 1

1

1+ exp (�̅�1𝑒
(𝑟)
(𝑡))

 𝑓𝑜𝑟 𝑖 = 0
                        (39) 

 

Where, 

𝛬1̅𝑒
(𝑟)(𝑡) is the interleaved version of 𝛬1𝑒

(𝑟)(𝑡). 
The complexity breakdown for the a-priori 

probability is similar to that for the first decoder of 

Method 1 as shown in Table 7. The decoding operation 

for the second decoder can now be started. The decoding 

equations based on the Max-Log MAP algorithm used 

for the second decoder are [19], [20]: 

 

𝛾𝑡
2(𝑖)(𝑙′, 𝑙) = (

𝑆0𝑡
̅̅ ̅̅ ̅

2
) . (𝛬1𝑒

(𝑟−1)̅̅ ̅̅ ̅̅ ̅̅
(𝑡)) +  

𝐿𝑐

2
[(𝑟0̅̅ ̅𝑡). (𝑆0𝑡

̅̅ ̅̅ )  +

 (𝑟2𝑡). (𝑃2𝑡)]                                                             (40) 

 

Where, 

𝛾𝑡
2(𝑖)(𝑙′, 𝑙) is the branch transition probability for 

decoder 2 from state l’ to state l of bit t (t = 0 or 1) at 

time instant t. 

𝑆0𝑡
̅̅ ̅̅  is the interleaved systematic information bit at time 

instant t. 

𝑟0̅̅ ̅𝑡  𝑎𝑛𝑑 𝑟2𝑡  are the de-mapped soft bits corresponding 

to the bipolar equivalent of the interleaved systematic 

bits, 𝑆0𝑡
̅̅ ̅̅  and second parity bits, 𝑃2𝑡  respectively.  

𝐿𝑐 = 
2

𝜎2
 is the channel reliability estimate and σ2 is the 

noise variance. 

The complexity breakdown for the branch transition 

probability is similar to that for the first decoder as shown in 

Table 13. The forward recursive variable, 𝛼𝑡
2(𝑙), for a 

decoder with MS states at state l and time t is computed as the 

following [16] [17]: 

 

𝛼𝑡
2(𝑙) = max (𝛼𝑡−1

2 (𝑙) + 𝛾𝑡
2(𝑖)(𝑙′, 𝑙))   𝑓𝑜𝑟 0 ≤ 𝑙′ ≤ 𝑀𝑆 − 1         

(41) 

 

The complexity breakdown for the forward recursive 

variable is shown in Table 3. The backward recursive 

variable, 𝛽𝑡
2(𝑙), is computed as follows [16] [17]: 

 

𝛽𝑡
2(𝑙) = max (𝛽𝑡−1

2 (𝑙′) + 𝛾𝑡
2(𝑖)(𝑙, 𝑙′))   𝑓𝑜𝑟 0 ≤ 𝑙′ ≤ 𝑀𝑆 −

1                                                                      (42) 

 

The complexity breakdown for the backward recursive 

variable is shown in Table 4. The Log-Likelihood Ratio 

(LLR), 𝛬2
(𝑟)(𝑡) for the second decoder at time t and iteration 

r is computed as [16] [17]: 

 

𝛬2
(𝑟)(𝑡) = max (𝛼𝑡−1

2 (𝑙′)  + 𝛾𝑡
2(1)(𝑙, 𝑙′)  +  𝛽𝑡

2(𝑙)) −

max (𝛼𝑡−1
2 (𝑙′)  +  𝛾𝑡

2(0)(𝑙, 𝑙′)  + 𝛽𝑡
2(𝑙))   𝑓𝑜𝑟 0 ≤ 𝑙′ ≤

𝑀𝑆 − 1                                                                             (43) 

 

The complexity breakdown for the LLRs is shown in 

Table 5. The extrinsic information, 𝛬2𝑒
(𝑟)(𝑡), for the second 

decoder at time t and iteration r is computed as [19], [20]: 

 

𝛬2𝑒
(𝑟)(𝑡) =  𝛬2

(𝑟)(𝑡) − 
2

𝜎2
𝑟0̅̅ ̅𝑡 − 𝛬1̅𝑒

(𝑟−1)(𝑡)                        (44) 

 

Where,  

𝛬1̅𝑒
(𝑟−1)(𝑡) is the interleaved extrinsic information for the first 

decoder at time t and iteration r-1. 

The complexity breakdown for the extrinsic LLRs is 

shown in Table 6. The a-priori probability for the first 

decoder, 𝑝𝑡
1(𝑖) is computed as follows: 

 

 𝑝𝑡
1(𝑖) =  

{
 

 
exp (�̅�2𝑒

(𝑟)
(𝑡))

1+ exp (�̅�2𝑒
(𝑟)
(𝑡))

 𝑓𝑜𝑟 𝑖 = 1

1

1+ exp (�̅�2𝑒
(𝑟)
(𝑡))

 𝑓𝑜𝑟 𝑖 = 0
                                (45) 

The complexity breakdown for the a-priori probability is 

shown in Table 7. For the second iteration, the same 

computations are repeated by the first and second decoders 

with the updated values of the a-priori probabilities. 
 

2.4. Analysis of  Computational Complexity 
 

In this section, a comparison of the computational 

complexities for the three decoding methods of binary LTE 

Turbo codes has been performed. The complexity break-

downs at each half-iteration for Methods 1, 2 and 3 with 

respect to the number of computations are shown in Table 

14,  

Table 15 and 
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Table 16 respectively. An explanation on the values 

obtained for the metrics of Method 1 computed over one 

half-iteration is given next. Table 2 shows the number 

of computations for a single branch transition metric of 

equation (3). There are 𝑁 transitions in all in the trellis 

and each transition in the trellis consists of 16 branch 

transition metrics. Hence, the branch transition metrics 

are scaled by a factor of 16 and 𝑁. The number of 

computations for the forward recursive variable of 

equation (4) and backward recursive variable of 

equation (5) as shown in Table 3 and Table 4 

respectively are multiplied by 8 and 𝑁 since there are 8 states 

for each transition over a total packet length of 𝑁. Table 5 
shows the computations for the a-posteriori LLRs of 

equation (6) which have to be multiplied by 𝑁 for the whole 

packet length. The computations of the extrinsic LLRs of 

equation (7) as shown in Table 6 are also multiplied by 𝑁. 

Similarly, the computations of the a-posteriori probabilities 

of equations (8) as shown in Table 7 are multiplied by the 

packet length, 𝑁.

 
Table 14. Computational complexity breakdown for Method 1 at one half-iteration 

 

 Comp() Log() Exp() Max() Add() Sub() Mult() Div() Total 

Branch 

Transition 

Metric 

0 1 x 16 x 𝑁 0 0 1 x 16 x 𝑁 3 x 16 x 𝑁 2 x 16 x 𝑁 0 112 𝑁 

Forward 

Metric 
0 0 0 1 x 8 x 𝑁 2 x 8 x 𝑁 0 0 0 24 𝑁 

Backward 

Metric 
0 0 0 1 x 8 x 𝑁 2 x 8 x 𝑁 0 0 0 24 𝑁 

A-Posteriori 

LLR 
0 0 0 2 x 𝑁 32 x 𝑁 1 x 𝑁 0 0 35 𝑁 

Extrinsic LLR 0 0 0 0 0 2 x 𝑁 0 0 2 𝑁 

A-Posteriori 

Probabilities 
0 0 3 x 𝑁 0 2 x 𝑁 0 0 2 x 𝑁 7 𝑁 

SDR Scale 

Factor 
𝑁 0 0 0 𝑁 − 1 0 0 1 2𝑁 

TOTAL 𝑁 16 𝑁 3 𝑁 18𝑁 83 𝑁 -1 51𝑁 32𝑁 2 𝑁 +1 206𝑁 

 

 

The values obtained for the metrics computed over 

one half-iteration for Method 2 are explained next. The 

number of computations for the branch transition metric 

of equations (16–17) shown in Table 8 are multiplied by 

8 and 𝑁 to compute the transitions pertaining to the 

systematic information bits equal to 1. The number of 

mathematical computations for the forward recursive 

variable, backward recursive variable and un-coded extrinsic 

log confidences are multiplied by the number of states, 8, and 

the packet length, 𝑁. The computations of the extrinsic LLRs 

of equation (21) as shown in Table 11 are multiplied by the 

packet length, 𝑁.
 

Table 15. Computational complexity breakdown for Method 2 at one half-iteration 

 

 Comp() Max() Add() Sub() Div() Total 

Branch Transition 

Metric 
0 0 1 x 8 x 𝑁 0 0 8𝑁 

Forward Metric 0 1 x 8 x 𝑁 4 x 8 x 𝑁 0 0 40 𝑁 

Backward Metric 0 1 x 8 x 𝑁 4 x 8 x 𝑁 0 0 40 𝑁 

Un-coded Extrinsic 

Log Confidences 
0 0 2 x 8 x 𝑁 0 0 16 𝑁 

Extrinsic LLR 0 2 x 𝑁 0 1 x 𝑁 0 3 𝑁 

SDR Scale Factor 𝑁 0 𝑁 − 1 0 1 2𝑁 

TOTAL 𝑁 18𝑁 89 𝑁 -1 1𝑁 1 109 𝑁 
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The values obtained for the metrics computed for 

Method 3 over one half-iteration are explained next. The 

number of mathematical computations for the branch 

transition metric of equation (34) shown in Table 13 are 

multiplied by 16 and 𝑁 as explained for Method 1. The 

computations for the forward recursive variable, backward 

recursive variable, a-posteriori LLRs, extrinsic LLRs and a-

posteriori probabilities are exactly as explained for Method 

1. 

 

Table 16. Computational complexity breakdown for Method 3 at one half-iteration 

 

 Comp() Exp() Max() Add() Sub() Mult() Total 

Branch Transition 

Metric 
0 0 0 2 x 16 x 𝑁 0 3 x 16 x 𝑁 80 𝑁 

Forward Metric 0 0 1 x 8 x 𝑁 2 x 8 x 𝑁 0 0 24𝑁 

Backward Metric 0 0 1 x 8 x 𝑁 2 x 8 x 𝑁 0 0 24𝑁 

A-Posteriori LLR 0 0 2 x 𝑁 32 x 𝑁 1 x 𝑁 0 35𝑁 

Extrinsic LLR 0 0 0 0 2 x 𝑁 0 2𝑁 

A-Posteriori 

Probabilities 
0 3 x 𝑁 0 7 x 𝑁 0 0 10𝑁 

SDR Scale Factor 𝑁 0 0 𝑁 − 1 0 1 2𝑁 

TOTAL 𝑁 3 𝑁 18𝑁 104𝑁-1 3𝑁 48𝑁+1 177𝑁 

 
 

The total number of different computations required 

for each of the decoding method can be compared to 

analyse the number of computations as shown in Table 17. 

 

 
Table 17. Total of the number of computations for the different operation at one half-iteration for the 3 Methods 

 

 Comp() Log() Exp() Max() Add() Sub() Mult() Div() TOTAL 

Method 1 𝑁 16𝑁 3 𝑁 18𝑁 83𝑁-1 51𝑁 32𝑁 2 𝑁 +1 206 𝑁 

Method 2 𝑁 0 0 18𝑁 89𝑁-1 1𝑁 0 1 109 𝑁 

Method 3 𝑁 0 3 𝑁 18𝑁 104𝑁-1 3𝑁 48𝑁 1 177 𝑁 

 

 

Table 16 shows that the number of mathematical 

operations required by Methods 1, 2 and 3 are 7, 3, and 

5 respectively. Clearly, Method 2 requires fewer 

mathematical operations compared to Methods 1 and 3. 

Method 1 requires 16𝑁 Logarithm operations while 

Methods 2 and 3 require none. 3𝑁 exponential 

operations are required by bot h Methods 1 and 3 while 

Method 2 requires none. All the 3 methods require the 

same number of Max operations, i.e 18 𝑁. Method 3 

requires the maximum number of addition operations 

which is 103 𝑁 followed by Method 2 which requires 

88N and finally Method 1 which needs 82𝑁. The 

number of subtraction operations is highest for Method 

1, i.e 51 𝑁 followed by Methods 3 and 2 which require 

3 𝑁 and 1 𝑁 subtraction operations respectively. Only 

Methods 1 and 3 require multiplication operations of 

32 𝑁 and 48 𝑁 respectively. 2 𝑁 division operations are 

required by Method 1 only. 

 

3. Simulation Results 
 

In this section, the performances of the different decoding 

methods are compared. Three modulation schemes have 

been used, namely: Binary Phase Shift Keying (BPSK), 

Quadrature Phase Shift Keying (QPSK), and 16-Quadrature 

Amplitude Modulation (QAM). An interleaver size of 6144 

bits has been used in all the simulations. The parameters for 

the LTE Turbo code used are as follows [14]: 

Generator: G = [1, g1/g2], where g1 = 15 and g2 = 13 in 

Octal. 

Code-rate = 1/3 and channel model: Complex AWGN. 

QPP Interleaver parameters:  𝑓1= 283 and 𝑓2 = 480 

Interleaver size, N = 6144 bits. 

Maximum number of iterations, T = 12. 

The BER performance of binary LTE Turbo codes with 

BPSK modulation with early stopping is shown in Figure 3. 

The overall number of computations at each 𝐸𝑏 𝑁0⁄  for each 

decoding method is shown in Figure 5. A more detailed 

breakdown of the total number of computations per 

mathematical operation is shown in Figure 6. 
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Figure 3. BER performance for Binary LTE Turbo codes with BPSK modulation and SDR stopping 

 

It can be observed from Figure 3 that all 3 decoding 

methods have similar error performances for almost the 

whole 𝐸𝑏 𝑁0⁄  range despite the differences in total 

number of different mathematical operations required. 

The performance of binary LTE Turbo codes with SDR 

based early stopping in terms of the average number of 

iterations required is shown in Figure 4.

 

 
 

Figure 4. Iterations performance for Binary LTE Turbo codes with BPSK modulation and SDR stopping 

 

It can be observed from Figure 4 that all 3 decoding 

methods require almost the same number of average 

decoding iterations for the range 𝐸𝑏 𝑁0⁄ ≤ 0.7 dB 

despite the differences in total number of different 

mathematical operations required. For the range 

𝐸𝑏 𝑁0⁄ > 0.7 dB Methods 1 and 3 require fewer average 

decoding iterations as compared to Method 2. The overall 

number of computations for binary LTE Turbo codes with 

B-PSK modulation and SDR stopping is shown in Figure 5. 
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Figure 5. Overall computations for Binary LTE Turbo codes with BPSK modulation and SDR stopping 

 

It can be observed from Figure 5 that all 3 decoding 

methods have different overall number of computations. 

Method 2 has the least number of overall computations 

throughout the whole 𝐸𝑏 𝑁0⁄  range. Method 3 gives an 

average gain of 3.3812x106 computations over Method 

1. Method 2 gives an average gain of 1.1189x107 

computations over Method 1. Method 2 gives an average 

gain of 7.8075x106 computations over Method 3. The 

breakdown of the overall number of computations per 

mathematical operation is shown in Figure 6. 
 

 
 

Figure 6. Breakdown of overall number of computation per mathematical operation for Binary LTE Turbo codes with BPSK 

modulation and SDR stopping 

 

It can be observed from Figure 6 that all 3 decoding 

methods use approximately the same number of 

maximum operations throughout the whole 𝐸𝑏 𝑁0⁄  

range. Another observation is that eventhough Method 

1 uses fewer addition operations than Methods 2 and 3 

over the whole 𝐸𝑏 𝑁0⁄  range, there are the large numbers of 

logarithm and division operations which are also used. 

The BER performance of binary LTE Turbo codes with 

Q-PSK modulation with SDR stopping is shown in Figure 7. 
 

 



 

Yogesh BEEHARRY  et al. / IU-JEEE Vol. 17(2), (2017), 3399-3415 

 

  

 

 

3410 

 

 
 

Figure 7. BER performance for Binary LTE Turbo codes with QPSK modulation with SDR stopping 

 

It can be observed from Figure 7 that all 3 decoding 

methods with SDR stopping have almost similar error 

performances for the whole 𝐸𝑏 𝑁0⁄  range despite the 

differences in total number of different mathematical 

operations required. The average number of iterations for 

binary LTE Turbo codes with QPSK modulation and SDR 

stopping is shown in Figure 8. 
 

 
 

Figure 8. Average iterations for Binary LTE Turbo codes with QPSK modulation and with SDR stopping 

 

It can be observed from Figure 8 that all 3 decoding 

methods have almost similar average number of 

decoding iterations throught the whole 𝐸𝑏 𝑁0⁄  range. 

The overall number of computations for binary LTE 

Turbo codes with QPSK modulation and SDR stopping is 

shown in Figure 9. 
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Figure 9. Breakdown of overall number of computation per mathematical operation for Binary LTE Turbo codes with QPSK 

modulation and SDR stopping 

 

It can be observed from Figure 9 that all 3 decoding 

methods have different overall number of computations. 

Method 2 has the least number of overall computations 

throughout the whole Eb/N0 range. Method 3 gives an 

average gain of 3.3510x106 computations over Method 

1. Method 2 gives an average gain of 1.1417x107 

computations over Method 1. Method 2 gives an average 

gain of 8.0665x106 computations over Method 3.The 

breakdown of the overall number of computations per 

mathematical operation is shown in Figure 10. 
 

 
 

Figure 10. BER performance for Binary LTE Turbo codes with QPSK modulation and SDR stopping 

 

It can be observed from Figure 10 that all 3 decoding 

methods use approximately the same number of 

maximum operations throughout the whole 𝐸𝑏 𝑁0⁄  

range. Another observation is that eventhough Method 

1 uses fewer addition operations than Methods 2 and 3 

over the whole 𝐸𝑏 𝑁0⁄  range, there are the large numbers of 

logarithm and division operations which are also used. 

The BER performance of binary LTE Turbo codes with 

16-QAM and SDR stopping is shown in Figure 11. 
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Figure 11. BER performance for Binary LTE Turbo codes with 16-QAM and SDR stopping 

 

It can be observed from Figure 11 that all 3 decoding 

methods with SDR stopping have almost similar error 

performances for the range 𝐸𝑏 𝑁0⁄ ≤ 2.4 dB despite the 

differences in total number of different mathematical 

operations required. For the range 𝐸𝑏 𝑁0⁄ > 2.4 dB, 

Methods 2 and 3 outperform Method 1 with a gain of 0.1dB 

on average. The average number of iterations for binary LTE 

Turbo codes with 16-QAM and SDR stopping is shown in 

Figure 12. 
 

 
 

Figure 12. Average iterations for Binary LTE Turbo codes with 16-QAM and SDR stopping 

 

It can be observed from Figure 12 that all 3 decoding 

methods have almost similar average number of 

decoding iterations throught the whole 𝐸𝑏 𝑁0⁄  range. 

The overall number of computations for binary LTE Turbo 

codes with 16-QAM and SDR stopping is shown in Figure 

13. 
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Figure 13. Overall computations for Binary LTE Turbo codes with 16-QAM and SDR stopping 

 

It can be observed from Figure 13 that all 3 decoding 

methods have different overall number of computations. 

Method 2 has the least number of overall computations 

throughout the whole Eb/N0 range. Method 3 gives an 

average gain of 2.8108x106 computations over Method 

1. Method 2 gives an average gain of 9.9390x106 

computations over Method 1. Method 2 gives an average 

gain of 7.1282x106 computations over Method 3. The 

breakdown of the overall number of computations per 

mathematical operation is shown in Figure 14. 
 

 
 

Figure 14. Breakdown of overall number of computation per mathematical operation for Binary LTE Turbo codes with 16-QAM and 

SDR stopping 
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It can be observed from Figure 14 that all 3 decoding 

methods use approximately the same number of 

maximum operations throughout the whole 𝐸𝑏 𝑁0⁄  

range. Another observation is that eventhough Method 

1 uses fewer addition operations than Methods 2 and 3 

over the whole 𝐸𝑏 𝑁0⁄  range, there are the large numbers 

of logarithm and division operations which are also 

used. 

 

4. Conclusion 
 

In this paper, a performance analysis of three 

different iterative decoding techniques for the Max-Log 

MAP algorithm with SDR-based early stopping has 

been presented for binary LTE Turbo codes. Three 

different decoding methods have been shown for Binary 

LTE Turbo codes with BPSK, Q-PSK and 16-QAM. It 

can be observed in Figure 3, that with BPSK 

modulation, the three decoding methods have almost 

similar performance over the whole 𝐸𝑏 𝑁0⁄  range. From 

Figure 7, it can be observed that with QPSK modulation, 

the three decoding methods have almost similar 

performance over the whole 𝐸𝑏 𝑁0⁄  range. Finally, in 

Figure 11, it can be observed that with 16-QAM, 

Methods 2 and 3 outperform Method 1 with a gain of 

0.1dB on average for the range 𝐸𝑏 𝑁0⁄ > 2.4 dB. The 

different schemes perform differently in the waterfall 

and error floor regions for different modulation 

schemes. From the breackdown of the overall 

computations, it is observed that eventhough Method 1 

uses fewer addition operations than Methods 2 and 3 

over the whole 𝐸𝑏 𝑁0⁄  range, there are the large numbers 

of logarithm and division operations which it uses. A 

possible future work which can be envisaged from this 

work would be to perform more in-depth analysis of the 

decoding mechanisms for even higher order modulation 

schemes and different code-rates. Another interesting 

future work would be to provide an analytical proof of 

the BER performances of these three Turbo decoding 

techniques using EXtrinsic Information Transfer (EXIT) 

charts. 
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