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Abstract: Indoor localization problem is a highly preferred research area in recent years. Estimating the location of a 

communication node is essential in many fields including swarm robotics, wireless sensor nodes etc. In applications 

without a reference point, relative localization of the nodes with respect to each other is preferred. In order to estimate 

the relative positions of the communication nodes, the distance information of each node with respect to other nodes is 

required. In this paper, it is aimed to estimate the distances between the nodes by using the received signal strength 

(RSS) information. For an indoor environment, the distances between the nodes are estimated by using the Received 

Signal Strength Indicator (RSSI) parameter provided by the wireless communication infrastructure, namely Wi-Fi. 

Keywords: Indoor distance estimation, RSSI. 

 

1. Introduction 
 

Many recent technologies, like wireless sensor 

nodes [1] or swarm robotics [2,3], employ several 

communication nodes for different application fields. 

In some applications estimating the position 

information of  each communication node is important 

to achive the goal. For example in team robotics, any 

node is assigned a  task. To accomplish the given task 

successfully, the nodes have to know the position of 

themselves and each other. Position information is also 

essential for localization of mobile devices in indoor 

environments especially for commercial applications 

[4]. One way to evaluate the position of each node is to 

estimate the distances between the nodes and locate 

each node by using triangulation techniques [5]. 

Communication metrics are parameters provided by the 

hardware used. Some metrics provide information that 

can be used to estimate the distance between the nodes. 

Several methods have been proposed for indoor 

distance estimation using wireless communication 

metrics. The two main methods are time based distance 

estimation methods [6,7] and received signal strength 

(RSS) based distance estimation methods [8,9]. 

Güvenç and Chong (2009) presents a survey of Time of 

Arrival (ToA) researches and compare their results 

[10]. Doğançay (2005) proposed a closed form Time 

Difference of Arrival (TDoA) based distance 

estimation method, he clustered the bearing angles with 

linear asymptotes to associate the asymptotes and the 

results show significant improvement [11]. Mazuelas et al. 

(2009) used only the real-time RSSI information to locate a 

node in an indoor environment that contains an unmodified 

WLAN network [12].  

RSSI based distance estimation is preferred by many 

researchers and has been used in many applications for 

indoor positioning. The wireless communication metrics 

can be used in both hybrid and non-hybrid localization 

techniques. RSSI is used along with TDoA and ToA in the 

work of Laaraiedh et al. (2011) to compare the hybrid 

localization schemes [13]. In the work of Xiao et al. (2011), 

indoor wireless positioning metrics, such as ToA, TDoA, 

Angle of Arrival (AoA) and RSSI, are compared. In this 

work, the positioning precision of TDoA for an UWB 

system is defined as a few centimeters to tens of 

centimeters, while it is tens of centimeters to tens of meters 

for an RSSI metric of a Bluetooth system [14]. Even though 

it is said that TDoA based distance estimations have 

advantages over RSSI, Hara and Anzai (2008) compared 

the experimental results of both estimation methods. 

Results showed that, for a crowded area, where Line Of 

Sight (LOS) between the nodes is being interrupted 

frequently, RSSI has advantages over TDoA [15].  

In this work, the preferred wireless communication 

metric is the RSSI, distance between two nodes will be 

estimated by using signal strength - distance relation 

(SSDR) models. Three of these models are International 

Telecommunication Union (ITU) Indoor Path Loss Model, 
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Two-Ray Ground Reflected Propagation Model and the 

experimantally derived model named of Experimentaly 

Derived Signal Strength Distance Relation Model 

(EDR).  

With the use of these three SSDR models, the 

distances between the communication nodes can be 

estimated by using RSSI metric. ITU indoor path loss 

model, is emphasized for the measurements taken in 

indoor office environment for site-specific validation 

of the model in the work of Chrysikos et. al. (2009) 

[16]. The basis of the second model, Two-Ray, can 

also be used as a relation model and in the work of 

Lassabe et. al. (2005) it is used to locate Wi-Fi 

terminals in an indoor environment [17]. They also 

compare the accuracy results of their work with the 

other solutions. Sommer and Dressler (2011) examined 

the Two-Ray Ground path loss models and they 

proposed an alternative model, for positioning vehicles 

on the road, Inter-Vehicle Communication Protocols 

[18]. The last model is the emprical deriven EDR 

model. This model is based on RSSI measurements and 

the real distances that RSSI measurements are 

recorded. Türkoral et al. (2016) proposed this 

experimental method as an alternative to the other 

indoor distance estimation techniques for a specific 

hardware implementation [8]. 

 

2. Methodology 
 

In this paper, it is aimed to estimate distances 

between communication nodes in a wireless 

communication network by using the RSSI metric 

provided by the communication infrastructure. The 

RSSI metrics are recorded and the corresponding 

distance is estimated by using three distance etimation 

methods presented previously. 
  

2.1. Measurement 
 

Every communication node consists of a single 

board computer (Raspberry Pi 1st Gen.) as the controller 

and a USB Wi-Fi dongle with a Realtek RTL8723BU 

integrated circuit on board. The measurement process is 

done in two ways.    

 

2.1.1. 1st Measurement Method 

 

This method relies on the measurements between 

only one receiver and one transmitter. The measuring 

process of this method is presented in Figure 1. 
 

 
 

Figure 1. Representation of the 1st Measurement Method 

 

The measurements are performed in an office 

building. One node is set to the origin and the other is 

moved according to the measurement points which are 

denoted as numbers as presented in Fig. 1. The measurement 

points are placed between 2 -12 m. Because, when the 

distance is lower than 2 m and higher than 12 m, the RSSI 

outputs are kept at a constant level determinde by the 

hardware. Hence, the distance cannot be estimated besides 

these limits. Until the distance reaches 2 m. between the 

nodes, the RSSI is always at its maximum value, -47 dBm, 

and after 12 m the signal strength is at its minimum value, -

70 dBm.  

 

2.1.2. 2nd Measurement Method 

 

The 2nd method can be used more for the localization 

systems. The nodes are located by a layout, and the 

measurements are taken according to that layout. The 

representation of the 2nd method is illsutrated in Figure 2.  
 

 
 

Figure 2. Illustration of the 2nd Measurement Method 

 

The distances between the nodes that are estimated by 

using the RSSI recordings taken with this method can be 

directly used in a localization algorithm. The RSSI metrics 

are recorded 20 times for each measurement setup in order 

to eliminate the instant errors. The mean of the 20 

recordings are the actual RSSI metric that is going to be 

used in the distance estimation process. This process is done 

in a basement of a school building. Hence, both the method 

and the environment is different for the two measurement 

methods. 

 

2.2. Distance Estimation 
 

The three distance estimation methods used in this work 

are presented in this section.  

 

2.2.1. ITU Indoor Path Loss Model 

 

ITU is an indoor path loss model that depends on some 

exponents and constants. ITU Model is presented in 

Equation 1. 

 

dBnLdNfPP fRSSIt 28)()(log)(log20 1010                            (1) 

  

where, 

Pt is the transmitted signal stregnth, 

PRSSI is the received signal strength, 

f is the frequency, which is 2.4 GHz 

N is the power loss coefficient, 

Lf(n) is the floor penetration loss, 

n is the floor difference of the receiver and transmitter, 

and d is the estimated distance [19,20]. 
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Pt is given as 13 dBm  at the product datasheet [21]. 

The transmitter and the receiver are always at the same 

floor so the floor difference n is 0. When all the values 

are set, the equation becomes; 

 

dBLdNP fRSSI 28)0()(log)10*4.2(log2013 10

9

10            (2) 

 

This estimation model depends on the number 

floors between the receiver and the transmitter, 

operating frequency and the ambient conditions. For 

different frequencies and different environmental 

materials, these factors change and the total loss differs 

from one another.  

 

2.2.2. Two-Ray Ground Reflected Path Loss Model 

 

This model is based on the free space propagation 

model but it also utilizes the reflected signal which is 

the ground reflected one of the same source. In Figure 

3, the illustration of the signal paths for this model can 

be seen.  
 

 
 

Figure 3. Two-Ray Model signal paths 

 

The mathematical expression of this model is 

presented in Equation 3. 

 

trtrtRSSI LGGPP                                                       (3) 

 

In Equation 3, PRSSI, Pt, Gr, Gt and Ltr represent the 

received signal strength, transmitted signal strength, 

receiver antenna gain, transmitter antenna gain and the 

path loss respectively [22]. PRSSI is provided by the 

RSSI recordings, Pt is determined by the hardware and 

is given by 13 dBm, both the receiver and the 

transmitter are identical so the antenna gains Gr and Gt 

are 1.7 dBm (taken from product datasheet, [23]). The 

path loss is defined as; 

 

)log(20
2

rt

tr
hh

d
L 

                                                            (4) 

 

where ht, hr and d are the transmitter antenna height, 

receiver antenna height and the desired distance 

respectively. Since the receiver and transmitter antenna 

heights are equal, the formula becomes; 

 

)log(20
2

2

h

d
Ltr 

                                                                     

(5) 

 

where h represents both the antenna heights. Hence, the 

resulting path loss model is; 

 

)log(202
2

2

h

d
GPP tRSSI 

                                                        (6) 

 

where G represents the identical antenna gains. As can be 

seen, Two-Ray Model relies on the antenna heights and 

gain aside of the transmitted and received signal strengths. 

 

2.2.3. EDR Model 

 

This model is based on the actual measurements and the 

relating distances. For both the measurement methods 

presented in the previous section, the mean of the RSSI 

recordings are plotted with respect to the distances they are 

measured. Then an exponential curve is fitted to the RSSI-

distance plot and that curve is called the EDR Model. For 

the 1st MM, the EDR Model is presented in Figure 4 and 

Equation 7. For the 2nd MM, the 2nd EDR Model is 

presented in Figure 5 and Equation 8. 
 

 
 

Figure 4. EDR Model for the 1st MM 

 

The black line in Figure 4 represent the actual 

measurements versus the corresponding distances. An 

exponential function is fitted to that curve and the EDR 

Model for the 1st MM is defined (red curve) by using the 

Matlab Curve fitting function. The mathematical expression 

of the 1st EDR Model is presented in Equation 7. 

 
RSSIP

ed
.06658.0

.09878.0


                                                         (7) 

 

The 2nd EDR Model is presented in Equation 8 and 

Figure 5 for measurements taken with using the 2nd MM. 

 
RSSIP

ed
.06364.0

.1777.0


                                                        (8) 
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Figure 5. Derivation of the 2nd EDR Model 

 

 

EDR Model is a specific model that strictly relies 

on the environmental conditions. Hence, to use this 

method, at least one EDR Model should be derived for 

every measurement area. 

 

3. Results 
 

In this section, the distance estimations for both of 

the methods is presented. Two measurement methods 

and three distance estimation methods yield a result set 

of six parts. In the following, ITU Model, Two-Ray 

Model and EDR Model results are presented. 

 

3.1. ITU Model Distance Estimation Results 
 

In order to estimate the distances by using the RSSI 

metric data, first, we need to set the exponents for the 

specific environmetal and working conditions. The 

remaining unknown exponents of the ITU Model are N 

and Lf. For both measurement methods, these 

exponents must be set to estimate the distances 

properly. To do that, the differences of the actual 

distances and the estimated distances are calculated for 

various combinations of N and Lf. From 10 to 40, for 

every N and Lf combination, the distance error is  

evaluated. The illustration of this distance error is 

presented in Figure 6 for the 1st MM. 
 

 
 

Figure 6. ITU exponents vs. distance error 

 

With this approach, the ITU exponents are set for both 

measurement methods. The resulting N and Lf values that 

give the minimum mean distance error are 28 and 11 for the 

1st MM, 25 and 10 for the 2nd MM respectively. These 

values are also consistent with the literature [11,12]. The 

resulting ITU equations when the desired value, the 

distance d, is left alone at one side of the equality, are 

presented in Equation 9 and 10 for the 1st and 2nd MM 

respectively. 

 

28

)44.38(

1 10





RSSIP

std                                                                (9) 

 

25

)44.37(

2 10





RSSIP

ndd                                                            (10) 

 

The distance estimation results of ITU Model for the 1st 

MM is presented in Figure 7. The resulting mean distance 

error which is the average value of the absolute differences 

of each actual and estimated distances, is found 

approximately 66 cm. The distance estimations and the 

actual distances are compared and illustrated in Figure 8 for 

the 2nd MM. 

 

 
 

Figure 7. ITU estimations for the 1st MM 

 

 
 

Figure 8. ITU estimations for the 2nd MM 

 

This set of results yield a mean distance error of 

approximately 108 cm for the 2nd MM.  



 

Türker TÜRKORAL et al./ IU-JEEE Vol. 17(2), (2017), 3295-3302 

  

 

 

3299 

 

Hereby, the results of the first path loss model that 

is used to estimate the distance values are presented in 

this subsection. 

 

3.2. Two-Ray Model Distance Estimation 

Results 
 

The 2nd method to estimate distances is the Two-

Ray Model. When the results of this model are 

observed, ,the actual distance curve and the estimation 

curve were nearly parallel but with a difference as can 

be seen in Figure 9. This difference is considered as an 

extra loss factor caused by the environment. Hence, 

two different equations are  for MM1 and MM2. The 

equation that is used to estimate the distance for the 1st 

and the 2nd measurement methods are presented in 

Equation 11 and 12 respectively. 

 

40

2

1 10.
lRSSIt PPGP

st hd



                                                    (11) 

 

40

2

2 10.
RSSIt PGP

nd hd



                                                     (12) 

 

Pt is 13 dBm and G is 1.7 dBm for both of the 

equations and the extra loss factor Pl is found to be 

approximately 7 dBm. The results of Two-Ray Model 

are presented in the following illustrations for both the 

measurement methods, the effect of the extra loss 

factor Pl is shown with another curve by observing the 

results of the lossless system. 

Figure 9 illustrates the distance estimation results of 

the 1st MM. As can be seen, when the loss factor is 

added to the system for this specific environment, the 

mean distance error decreases to an acceptable level. 

Where the mean distance error is 281 cm for the 

lossless system, it is approximately 57 cm when the 

extra loss factor is added for the first environment.  
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Figure 9. Two-Ray estimations of the 1st MM 

 

The distance estimation results of the 2nd MM are 

presented in Figure 10. Even if the extra loss factor Pl 

is not added to the system, the mean error performance 

is close to the previous application where the current 

mean error is approximately 87 cm. The environment 

and the measurement method is different, but Two-Ray 

Model yields considerably acceptable results. 
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Figure 10. Two-Ray estimations of the 2nd MM 

 

3.3. EDR Model Distance Estimation Results 
 

EDR Model is the last distance estimation method that 

is used in this study. This experimental method is derived 

for both of the measurement methods. The resulting 

distance estimations yield a mean distance error of 

approximately 53 cm and 84 cm for the 1st and 2nd MM 

respectively. As a general rule, the less the mean distance 

error the better the algorithm. As can be seen from Figure 

10, even if the mean distance error is considerably low, for 

some measurement points, the distance error is very high. 

Measuring point no:4 is a great example to this statement. 

Figures 11 and 12 show the actual and estimated distance 

comparison for both MMs for EDR Model. 
 

 
 

Figure 11. EDR estimations of the 1st MM 

 

In Figure 11, the distance estimation results of the EDR 

Model for the 1st MM is presented.  
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Figure 12. EDR estimations of the 2nd MM 

 

Figure 12 illustrates the distance estimation result 

of the EDR Model for the 2nd MM.  

 

3.4. Performance Comparison 
 

In this section, the distance estimation results of the 

3 methods are compared for both the measurement 

methods.  

Table 1 and Table 2 contains the mean distance 

estimations of each measurement point. Also the mean 

distance error of all the distance estimation methods 

are presented in the tables.  
 

Table 1. Performance comparison for the 1st MM 

 

Results of the 1st MM 

M. 

Point 

Actual 

Distance 
(m) 

ITU 

Estimations 
(m) 

Two-Ray 

Estimations 
(m) 

EDR 

Estimations 
(m) 

1 2,00 1,93 2,57 2,25 

2 2,50 2,01 2,64 2,37 

3 3,00 2,26 2,96 2,74 

4 3,50 3,27 3,90 3,65 

5 4,00 3,67 4,25 4,04 

6 4,50 3,61 4,23 3,96 

7 5,00 4,82 5,15 5,05 

8 5,50 5,73 5,79 5,79 

9 6,00 6,74 6,54 6,67 

10 6,50 7,11 6,81 6,99 

11 7,00 8,42 7,74 8,11 

12 7,50 7,04 6,86 6,97 

13 8,00 9,72 8,62 9,19 

14 9,00 8,20 7,73 7,98 

15 10,00 10,52 9,36 9,84 

16 12,00 10,93 9,68 10,33 

approximate mean 
distance error 

0,66 0,57 0,53 

 

According to Table 1, there are 16 measurement 

points which the RSSI recordings are taken at between 

2 m and 12 m. Resulting distance error values show 

that the best results are provided by the EDR Model, 

than Two-Ray Model and lastly ITU Model. The mean 

distance error values are close, 66 cm for ITU, 57 cm for 

Two-Ray and 53 cm for EDR Model.  
 

Table 2. Performance comparison for the 2nd MM 

 

Results of the 2nd MM 

M. 

Point 

Actual 
Distance 

(m) 

ITU 
Estimations 

(m) 

Two-Ray 
Estimations 

(m) 

EDR 
Estimations 

(m) 

1 3,00 2,36 3,78 3,47 

2 4,47 3,65 4,95 4,68 

3 5,00 5,56 6,45 6,27 

4 6,32 9,34 8,94 8,98 

5 6,40 5,00 6,03 5,82 

6 7,00 6,26 6,94 6,80 

7 7,28 8,34 8,18 8,18 

8 7,62 6,88 7,38 7,27 

9 8,06 8,49 8,42 8,41 

10 9,05 9,66 9,12 9,19 

11 9,22 9,69 9,14 9,21 

12 9,90 8,47 8,41 8,40 

13 10,77 8,10 8,17 8,14 

approximate mean 
distance error 

1,12 0,88 0,87 

 

The distance estimation results of the 2nd MM yields 

that, the error performances of the distance estimation 

models are similar to the results of the 1st MM. However, 

the mean distance error values are considerably different 

from the predecessor. The mean distance errors of ITU, 

Two-Ray and EDR Model are approximately 112 cm, 88 

cm and 87 cm respectively. The resulting performances of 

the EDR model and Two-Ray Model is nearly the same 

even if the individual distance estimations for the 

measurements points vary.  

 

5. Conclusions 
 

In this study, distance estimation between two nodes 

using three different propagation models based on the RSSI 

metric data are presented. The propagation models 

employed are, ITU Indoor Path Loss Model, Two-Ray 

Ground Reflected Path Loss Model and EDR Model for a 

specific environment. For two different environments, the 

results of each model are examined. The results show that, 

for a short range indoor distance estimation, with the 

particular hardware and environment selection, EDR Model 

provides the best results. 

By applying these set of distance estimations into a 

positioning algorithm, one can locate a node with a 

considerably acceptable error depending on the application. 

This positioning error can also be reduced by smoothing the 

distance estimations by weighting the results of each 

distance estimation methods. After the determination of 

which method is best for what range, with the proper 

weighting of each method, all three methods can be used 

together to reduce the error. 

Consequently, this work provides a basic knowledge 

about indoor distance estimation methods and metrics. 
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