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Abstract: The aim of the study is to generate control signals from surface Electromyography signals (EMGs) measured 

from four hand muscles; Extensor carpi radialis, Palmaris longus, Pronator quadratus and Flexor digitorum superficialis 

to navigate a prosthetic hand. The EMGs for five hand movements; finger flexion, wrist flexion, wrist extension, pronation, 

supination have been acquired. The right hand and left hand data recorded from two males and two females. The features 

have been computed from the windowed EMG of a 0.512 second interval.  From each muscle, root mean square value, 

mean frequency and peak frequency are employed as features. These features and their pairwise combinations have been 

classified with support vector machine. The classifications have been done for two scenarios: 1. For each subject the 

right (left) hand movement is classified from the right (left) arm EMG data. 2.  The left (right) hand movement of a subject 

is classified from the right (left) arm EMG data of the same subject.  The average right-hand success of the classification 

was 82.0%, while the left-hand categorization was 83.5%. Interestingly, the left-hand versus right-hand and the right-

hand versus left-hand classification success was obtained 65.7%. 

Keywords: Electromyography, hand prosthesis, support vector machine, hand movement classification. 

 

1. Introduction 
 

The natural disasters, accidents, wars, vascular 

diseases and congenital defects may cause loss of the 

hand. Loss of a hand can give negative consequences on 

the amputee’s ability to not completely participate in 

many works, those that involve hands. Although the 

hand is missing, the arm muscles can still be flexed. 

These muscle activities can be read from the skin surface 

as electromyography (EMG) signals by placing 

electrodes on the forearm and can be employed to 

generate control signals to navigate a hand prosthesis. 

There are many studies on concerning the classification 

of the EMG and generation of control signals from EMG 

to control a robot arm. In the following, some of these 

works are summarized. 

Liu, Huang and Weng (2007) [1] employed a novel 

EMG classifier called cascade kernel learning machine 

(CKLM) for classifying  EMG signals by employing 

autoregressive modelling (AR) and histogram of EMG. 

They reported the highest accuracy for an amputee 

subject and a normal subject, 93.54% and 96.76% 

respectively. 

K. Momen et.al. (2007) [2] in their work studied 

real-time classification of forearm  EMG signals 

corresponding to user-selected intentional movements 

for multifunction prosthesis control. They acquired 

EMG from fore arm flexors (two channels) of seven able 

budied and one below-elbow amputee. The natural logarithm 

of RMS value of 0.2 second EMG have been classified with 

fuzzy c-means clustering algorithm. An average accuracy 

79.9% ± 16.8% for all classes and 92.7% ± 3.2%  success for 

movements discernible at greater than 79% have been 

reported. 

N. S. Rekhi, A. S. Arora, S. Singh and D. Sing (2009) [3] 

analyzed the EMG signals from the ten subject’s forearm 

using wavelet packet transform and extracted features using 

the singular value decomposition. The support vector 

machine (SVM) classifier accuracy is over 96% for 

identifying of six motions (open to close, close to open, 

supination, pronation, flexion and extension).  

Ahsan, Ibrahimy and Khalifa (2011) [4] applied artificial 

neural network (ANN) for detecting left, right, up, down 

hand movements of 3 able bodied people. They also utilized 

a back-propagation (BP) network with Levenberg-

Marquardt training algorithm. Their designed network was 

able to classify in average of  88. 4%. 

Baspinar, Varol and Yildiz (2012) [5] classified seven 

different motions  of four people by ANN and Gustafson 

Kessel algorithm. They found that ANN classifiers give 

91.95% classification success. 

As it is easily noticed the subjects, experiments and 

methods in these studies are different and unique. 

The main goal of our research is to employ EMG signals 

obtained from the forearm to successfully identify which 

type of hand movements is done. The identification of the 
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movement type (the features related to the movement 

type) can be used to generate control signals for a robotic 

arm.  

By considering this goal the algorithm is realized 

with a minimum run time and maximum accuracy as 

possible [6, 7]. Block diagram of the process is sketched 

in Figure 1. 

 

Figure 1. The signal processing components of a robotic hand 

 

The rest of the paper is organized as follows. In 

section two experiment and approach are described. 

Results of the algorithm are given in section three. And 

finally the outcomes are discussed and the paper is 

concluded in section four.  

 

2. Material and Method 
 

In this study EMG signal are acquired by placing 

bipolar Ag/AgCl electrodes on the left and the right 

forearm surface, then features are extracted for 

classifying, five hand movements; finger flexion, wrist 

flexion, wrist extension, pronation, supination (see 

Figure 2).  Many variants of movements of a hand 

prosthesis may be considered. However the wrist is 

capable of only three sets of distinct movements: flexion 

and extension, supination and pronation and, ulnar 

deviation and radial deviation. For this reason, the basic 

five hand movements have been recorded and classified. 

We used a four-channel EMG device (ME3000P8 

muscle tester, Mega Electronics Ltd, Finland) for 

recording simultaneously four muscle groups; extensor 

carpi radialis, palmaris longus, pronator quadratus, 

flexor digitorum superficialis. These muscles have been 

chosen since they are responsible for producing the five 

hand movements. The EMG signals have been recorded 

in laboratory of sport physiology of medicine faculty of 

Çukurova University. The EMGs are read from right and 

left arms of  two females whose are 20,23 and two males 

(four able bodied people) whose are 27 years old. The 

EMGs were recorded in bipolar configuration. Before 

acquiring we used muscle stimulator for correctly 

specifying muscle locations and then electrodes was 

placed on the specified locations. The locations of 

electrodes on the hand for the identified muscles of a 

subject are shown in Figure 3. For each hand movement, 

start and stop of the recording were marked. The hand 

movements; finger flexion, wrist flexion, wrist 

extension, pronation, supination were performed 

sequentially by the subjects. Equal number of samples 

for each class was acquired. The total number of trials 

for each subject has been different (see Table 1 and 

Table 2). The EMG signal from electrodes was 

amplified using a preamplifier with a band pass of 8Hz 

to 500Hz. Sampling frequency was 𝑓𝑠=1000 Hz and the 

resolution was 12 bits/sample (about 3 mV/bit). All 

algorithms have been implemented by using MATLAB® 

release R2011 on a personal computer (equipped with an 

Intel® Core™ i5-3317U CPU@1.70 GHz and a 4 GB 

RAM). The processing and classification have been applied 

on offline data. 
 

 

Figure 2. Five hand movements; from left to right finger flexion, 

wrist flexion, wrist extension, and in the first and third row of the 

last column illustrates pronation, supination movements 

respectively. 

 

Figure 3. Electrode positions for bipolar EMG reading from four 

muscles on the hand.  

 

2.1. Pre-processing 
 

As it is well known medical signals are subject to the 

power line noise. Therefore, it is required to suppress the 

power line signal added in the EMG. A notch filter does the 

removal of the power line frequency. We have employed a 

second-order discrete IIR notch filter with the transfer 

function [8]: 

 

𝐻(𝑧) =  
1−2 𝑐𝑜𝑠(2𝜋𝑓𝑛/𝑓𝑠)𝑧−1+ 𝑧−2

1−2𝑟 𝑐𝑜𝑠(2𝜋𝑓𝑛/𝑓𝑠) 𝑧−1+ 𝑟2 𝑧−2                                  (1) 

 

and a bandwidth = 0.02 𝑓𝑠. The notch frequency is 𝑓𝑛 =
50 𝐻𝑧 and r = 0.97. The first 101 samples of the impulse 

response have been used to obtain its FIR approximation. 

This allows to specify the filter boundaries; the first and the 

last 50 samples of the filter output are removed. 

High frequency noise is also suppressed by linear phase FIR 

low-pass filter. The FIR filter is designed by the Fourier 

series method with the hamming window. The coefficients 

of the low-pass filter with a cut-off frequency 𝒇𝟎 Hz and the 

length 2N + 1 is [9]: 

 

ℎ(𝑛)  =  (0.5 +  0.46 𝑐𝑜𝑠 (𝜋𝑛/𝑁)) .
𝑠𝑖𝑛 (2𝜋𝑓0 𝑛/ 𝑓𝑠)

𝜋𝑛
  

𝑛 = −𝑁 …  𝑁 (2) 
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where N=10 and cut off frequency is 𝒇𝟎 =180 Hz. A 

sample of notch and low-pass filtered EMG signals of a 

finger flexion movement are also given in Figure 4. 

From top to bottom EMGs of extensor carpi radialis, 

palmaris longus, pronator quadratus and flexor 

digitorum superficialis muscles are plotted respectively.  

After removal of high frequency components, the 

EMG signal from each four muscles are segmented. 
 

 

2.2. Signal segmentation 
 

We have four channels and five different hand 

movement. Initially the EMG signal of four channels 

between the start and stop markers is extracted. The 

channel with the highest power (mean square value) is 

used to decide the midpoint of the segmentation; namely 

the reference point. The position of the peak value of the 

envelope of this dominant channel used as the reference 

point for the segmentation and is denoted by the sample  

 

Figure. 4. EMGs of four muscles corresponding to a finger 

flexion movement. The vertical line marks the reference point 

of this finger flexion movement. 

index 𝑡𝑖. All four channels are segmented based on this 

reference point (see Figure 4).  

The range of the segmentation is chosen [𝑡𝑖 −
𝐿/2 + 1 , 𝑡𝑖 +  𝐿/2] with 𝐿 =  2𝑅 , (512 in this study) is 

the length of the segment. The window or interval of the 

burst signal of the dominant channel is computed by 

succeeding the following steps:  

- RMS signal of the EMG is obtained. 

 

 𝑅𝑀𝑆(𝑛) = √
1

11
∑ 𝐸𝑀𝐺2(𝑛 − 5 + 𝑘)10

𝑘=0   (3) 

 

- A threshold value is computed 

 

 𝑇𝐻𝑅 = min(𝐸𝑀𝐺) + 0.25(max(𝐸𝑀𝐺) −
min(𝐸𝑀𝐺)) (4) 

 

- Envelope of the EMG is computed by employing the 

Hilbert transformation [10]. 

 

 𝐸𝑁𝑉 =
1

2
√𝐸𝑀𝐺2(𝑛) +  𝐸𝑀�̂�2(𝑛) +

1

2
√𝐸𝑀𝐺2(𝑛) + (−𝐸𝑀𝐺)2̂ (𝑛)  (5) 

 

where 𝐸𝑀𝐺(𝑛)̂  and (−𝐸𝑀𝐺̂ )(𝑛) are Hilbert transforms of 

𝐸𝑀𝐺(𝑛) and −𝐸𝑀𝐺(𝑛) respectively. 

- The window is the region (interval) where 𝐸𝑁𝑉 > 𝑇𝐻𝑅.  

The outcome of this approach for a sample EMG signal 

is shown in Figure 5. 
 

2.3 Feature extraction 

 This phase involves extracting those features of the signal 

that display certain characteristic properties of EMG signal 

that are unique to the signal and are thus suitable for the 

classification purpose. Below the features used in this study 

are listed. 

 

RMS value: 

It is the root of the average power of the signal. 

Figure 5. A burst of an EMG signal (solid black line) and the 

window (solid gray line) used to segment the burst signal. 

 RMSV = √
1

L
∑ 𝐸𝑀𝐺2(𝑛)𝐿−1

𝑛=0   (6) 

 

Mean-frequency: 

It is computed by calling three approaches:  

 

1. The discrete Fourier transform:   

The mean frequency is extracted from discrete Fourier 

transform of the signal. 

 

 𝒇𝒂 =  
∑ |𝑿 (𝒌)|𝟐.𝒌

𝑳
𝟐−𝟏

𝒌=𝟎

∑ |𝑿(𝒌)|𝟐
𝑳
𝟐−𝟏

𝒌=𝟎

∙
𝒇𝒔

𝑳
 (7) 

𝑋(𝑘) = ∑ 𝐸𝑀𝐺(𝑛) 𝜔(𝑛)𝑒−𝑖
2𝜋

𝐿
𝑘 𝑛𝐿−1

𝑛=0   
 

where 𝑓𝑎 is the average frequency, 𝑓𝑠 denotes the sampling 

frequency and 𝜔(𝑛) is the Hamming window [11].  

 

2. Sub-space method 

The minimum norm is an Eigen decomposition based 

frequency estimation method and is employed to guess the 

dominant frequency. Suppose that the signal contains are 𝑝 



 

Sami ARICA et al. / IU-JEEE Vol. 17(2), (2017), 3425-3432 

 

  

 

 

3428 

 

complex exponentians, then 𝑝 Eigen vectors the auto-

correlation matrix of the signal corresponding to 𝑝 

highest eigen-values are linked to the signal and the 

remaining 𝑀 − 𝑝  Eigen vectors form noise sub-space. 

The minimum norm is peak-frequency of the frequency 

estimation function 

 𝑃(𝑒𝑗𝜔) =
1

|𝑒𝐻𝑎|
2  (8) 

 

where 𝑎 is a vector which lies in the noise sub-space of 

the signal and has minimum norm and its first element 

is unity. The 𝑒 vector is the frequency vector with 𝑀 

components:  

 𝑒𝐻 = [1 𝑒−𝑗𝜔 ⋯ 𝑒−𝑗(𝑀−1)𝜔]    (9) 

 

Because a real frequency contains two complex-

conjugate exponentials 𝑝 = 2 in this study. And the 

dimension of the noise sub-space has been chosen 𝑀 −
𝑝 =6. This frequency will be denoted as 𝑓𝑠𝑢𝑏. 

 

3. Number of zeros crossings 

The frequency is predicted by the following formula: 

𝑓𝑒𝑠𝑡 = 𝑓𝑠
𝑘

2𝐿
   (10) 

 

with 𝑘 is the total number of zero crossings and 𝐿 is the 

signal length. 

 

Peak Frequency:  

Peak frequency of frequency spectrum of the signal 

computed by discrete Fourier transform is extracted. It 

is denoted as 𝑓𝑝. 

These features are computed from the windowed 512 

length segment to generate feature vector for 

classification. For each trial the highest RMSV of four 

channels is scaled the unity and, hence RMSVs become 

less than or equal to one. And the frequency range 
[0, 500] is also scaled to [0, 25] to reduce 40 Hz to 

unity. The features used for the classification are 𝑅𝑀𝑆𝑉, 

𝒇𝒂, 𝒇𝒔𝒖𝒃,  𝒇𝒆𝒔𝒕, 𝑓𝑝 and, (𝑅𝑀𝑆𝑉 , 𝒇𝒂), (𝑅𝑀𝑆𝑉 , 𝒇𝒔𝒖𝒃), 

(𝑅𝑀𝑆𝑉 , 𝒇𝒆𝒔𝒕) and (𝑅𝑀𝑆𝑉 , 𝑓𝑝) subsequently. The 

feature vectors obtained from the EMGs of the four 

channels are concatenated. Consequently we have 

features of length four when a single attribute is used, 

and eight when a pair of attributes are employed from 

the four muscles. The classification performance is 

examined for each of these feature vectors. 

 

2.4 Classification 

  As a next step of the procedure the features are fed to a 

classifier. A support vector machine (SVM) is utilized 

for decoding the movement type. The SVM does not 

require computation of the covariance matrix of the data 

as in the statistical classifiers. This is an advantage of 

SVM over the statistical classifier.  

An SVM constructs a separating hypersurface between 

two categories of data, which can be used for classification, 

separation and detection of two classes. In case of linear 

SVM the hypersurface is a hyperplane. For linearly separable 

features, a linear SVM achieves a good separation by 

choosing the hyperplane that has the largest distance to the 

nearest training data point of any class [12].   

We employ linear SVM and because it is much simpler 

than non-linear SVM and summarize it below. 

The optimal hyperplane is given by: 

 

 𝑤𝑇𝑥 − 𝑏 = 0  (11) 

 

where w represents a weight vector and x represents an input 

(feature) vector. A particular set of input vectors is used to 

define the optimal hyperplane, called support vectors. 

Suppose 𝑥𝑖  is the i-th sample and  𝑦𝑖  is the i-th  output (the 

class label). The linear support vector machine maximize 

margin; 2/‖𝑤‖
 
between support-vectors (boundaries of two 

classes): 𝑤𝑇𝑥𝑖 + 𝑏 = 1 for the class labeled 𝑦𝑖 = 1 and 

𝑤𝑇𝑥𝑖 + 𝑏 = −1  for the class labeled 𝑦𝑖 = −1. For any new 

sample 𝑥𝑖, classification is then performed based on the 

following conditions [8,13,14]. 

 

if      𝑤𝑇𝑥𝑖 − 𝑏 ≥ 0,                      𝑦𝑖 =  +1  (12) 

if      𝑤𝑇𝑥𝑖 − 𝑏 < 0,                      𝑦𝑖 =  −1 
 

SVM is never designed as multiclass classifier. In this 

study, we have five hand movements and classes. For solving 

this problem one class is classified versus others (one versus 

all classification). The five classes mean five binary 

classifiers and therefore five results. From these five outputs 

movement types is decided [14].  The class indices 0 and 1 

used to indicate a non-class and a class member respectively.  

It is experimentally observed that, for a feature input to the 

classifiers, one classifier output is 1 while the others are 0. 

Consequently, the error correction matrix for classifying five 

hand movements is an identity matrix of dimensions five-by-

five. 

 

3. Results 
 

In this section we report the classification results for right 

hand, left hand and left versus right (and right versus left) 

classification performances of the features.  

In case of right hand and left hand classification trials of each 

subject are randomly divided into the two equal size groups 

(training and test data are selected randomly). The first group 

is used for training and the second group is employed for 

testing and then the role of testing and training is changed 

and finally average success of this process is obtained (2-fold 

cross validation). This procedure is repeated twenty times 

and the average success is reported. 

For obtaining left versus right and right versus left 

classification outcome, left hand data of subject is used for 

training and right hand data is employed for testing and then 

the role of testing and training data is changed and finally 

average success of this process is obtained. 

The results for every nine types of feature vectors for the 

classification arrangements are provided in Tables 1-3. Table 

1 shows right hand classification accuracies and table 2 list 
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left hand classification rates of the subjects. Table 3 

contains performances for right versus left and left 

versus right classification.  

Statistical significance of the results have also been 

investigated and reported. In case of right and left hand 

classifications, the classification is repeated twenty 

times for each subject, therefore in total it accounts 

eighteen results for each feature type. The p-value of 

ANOVA is computed based on these eighteen outcomes 

for every feature type. The p-values for Table 1, 2 have 

been less than  0.05. The paired ttest for pairs of features 

has also been computed. In case of right hand 

classification, the features 𝑓𝑎 and 𝑓𝑠𝑢𝑏 are statisticly 

dependent (p-value = 0.64). Although the average 

accuracies for the features 𝑅𝑀𝑆𝑉  and (𝑓𝑎, 𝑅𝑀𝑆𝑉) are 

almost equal, p-value is obtained less than 0.05 which 

indicates no statistical dependence. When paired ttest of 

the left hand classification is investigated the features 

(𝑓𝑝, 𝑅𝑀𝑆𝑉) and  (𝑓𝑠𝑢𝑏 , 𝑅𝑀𝑆𝑉)  are found to be 

statistically dependent (p-value = 0.26). The confusion 

matrix of right hand and left hand classification for 

feature type (𝑓𝑒𝑠𝑡 , 𝑅𝑀𝑆𝑉) which provides the highest 

average accuracy are also given in Table 4 and 5 

respectively. The abbreviations FFLEX, WFLEX, 

WEXT, PRON and SUP in the tables stand for finger 

flexion, wrist flexion, wrist extension, pronation and, 

supination in that order. 

For the right versus left and left versus right 

classification, there are two measurements for each 

subject (one for right versus left and one for left versus 

right) and average of these for every subject are accepted 

which makes four results in total for each feature type. 

Four results for a feature type may not be statistically 

sufficient nevertheless the p-value of ANOVA analysis 

is computed and found to be 0.06 which is higher than 

significance level 0.05. This indicates that at least one 

of the feature type is statistically dependent with the 

others. The paired ttest has also been run and the 

outcomes (p-values) of the paired ttest have supported 

this result. The confusion matrix (in percent) for feature 

type (𝑓𝑒𝑠𝑡 , 𝑅𝑀𝑆𝑉) for comparision with the right and 

left hand categorization is also been reported in Table 6.  

For both right hand and left hand categorization 

combination of RMSV and average frequency estimated 

with number of zero crossings and RMS value provides 

the best accuracy. The right versus left and left versus 

right hand classification accuracy is less than the single 

right and left hand categorization however it is greater 

than the chance level; since there are 5 classes the 

change level is 100/5 = 20% and 65.7% average 

success is quite higher than this chance level.   

 

4. Conclusions 
 

The loss of arms can give negative consequences on 

the amputee’s ability to fully participate in daily life. 

Helping to the amputees to get them back to their normal 

life is the motivation of studies on prosthetic arm 

controlled with EMG signals. 

In this study SEMGs acquired from four muscles; 

extensor carpi radialis, palmaris longus, pronator 

quadratus, flexor digitorum superficialis from three subjects 

(two females and two male) for five hand movements; finger 

flexion, wrist flexion, wrist extension, pronation, supination 

have been classified.  The common segmentation window for 

channels has been chosen as to cover burst signal of the 

SEMG channel with the highest average power.  A multi-

class classifier obtained with the union of binary SVM 

(support vector machine) classifiers is employed to 

distinguish the movements from the several combinations of 

features; frequency measures (average, peak value, 

minimum norm estimation and number of zero crossings) 

and RMS value. 

Among the feature combinations right hand and left hand 

classifications attains the highest accuracy with average 

number of zero crossing and RMS value. The accuracy is 

82% for right hand classification and is 83% for left hand 

categorization. This feature produces the best success also 

for right versus left and left versus right classification with 

65.7% accuracy. Since there are five categories the chance 

level is 20% and these rates are above the chance level.  

Accordingly, the results look satisfactory. 

In the study, the decision of left hand movement from the 

right arm muscles and right hand movement from the left 

arm muscles has also been considered. To our knowledge 

this approach does not exist in the literature. The 65.7% 

classification rate achieved is promising. It shows that the 

identification of a left hand movement from the right arm 

muscles and a right hand movement from the left hand arm 

muscles is possible.   

The studies involving the classification of SEMG/EMG 

related to a hand movement in the literature [1, 2, 3, 4, 5, 13] 

are different in terms of the subject group, data, experiment 

and method. Therefore the comparison of this study with 

these works may not be appropriate and significant. If it is 

compared the results obtained in this study are not 

outstanding among the performances of the similar studies in 

the literature, nevertheless it is not far from the average or 

nearby or better from some of them. 

The classification performance of each category has also 

been explored individually by computing confusion matrix.  

It is observed that the right hand and left hand supination 

movement is classified as wrist extension erroneously with 

25.3% and 30.6% respectively. In the case of right versus left 

and left versus right hand classification the classifier 

confuses supination movement with wrist extension and 

finger flexion and it also mixes pronation movement with 

wrist extension and flexion and finger flexion. Consequently 

it does not perform well in the classification of supination 

and pronation movements when right/left and left/right hand 

classification is involved.  

We have employed commonly used features types. The 

average number of zeros crossing with RMS value produced 

the best accuracies. The results suggest that average number 

of zero crossings with RMS value should be employed as 

feature in hand movement classification.  It may possible to 

increase the classifier recognition rate by using different 

features. Alternative multi-class classifiers may also improve 

the performance. 

As a result, the classification rates obtained for 

classification of right and left hand movements show that the 

method used in the study can be employed to generate 

control signals from the arm to control a hand prosthesis. 
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Table 1. Classification rates (%) for right hand classification 

obtained with of 2-fold cross validation 

 

SBJ #TRS 𝑓𝑎 𝑓𝑝 𝑓𝑠𝑢𝑏  𝑓𝑒𝑠𝑡  𝑅𝑀𝑆𝑉 

S1 90 45.5 42.9 52.9 54.0 68.2 

S2 200 57.5 53.5 56.6 73.6 74.7 

S3 250 46.9 36.5 47.5 56.2 45.1 

S4 320 55.0 33.0 49.1 50.7 64.1 

Average 51.2 42.2 51.5 58.6 63.0 

Standard deviation 5.9 8.6 4.1 10.2 12.7 

 

  Feature combined with RMSV 

SBJ #TRS 𝑓𝑎 𝑓𝑝 𝑓𝑠𝑢𝑏  𝑓𝑒𝑠𝑡   

S1 90 68.2 79.6 81.3 81.3  

S2 200 74.8 78.8 74.5 74.5  

S3 250 46.4 70.0 76.1 76.1  

S4 320 64.1 68.2 73.7 73.7  

Average 63.4 74.2 76.4 82.0  

Standard deviation 12.1 5.9 3.4 4.9  

 

Table 2. Classification rates (%) for left hand 

classification obtained with of 2-fold cross validation 

 

SBJ #TRS 𝑓𝑎 𝑓𝑝 𝑓𝑠𝑢𝑏 𝑓𝑒𝑠𝑡 𝑅𝑀𝑆𝑉 

S1 100 55.2 43.5 53.6 56.1 73.3 

S2 220 47.2 42.3 34.2 46.8 79.7 

S3 190 50.2 35.9 46.7 52.0 72.3 

S4 250 48.8 39.7 41.6 50.3 50.4 

Average 50.3 40.3 44.0 51.3 68.7 

Standard 

deviation 

3.5 3.3 8.2 3.9 12.7 

 

  Feature combined with RMSV 

SBJ #TRS 𝑓𝑎 𝑓𝑝 𝑓𝑠𝑢𝑏 𝑓𝑒𝑠𝑡  

S1 100 72.3 74.0 80.1 81.2  

S2 220 79.7 84.0 81.0 87.6  

S3 190 72.3 76.2 80.7 85.6  

S4 250 50.5 69.9 65.3 79.7  

Average 68.7 76.1 76.8 83.5  

Standard 

deviation 

12.6 5.9 7.7 3.7  

 

Table 3. 2-fold cross validation results for left hand versus 

right hand and right hand versus left hand classification 

 

SBJ 𝑓𝑎 𝑓𝑝 𝑓𝑠𝑢𝑏 𝑓𝑒𝑠𝑡 𝑅𝑀𝑆𝑉 

S1  40.7 36.7 51.7 46.1 49.9 

S2  50.8 43.8 31.4 47.1 70.7 

S3 36.4 30.7 29.3 36.6 20.5 

S4 25.7 22.0 28.9 29.9 33.4 

Average 38.4 33.3 35.3 40.0 43.6 

Standard 

deviation 

10.4 9.2 11.0 8.2 21.7 

 

 

 Feature combined with RMSV 

SBJ 𝑓𝑎 𝑓𝑝 𝑓𝑠𝑢𝑏 𝑓𝑒𝑠𝑡  

S1  49.9 69.4 74.1 70.2  

S2  70.7 77.8 70.5 80.9  

S3 21.3 58.4 55.4 70.6  

S4 33.4 34.6 35.7 40.9  

Average 43.8 60.1 58.9 65.7  

Standard 

deviation 

21.4 18.7 17.5 17.2  

 

Table 4. Confusion matrix of right hand classification obtained 

using feature (𝑓𝑒𝑠𝑡 , 𝑅𝑀𝑆𝑉). Columns denote predicted and rows 

indicate actual values.  

 
FFLEX 

 

WFLEX WEXT PRON SUP  

8.7 1.5 25.3 8.8 55.7 SUP 

5.3 0.1 15.0 76.4 3.2 PRON 

3.7 0.0 95.5 0.1 0.6 WEXT 

18.3 81.7 0.0 0.0 0.0 WFLEX 

93.2 4.2 0.8 1.0 0.8 FFLEX 
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Table 5. Confusion matrix of left hand classification obtained 

using feature (𝑓𝑒𝑠𝑡 , 𝑅𝑀𝑆𝑉). Columns denote predicted and 

rows indicate actual values. 

 
FFLEX WFLEX WEXT PRON SUP  

12.5 3.3 30.6 0.5 53.2 SUP 

3.1 1.9 14.4 79.7 0.9 PRON 

5.7 0.1 93.3 0.3 0.8 WEXT 

4.0 95.8 0.2 0.0 0.0 WFLEX 

96.4 0.0 3.3 0.3 0.1 FFLEX 

 

Table 6. Confusion matrix of right versus left hand and left 

versus right hand classification obtained using feature 
(𝒇𝒆𝒔𝒕, 𝑹𝑴𝑺𝑽). Columns denote predicted and rows indicate 

actual values. 

 

FFLEX WFLEX WEXT PRON SUP  

19.8 4.6 35.6 5.5 34.7 SUP 

22.2 21.6 17.9 33.7 4.6 PRON 

4.9 0.0 92.7 0.6 1.8 WEXT 

11.9 85.7 0.3 2.1 0.0 WFLEX 

66.6 9.7 15.5 1.8 6.4 FFLEX 
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