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Abstract: This paper presents a Cellular Neural Networks (CNN) based rotation invariant fingerprint recognition 

system by keeping the hardware implementability in mind. Core point was used as a reference point and detection of the 

core point was implemented in the CNN framework. Proposed system consists of four stages: preprocessing, feature 

extraction, false feature elimination and matching. Preprocessing enhances the input fingerprint image. Feature 

extraction creates rotation invariant features by using core point as a reference point. False feature elimination 

increases the system performance by removing the false minutiae points. Matching stage compares extracted features 

and creates a matching score. Recognition performance of the proposed system has been tested by using high resolution 

PolyU HRF DBII database. The results are very encouraging for implementing a CNN based fully automatic rotation 

invariant fingerprint recognition system. 

Keywords: Fingerprint, Cellular Neural Networks, Rotation Invariant, Fingerprint Recognition System. 

 

1. Introduction 
 

The use of biometrics is an evolving component in 

today’s society. Fingerprints has been widely used in 

forensics applications such as criminal identification 

and prison security. Also fingerprint recognition 

technology has been widely adopted in civilian 

applications such as electronic banking, ecommerce, 

and access control because fingerprints are simple to 

get via fingerprint reader. Fingerprint recognition 

continues to be one of the most widely used biometric 

systems for personal identification. Aim of this work is 

to propose a hardware implementable CNN based 

system for fingerprint recognition. In the literature, 

although many methods exist for fingerprint 

recognition, there are relatively few CNN based 

methods [1, 2, 3]. Also these methods are not rotation 

invariant like the one proposed here.  

The concept of CNN was introduced by L.O. Chua 

and L. Yang [4] and many papers have been published 

about the CNN and its application in image processing 

[5, 6, 7, 8]. CNN is a 2D grid of identical and regularly 

spaced cells. Therefore, the topology of CNN is well 

suited for image processing applications, image pixels 

can be mapped directly on to the array of CNN cells for 

processing. In other words, each cell in the CNN 

corresponds to a pixel in the image. Each cell 

communicates with the cells in its local neighborhood only. 

The CNN cells are very simple circuit nodes.  

 

 

Thus, CNNs are amenable to implementation in VLSI 

and FPGA [9, 10, 11, 12] technology, a feature that is 

extremely important for building fast image processing 

hardware. Different image processing tasks can be 

performed by changing the template coefficients of the 

CNN. 

The proposed CNN based rotation invariant fingerprint 

recognition system consists of four stages: preprocessing, 

feature extraction, false feature elimination and matching. 

The preprocessing stage includes contrast stretching, 

Gabor-type filtering, lowpass filtering and grayscale to 

binary thresholding. The feature extraction stage includes 

core point detection, ridgeline thinning, minutiae point 

extraction and it creates a 2D feature vector. The false 

feature elimination stage includes removing the four types 

of false minutiae points. The matching stage includes 

comparing the extracted features with the ones in the 

database and it creates a matching score. The extracted 2D 

feature vector is used in the fingerprint matching. The False 

Match Rate (FMR), False Non-Match Rate (FNMR) and 

Receiver Operating Characteristic (ROC) curves are also 

calculated by changing the threshold value to reflect the full 

system performance for a possible application. Recognition 

performance of the proposed system has been tested by 

using PolyU HRF DBII database [21].  
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2. CNN Model for Gray Scale Image 

Processing 
 

The normalized time nonlinear differential equation 

for cell (i,j) in the original Chua-Yang CNN model 

(conventional CNN) [4] for neighborhood radius r is 

given as: 
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     are the 

feed-back and feed-forward templates, ,i ju , ,i jx , ,i jy  

and I  are the input, the state, the output and the bias 

term, respectively. Because of the thresholded 

activation function at the output given in Eq. (2), 

conventional stable CNN can only provide binary 

output which does not carry color information more 

than two. In order to represent gray scales at the output, 

a linear CNN is required, which can be defined as a 

purely linear version of conventional CNN. In other 

words, the piecewise output nonlinearity in the 

conventional CNN is set to the identity to obtain a 

linear CNN. Equivalently, it can be assumed that the 

input to the conventional CNN is sufficiently small and 

the dynamics evolve in a such way so that the outputs 

of the CNN never enter the saturation region of the 

piecewise linear output nonlinearity. By removing the 

output nonlinearity, the cell equation for such CNN is 

obtained from Eq. (1) as follows: 

, , ,

,

, ,

,

( )
( )   ( )

 

r
ij

i j k l i k j l

k l r

r

k l i k j l

k l r

dx t
x t a x t

dt

b u I

 



 



  

 





          (3) 

In this case, each cell on the array is simply a linear 

spatial filter whose input/output behavior is described 

by the A  and B  templates. To process a gray scale 

image composed of M N  pixels with an M N  

linear CNN, the gray scales of the image should be 

normalized into the allowed input range [-1,1]. Hence 

in linear CNN, gray scale images are represented by 

values in the range [-1,1]; e.g. black by -1 and white by 

+1, and gray scales in between. Provided that the 

network parameters are such that the linear CNN is 

completely stable, after the transient has decayed to 

zero the state will settle to an equilibrium point. 
 

2.1. Discrete Time CNN Model 
 

In order to discretize the normalized time differential 

equation of a CNN cell by sampling, let us define 

t nT  then for neighborhood radius r  we obtain: 
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where T  is a constant time-step. After choosing a 

numerical integration method, the resulting discrete time 

system can be implemented in the time domain through 

difference equations. If Euler-forward approximation 

formula is used 
( ) (( 1) ) ( )

( )

ij ij ijdx nT x n T x nT

d nT T

 
  then 

substituting ( ) ( )x n x nT , ( ) ( )y n y nT  gives the 

discrete CNN model as 
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Recall that Eq. (5) is space invariant and for each pair 

( , )i j , 1,  ...,  i M , 1,  ...,  j N , it defines a system 

of M N  difference equations. 

 

3. CNN Based Fingerprint Preprocessing 
 

A fingerprint image enhancement algorithm receives a 

poor quality fingerprint image, applies a set of processes to 

the input fingerprint and outputs the improved quality 

fingerprint image. Fingerprints have been enhanced by 

using the method proposed in [13]. According to the 

proposed method, the preprocessing stage processes the 

fingerprint images segment by segment and consists of four 

substages: contrast stretching, CNN Gabor-type filtering, 

lowpass filtering and grayscale to binary thresholding. This 

section briefly describes these preprocessing steps. 

 

3.1. Contrast Stretching 
 

An image histogram is a chart that shows the relative 

distribution of intensities in an image. Contrast stretching 

maps a section of the image intensities to the full output 

intensity range (for CNN [-1,1]) linearly. By using this 

operation, low contrast images can be improved [13].  

 

3.2. Gabor-type Filtering 
 

In a gray level and small fingerprint image segment, 

ridges and valleys form a slowly varying sinusoidal-like 

shaped plane wave which has a well-defined spatial 

frequency and orientation. Therefore, an orientation 

selective bandpass filter tuned to the corresponding local 

spatial frequency and orientation can effectively remove the 

undesired noise and preserve the true ridge and valley 

structures. As bandpass filters, Gabor filters have both 

frequency and orientation selective properties and have 

optimal joint resolution in both spatial and frequency 

domains [14]. Hence, they are an appropriate choice for 

processing of local structures. In this study, CNN Gabor-

type filters [15] was used as the orientation selective 

bandpass filters. 
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3.3. Lowpass Filtering 
 

Due to the effect of noise, the most enhanced image 

obtained by CNN Gabor-type filtering does not always 

accurately represent the ridge features. Therefore, after 

filtering a spatial smoothing operation on the whole 

image is necessary. Since ridge orientation varies 

slowly compared to the noise on the image, a lowpass 

filter should be used to modify the incorrect ridges. 

The CNN templates given in [16] was used as the 

lowpass filter. 

 

3.4. Gray-Scale to Binary Thresholding 
 

The feature extraction method proposed for 

fingerprint images are based on image binarization. 

Therefore, after spatial smoothing, grayscale to binary 

thresholding is applied to the enhanced grayscale 

fingerprint image by using the CNN templates given in 

[17]. 

 

4. CNN Based Fingerprint Feature 

Extraction 
 

This section describes the proposed fingerprint 

feature extraction procedure, which is based on core 

point detection, ridgeline thinning, minutiae point 

extraction and minutiae point angle calculation. 

 

4.1. Core Point Detection 
 

Finding a reference point is very important in 

advanced matching algorithms because it can be used 

as the location of origin for marking minutiae points. In 

this work, core point was used as a reference point and 

was found by porting the algorithm defined in [18] to 

the CNN framework. Core point is a global structure 

(i.e. overall pattern of the ridges and valleys) of a 

fingerprint image and has special symmetry properties. 

It can be found by its strong response to complex filters 

designed for rotational symmetry extraction [18]. The 

method used is a complex filtering approach. Complex 

filters, applied to the orientation field in multiple 

resolutions, are used to detect rotational symmetry. 

Although these filters can detect arch-type and delta-

type symmetries, only the arch-type symmetry is 

utilized in this work. Moreover, this complex filtering 

approach was implemented in the CNN framework. 

The complex filter used to find the core point is given 

as in Eq. (6). 

( ) ( , ) ( , )ih x iy g x y re g x y                     (6) 

where ( , )g x y  is a Gaussian function. In this work, 

there is a modification to the original theory, instead of 

Gaussian filter, a CNN implementable Gaussian-like 

filter is used. The CNN templates for Gaussian-like 

lowpass filter is given as in Eq. (7). By using these 

templates, the CNN templates corresponding to the 

complex filter used to find the core point can be 

obtained as in Eq. (8) 
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where ‶ *″ is the convolution operator. Complex filters are 

not applied directly to the original fingerprint image. 

Instead, they are applied to complex images, i.e. the 

complex valued orientation tensor field image given in Eq. 

(9) in different scales 

 
2

( , ) x yz x y f i f                                                (9) 

where xf  is the derivative of the original image in the x  

direction and yf  is the derivative in the y  direction. With 

the help of the Sobel operator, CNN templates for xf  and 

yf  can be found as in Eq. (10): 
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The complex filter response is 
ic e  , where   is a 

measure of symmetry and   is the orientation of the 

symmetric pattern. In the core type symmetry point, the 

filter gives a strong response. Then, multiscale filtering is 

used to extract core point more robustly and precisely. 

Therefore, for the fingerprint shown in Figure 1, the 

complex orientation field ( , )z x y  is represented by a four 

level CNN Gaussian-like pyramid as shown in Figure 2. 

Level 3 has the lowest, and level 0 has the highest 

resolution. In the multiscale filtering, only the angle of the 

complex orientation field is used, i.e. the magnitude is set to 

one in ( , )z x y . Then, the core point is found for each 

resolution since the pattern of the orientation field around 



 

Tuba ÇELİK MAYADAĞLI et al./ IU-JEEE Vol. 17(2), (2017), 3471-3479 

 

  

 

 

3474 

 

core point is the same at different resolutions. The 

CNN complex filter response at different resolution 

levels is denoted by 
kc  where 3,2,1k   and 0  are 

the resolution levels. Figure 3 shows the magnitude of 

the filter responses of filter h  at levels 0,1,2,3k  . 

 

 
 

Figure 1. Original Fingerprint Image 

 

 
 

Figure 2. Different levels of CNN Gaussian-like pyramid (a) 

Level 0, (b) Level 1, (c) Level 2, and (d) Level 3 

 

Additionally, a point tracking algorithm given in 

[18] is used to find the position of a possible core point 

in a fingerprint image. Algorithm starts by finding the 

maximum filter response in Level 3. To get even 

further precision in the localization of the maximum, a 

new search is done in lower levels of the pyramid i.e. 

in Level 2, Level 1 and Level 0. This point tracking 

algorithm is terminated in a point computed in the 

highest level (highest resolution) Level 0. Finally, 

coordinates of the point found in Level 0 corresponds 

to the core point coordinates. Results of the core point 

detection algorithm are shown in Figure 4. 
 

 
 

Figure 3. Magnitude of the CNN Complex filter responses 

for (a) Level 0, (b) Level 1, (c) Level 2, and (d) Level 3 

 

 
 

Figure 4. Results of the core point detection algorithm 

 

4.2. Ridgeline Thinning 
 

Bifurcations and ridgeline endings are the local 

structures of the fingerprint images. In order to extract these 

features, each ridgeline should be made one pixel thick. 

There are many methods for thinning. In this section, 

skeletonization method given in [17] is used. The method 

uses eight different CNN templates to thin the ridgelines and 

the result is shown in Figure 5(b). 

The eight templates thin a fingerprint image in the eight 

directions (North, Northeast, East, Southeast, South, 

Southwest, West and Northwest). The thinned ridgelines 

can now be effectively used to extract the feature points 

before the feature matching process. 
 

 
 

Figure 5. (a) The enhanced image, and (b) the result of the used 

skeletonization method 

 

4.3. Minutiae Point Extraction 
 

As mentioned before, the individuality of the fingerprint 

images is due to the arrangement of the bifurcation and 

ending points and their angles. Once the ridgelines are 

thinned, these features can be extracted. Bifurcation points 

have been extracted by using the method proposed in [2]. 
 

P1 P2 P3 

P8 P0 P4 

P7 P6 P5 

 

Figure 6. Neighbors of pixel 0P  

 

As shown in Figure 6, 0P  is the pixel that we want to 

analyze. The point 0P  can only be a bifurcation point, if its 

value is -1. Here, -1 represents the black pixels, and 1 
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represents the white pixels. Then, the bifurcation points 

can be extracted by using the function given in Eq. 

(11): 

   
8

1

1 12, (9) (1)
k

P k P k P P


           (11) 

After applying the function in a 3 3  neighborhood, if 

the result is 12, this means that the point 0P  is a 

bifurcation point. As an example, assume that the 

values of 
3P , 

5P , and 
8P  are -1, and the others are 1. 

Application of the function gives a result equal to 12. It 

is possible to implement this function in the CNN 

framework. The CNN templates for the function can be 

given as follows: 
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          (12) 

In the light of the theory given for bifurcation point 

extraction above, a new function is proposed to extract 

the ending points. The function can be given by Eq. 

(13). 
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After applying the function, the result will be 14, if the 

point 0P  is an ending point. The point 0P  can only be 

an ending point, if its value is -1. As an example, 

assume that only one of the pixels except 0P  in the 

3 3  neighborhood has a value of -1 and the others is 

1. Application of the function gives a result equal to 

14. Similar to the previous case, the CNN templates for 

this operation is proposed as in Eq. (14). 
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4.4. Calculation of Minutiae Point Angles 
 

Angles of the ending points are calculated over a 

13 13  pixels window located around the ending point 

as shown in Figure 7. 
 

 
 

Figure 7. 13 × 13 pixels window located around the ending 

point in the thinned fingerprint 

 

As can be seen from the figure, the ending point is located 

to the center of the window. Undesired groups of pixels 

outside the fingerprint ridge line under consideration are 

removed from the window. After removal of unwanted 

pixels, a line is assumed between the window center (ridge 

ending point) and the closest pixel to the window border. 

Angle between the horizontal axis and the straight line 

connecting these two points is used as the ending point 

angle. This angle is calculated by using the slope of the 

straight line. 
 

 
 

Figure 8. 29 × 29 pixels window located around the bifurcation 

point in the thinned fingerprint 

 

Similarly, bifurcation point angles are calculated over a 

29 29  pixels window located around the bifurcation point 

as shown in Figure 8. Again, the bifurcation point is located 

to the center of the window. Undesired groups of pixels 

outside the fingerprint ridge lines forming the bifurcation 

point are removed from the window. Then, three straight 

lines are formed between the window center (bifurcation 

point) and the closest pixels to the window border. The three 

angles between the horizontal axis and the three straight 

lines are calculated by using the slope of these lines. After 

that, angles between the straight lines are calculated and the 

bifurcation point angle is set as the smallest angle between 

three line segments. The result of ridgeline thinning is 

shown in Figure 9(a) and the extracted feature points and 

their corresponding angles to be used in the feature matching 

process are shown in Figure 9(b). 
 

 
 

Figure 9. (a) The result of the skeletonization, and (b) the 

extracted feature points (ending points in red and bifurcation 

points in green) and their angles 

 

5. False Feature Elimination 
 

False minutiae points will significantly decrease the 

accuracy of matching if they are simply regarded as 

genuine minutiae. Therefore, in order for removing false 

minutiae points, some mechanisms are essential to increase 

the fingerprint verification system performance. Four types 

of false minutiae are specified in the literature [19] is 

shown in Figure 10. Case m1 is a spike piercing into a 

valley, m2 is a spike falsely connects two ridges, m3 has 

two near bifurcations located in the same ridge and m4 has 
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two ridge ending points and they have nearly the same 

orientation and short distance. The procedure for 

removing the false minutiae points can be found in 

[19]. 
 

 
 

Figure 10. False Minutiae Points 

 

The extracted feature points and their angles are 

shown in Figure 11(a) and the feature points and their 

angles obtained after the false minutiae points removal 

procedure are shown in Figure 11(b). 
 

 
 

Figure 11. Extracted feature points and their angles, (a) 

before and (b) after the false minutiae points removal 

procedure 

 

6. Matching 
 

Fingerprint feature points are defined with their 

coordinates, angles and types. The most popular 

minutiae point matching algorithms prefer to use only 

the coordinates and angles of the points [20]. In this 

work, every feature point is represented with a vector 

 , ,x y   where x  and y  are the coordinates 

and   is the angle of the feature point. If Q  and I  

denote the features of the unknown fingerprint and the 

fingerprint in the database, respectively, all the feature 

points can be represented mathematically by Eq. (15). 
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  



(15) 

where m  and n  denote the number of extracted 

features from the fingerprints Q  and I , respectively. 

Figure 12 shows the coordinates and angle values of 

ending and bifurcation points. Matching the two 

fingerprint image by solely using these features is not 

possible. During the fingerprint image acquisition, a 

fingerprint image can be translated as much as x  and 

y  in the x  and y  directions and can be rotated 

with respect to the original fingerprint by an angle 

equal to  . In order to match the two fingerprints, 

x , y  and   parameters should be found or at least 

should be compensated before matching. 
 

 
 

Figure 12. Coordinate and angle values of feature points 

 

A rotation invariant matching is possible if a reference 

point like core point is used. In this approach, new features 

are defined by using the Euclidean distance between the 

core point and the extracted feature point and also the 

relative angle between the feature point and the line 

connecting the feature point to the core point. 

After the feature points are found, each feature point is 

expressed in polar coordinate system and the relative angle 

between the feature point and the line connecting the 

feature point to the core point is found as in Eq. (16). 
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           (16) 

In these equations, r  and   describe the Euclidean 

distance between the reference point and feature point, and 

the relative angle between the feature point and the line 

connecting the feature point to the core point as shown in 

Figure 13, respectively. 
 

 
 

Figure 13. Demonstration of feature points in polar coordinates 

 

These points can be obtained from Eqs. (17) and (18). 

2 2

2 2

( ) ( ) ,

( ) ( )

i i I i I

j j Q j Q

r x x y y

r x x y y

   

     
                       (17) 
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where ( , )Q Qx y  and ( , )I Ix y  denote the coordinates 

of the feature points in the fingerprints Q  and I , 

respectively. Calculation of the matching score of two 

fingerprint images can be done by using the matching 

function   given in Eq. (19). This function returns 1 

for two feature points in Q  and I , if difference 

between the distances and angles are smaller than given 

tolerance values 0r  and 0 , otherwise 0. These 

tolerance values are used to compensate the changes 

occurring in the x , y  and   parameters. 

 

0 0

,

1

0

i j

i j i jr r r and

otherwise

 

  

 

     
 


      (19) 

For each feature pair in Q  and I  that satisfies the 

given condition above, the function returns 1, and the 

matching counter pN  is increased by one. The 

matching score between two fingerprint images is 

calculated by using the equation given in Eq. (20). 

 

100
Matchingscore

max ,

pN

M N


                 (20) 

where M , N  and pN  denote the number of 

extracted features in Q  and I  fingerprint images, and 

the number of matched features, respectively. 

 

7. System Performance 
 

In the biometric community, some widely accepted 

methodologies and protocols exist for testing and 

reporting the performance of a biometric system [22, 

23, 24, 25]. To assess the performance of the proposed 

system, The Hong Kong Polytechnic University 

(PolyU) High-Resolution-Fingerprint (HRF) Database 

II [21] has been used. PolyU HRF DBII contains 1480 

fingerprint images of 148 fingers collected in two 

sessions separated by two weeks. Each session has five 

sample images per finger. Resolution of each image is 

1200 dpi and size of the images is 640×480 pixels. In 

order to evaluate the performance of the proposed 

system, the following experiments have been 

performed on the first session of the database: 

Genuine matching: Each fingerprint in the database 

is matched against the remaining samples of the same 

fingerprint to compute the FNMR (also referred as 

False Rejection Rate - FRR). Hence, the total number 

of genuine matching attempts can be given as: ((5 × 4)/2) × 

148 = 1, 480. 

Imposter matching: The first sample of each fingerprint 

in the database is matched against the first sample of the 

remaining fingerprints in the database to compute the FMR 

(also referred as False Acceptance Rate - FAR). Hence, the 

total number of impostor matching attempts can be given 

as: ((148 × 147)/2) = 10, 878. In these matchings, if image f 

is matched to g, the symmetric match (i.e., g against f) is 

not executed to avoid correlation in the scores [24]. 

In the experiments, FMR, FNMR and ROC curves are 

calculated by changing the threshold value to reflect the full 

system performance for a possible application. There is a 

trade-off between FNMR and FMR, hence both of them 

cannot have the smallest possible values at the same time 

and they are not independent in reality. Both FMR and 

FNMR depend on the chosen threshold T and therefore they 

are a function of T. A ROC curve plots the FNMR versus 

FMR and eliminates the graphs dependence on threshold T. 

Thus a ROC curve shows performance of a system in 

different operating points. ROC curves provide for 

objective comparisons in decision systems. Hence, they can 

be applied when comparing biometric systems in general 

and fingerprint recognition systems in particular [20]. 

Both FMR and FNMR have been plotted versus 

threshold value as shown in Figure 14 and ROC curve has 

been drawn on Figure 15. As it can be seen from Figure 14, 

there is an intersection point called Equal Error Rate (EER) 

at which both FNMR and FMR values are equal. Also, the 

operating point of EER can be determined by the 

intersection of the ROC curve and the straight line where 

FNMR = FMR. Typically, value of this point is used as the 

threshold value of the system. But if a high security system 

is required, the threshold value can be chosen to be less 

than the EER point. This means that more rejections and 

less false acceptances will happen. Therefore, the choice of 

the threshold depends on the application. Consequently, 

EER value for the proposed system on the given fingerprint 

database is found as 0.1556. 

EER is used to show biometric performance of a 

system, typically when operating in the verification task. 

Instead of comparing systems or methods directly, most of 

the time only the EER measure is used to compare 

performance of different biometric systems. In general, as 

the value of EER decreases, accuracy of the biometric 

system increases. So the EER measure is truly useful in 

comparing biometric system performance. Therefore, in 

this work, only one parameter namely EER is used to 

compare different methods. 

The proposed method has been compared with the state-

of-the-art minutia-based methods (or only the minutiae 

based part of the fusion strategies) that use the PolyU HRF 

DBII database and recognition accuracy has been evaluated 

according to the EER. Table 1 lists the EERs of the three 

methods. According to EER listed in Table 1, the proposed 

method performs better than [27] and worse than [26]. 

These results are very encouraging for implementing a 

CNN based rotation invariant fingerprint recognition 

system. 
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Figure 14. FMR (blue) and FNMR (red) versus threshold 

 

Table 1. EERs of the three methods on the PolyU HRF DBII 

database 

 

Method EER of using only minutiae 

Proposed method 15.56% 

[26] 0.61% 

[27] 57.80% 

 

 
 

Figure 15. ROC curve on the PolyU HRF DBII database 

 

8. Conclusion 
 

In this work, by keeping the hardware 

implementability in mind, an effort has been put to 

propose a rotation invariant fingerprint recognition 

system in the CNN framework. CNNs have an 

extremely important feature for building fast image 

processing hardware, that is, they are suitable to 

implementation in VLSI and FPGA technology. Also, 

different image processing tasks can be performed 

easily by changing the template coefficients of the 

CNN. Thus, implementing the proposed system on 

CNN is expected to greatly decrease the computational 

time. 

In the literature to date, there is no rotation invariant 

CNN based fingerprint recognition system. Moreover, 

ending point detection and core point detection are 

implemented in the CNN framework for the first time. 

The performance of the proposed system has been 

assessed by using the high resolution PolyU HRF DBII 

database. Furthermore, the system performance is 

analyzed by the help of FMR, FNMR and ROC curves 

for possible trade-off analysis in real life applications. 

The results are very encouraging for implementing a 

CNN based fully automatic rotation invariant fingerprint 

recognition system. 

Future work will include the use of Discrete-Time CNN 

framework to implement proposed system on a FPGA based 

platform and some performance adjustments. Moreover, in 

the continuation of the work, level 3 features (e.g. pores) are 

planned to be used for recognition. These level 3 features 

can only be reached on a high resolution database. 

Therefore, the proposed method was developed and tuned 

for high resolution fingerprint databases. 
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