
                                                                 

                                                                  Murat CANER et al./ IU-JEEE Vol. 17(2), (2017), 3489-3496 

Received on: 25.05.2017  

Accepted on: 20.07.2017 

 

       

 
 

 

 

 

 FUZZY RULE TABLE OPTIMIZATION OF POWER SYSTEM 

STABILIZER USING GENETIC ALGORITHM   
 

Murat CANER1, Seydi Vakkas ÜSTÜN 2, Yüksel OĞUZ 1 

 
1Afyon Kocatepe University, Faculty of Technology, ANS Campus, Afyonkarahisar, Turkey 

2Adıyaman University, Faculty of Engineering, Adıyaman, Turkey 

mcaner72@gmail.com, svustun@adiyaman.edu.tr, yukseloguz@aku.edu.tr 

 

Abstract: This paper investigated the rule table optimization of fuzzy power system stabilizer (FPSS) benefiting from 

rule basis of related previous studies. In the previous studies, fuzzy rules for Power System Stabilizer (PSS) were 

obtained by trial and error according to the experience of experts. There were a few rule tables occurred in that way in 

the literature. In this subject field, five rule tables with a few differences among them were taken. Genetic algorithm 

(GA) was employed as an optimization method, and single machine infinite bus (SMIB) model was used for simulation 

system. This work proposed to contribute optimization performance of FPSS adding these rule tables to the initial 

population of GA. Thus GAs reached an optimum solution more quickly. Simulation studies and the integral of absolute 

error (IAE) performance results for four loading conditions were shown. The effectiveness of the proposed approach 

was discussed by comparing it with the five rule tables. 
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1. Introduction 
 

Power systems are complex non-linear systems and 

often exhibit low frequency electro-mechanical 

oscillations due to insufficient damping caused by 

adverse operating conditions. PSSs are widely used to 

suppress these oscillations and enhance the overall 

stability of power systems [1]. Several methods are 

used in the design of PSSs. Various tuning methods of 

conventional power system stabilizer (CPSS) and FPSS 

applications have been mentioned in the literature [2-

3]. 

A number of PSSs was applied in the simulation 

model of the power system and their stabilizing effects 

were investigated. The action of conventional PSS 

(CPSS) is to extend angular stability limits of a power 

system by providing supplemental damping to the rotor 

oscillations through generator excitation [4]. To 

accomplish this same action, FPSS, a fuzzy logic based 

controller, uses fuzzy design parameters such as 

scaling factors, membership functions, and a rule table. 

FPSSs generally use speed deviation and its derivative 

as input signals. 

Fuzzy control techniques have been applied to PSSs 

since 1990. Two feedback signals, speed deviation, and 

its derivatives are widely used as inputs to the FPSS 

system. In the literature, a few rule bases obtained from 

FPSS design have come to the fore of the studies using 

these input variables. Although they have the same 

logic base, there are just a few differences among them. 

Five examples of rule tables in the literature can be 

given to fulfill PSS function as 1st [4], 2nd [5], 3rd [6], 

4th [7], and finally as 5th [8].  

In order to increase controller performance, it may 

be necessary to optimize its parameters. In the same 

way, the fuzzy controller contains a number of sets of 

parameters. These are fuzzy membership functions [9], 

scaling factors [6] and a fuzzy rule table [8]. Different 

methods were used to optimize these parameters. Tabu 

search [8] and GAs [1],[10-13]  are among them. 

GA is defined as a global optimization technique 

based on the mechanics of natural selection and 

survival of the fittest [14]. They can be described as 

being global search methods. They are optimization 

algorithms which do not require information about 

derivatives and have been successfully applied to PSS 

design [15-17]. 

The modification of the rule base was chosen as the 

main focus in this paper where the improved 

performance was done via GA. Five of the rule tables 

that used previous FPSS applications were chosen. 

These tables were put in randomized to generate an 

initial population of candidate solutions in the 

optimization process of GA. Thus, it enabled the 

process to begin from these rule tables formed via 

expert vision. It provided both increasing success and 

rapidity of GA to find an optimum solution. 

The objective function of the GA was evaluated via 

the simulation of a Matlab / Simulink model of a single 

machine infinite bus (SMIB) system. In other words, 

the simulation result gave the objective function result. 

The proposed result was compared with the results of 

the rule table chosen from previous FPSS studiesand 

CPSS tuned for the system. Granting to the simulation 

effects and the quantitative criteria of measuring 

operations, the proposed approach provided a good 

damping over a spacious range of loading conditions. 
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2. Power System Stabilizer for a Single 

Machine system 
   

A linearized model of Heffron-Phillips was used in a 

Matlab/Simulink environment as a simulation model 

(Figure 1). The model, SMIB, is comprised of a 

synchronous generator with a terminal voltage “ ” 

connected to an infinite bus with a voltage “ ” through 

a lossless transmission line having external reactance “ 

”. The dynamic behavior of SMIB system was modeled 

by [18-19]. 
    

 

 
 

Figure 1. SMIB system with CPSS or FPSS 

 

  The model used in this study was third-order and 

included an exciter modeled as a first order transfer 

function. The exciter part tries to equalize the terminal 

voltage value '' ''tv  to the reference voltage '' ''refv . In 

order to fulfill this task, it uses a controllable excitation 

voltage '' ''fdE . '' ''refv  and mechanical torque '' ''mT  can 

be used as disturbance inputs of the system. It is 

important that reference values of the model should be 

normally zero because the model is based on 

differences. Thus, reference inputs can be applied as a 

disturbance. 

In this study, a Heffron-Phillips model was equipped 

with a simplified exciter and CPSS. CPSS can be 

assumed as adopted for this system, because simulation 

data belonging to both the model and CPSS were taken 

from [20]. Simulations were implemented using 

Matlab/Simulink. Deviations of output voltage and 

power angel were used as performance evaluation of the 

system. In order to observe dynamic behavior of the 

system, a disturbance signal was applied to voltage and 

mechanical torque inputs. In order to obtain quantities 

of the variations belonging to system dynamics, IAE is 

used (1). The smaller IAE values imply a better 

performance [21]. IAE computing is started after the 

system has stabilized, to obtain more accurate results. 

 

  IAE x x dt   (1) 

 

Light, moderate, heavy and reactive loading 

conditions of the CPSS system expressed as six K 

coefficients are shown in Table 1 [20]. The reactive 

loading condition uses three times increased external 

reactance '' ''eX . The performance of the system can be 

evaluated under these loading conditions. 
 

Table 1. Four loading conditions applied for power plant 

   

 Light Moderate Heavy Reactive 

P (p.u.) 0,6 1,5 1,8 1,0 

Q (p.u.) 0,0361 0,2303 0,3352 0,3333 

X Xe Xe Xe 3*Xe 

K1 1,4336 1,6117 1,5911 0,7430 

K2 1,5855 1,8883 1,8987 1,0776 

K3 0,2889 0,2889 0,2889 0,4180 

K4 2,0294 2,4170 2,4303 1,3794 

K5 0,0194 -0,1524 -0,1717 -0,1739 

K6 0,2628 0,1898 0,1866 0,4561 

 

In order to compare with CPSS, a Mamdani type 

FPSS block from [22] was applied. It was tuned for the 

same system and claimed that the FPSS has a superior 

performance than CPSS (Fig. 1). But in [22] CPSS were 

taken from [23].  

Speed deviation '' ''  and acceleration '' ''p   of 

the generator were chosen as input signals of the FPSS, 

and product of two sigmoid curves was chosen as the 
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membership functions. The membership function of the 

speed deviation is shown in Figure 2. Limits of the 

second input and output '' ''PSSu  were taken as 0.003 

and 0.2 respectively. The size of these membership 

function boundaries was estimated looking the size of 

the input and output signals in CPSS simulation. 
 

 
 

Figure 1. Membership function of first input   [22] 

 

Because middle values of input variables were more 

intensive, these functions were lumped in the middle 

value. Beside these function limits, scaling factors were 

tuned using trial and error method to improve a 

performance of the FPSS. These coefficients for speed 

deviation, its derivative and output of controller were 

taken as 1, 0.8 and 5 respectively. Moreover, min and 

max operators were used for implication and 

aggregation methods which are also used as AND/OR 

methods for the fuzzification part, respectively. The 

bisector method is chosen for the defuzzification. 

Finally, rule table with seven linguistic variables and 

49 rules for the FPSS are given in Table 2 and named 

as a rule1.  

 
Table 2. Fuzzy rule table for PSS “rule1” [4] 

 

  
p  

NL NM NS Z PS PM PL 

NL NL NL NL NM NM NS Z 

NM NL NM NM NM NS Z PS 

NS NL NM NS NS Z PS PM 

Z NM NM NS Z PS PM PM 

PS NM NS Z PS PS PM PL 

PM NS Z PS PM PM PM PL 

PL Z PS PM PM PL PL PL 

 

 

3. Previously Designed Rule Tables for PSS 
The rule table of a fuzzy logic based controller is 

often determined by trial and error method in order to 

achieve better control performance [5]. In addition to 

rule1, four more rule tables were chosen from previous 

studies related FPSS applications and named as rule2 

to rule5. All of them were tuned via trial and error and 

their differences from the rule1 were signed as dark 

background (Tables 3 - 6). In order to obtain superior 

performance, optimization of the FPSS parameters is 

necessary. 

 

Table 3. Fuzzy rule table for PSS “rule2” [5] 

 

  
p  

NL NM NS Z PS PM PL 

NL NL NL NL NM NM NS Z 

NM NL NL NM NM NS Z PS 

NS NL NM NS NS Z PS PM 

Z NM NM NS Z PS PM PM 

PS NM NS Z PS PS PM PL 

PM NS Z PS PM PM PL PL 

PL Z PS PM PM PL PL PL 

 
Table 4. Fuzzy rule table for PSS “rule3” [6] 

 

  
p

 
NL NM NS Z PS PM PL 

NL NL NL NL NM NM NS Z 

NM NL NL NM NM NS Z PS 

NS NL NM NM NS Z PS PM 

Z NM NM NS Z PS PM PM 

PS NM NS Z PS PM PM PL 

PM NS Z PS PM PM PL PL 

PL Z PS PM PM PL PL PL 
Table 5. Fuzzy rule table for PSS “rule4” [7] 

 

  
p  

NL NM NS Z PS PM PL 

NL NL NL NL NL NM NS Z 

NM NL NL NM NM NS Z PS 

NS NL NM NS NS Z PS PM 

Z NM NM NS Z PS PM PM 

PS NM NS Z PS PS PM PL 

PM NS Z PS PM PM PL PL 

PL Z PS PM PL PL PL PL 

 
Table 6. Fuzzy rule table for PSS “rule5” [8] 

 

  
p  

NL NM NS Z PS PM PL 

NL NL NL NL NL NM NS Z 

NM NL NL NM NM NS Z PS 

NS NL NM NM NS Z PS PM 

Z NM NM NS Z PS PM PM 

PS NM NS Z PS PM PM PL 

PM NS Z PS PM PM PL PL 

PL Z PS PM PL PL PL PL 

 

 

4. Genetic Algorithm and Optimization of 

Rule Bases 
 

The fundamentals of a GA are determining initial 

population, writing objective functions and applying 

genetic operations. In the GA method, the population 

of strings evolve iteratively by generating new 
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individuals and taking the place of their parents.  

As a first step, the individuals of the initial 

population are identified as chromosome structures in 

GA. The individuals in this study refer to the rule 

tables. Thus an initial population matrix is created as 

[49 x population size]. The population size refers to 

both the number of chromosomes and individuals in 

GA. In Matlab Fuzzy Logic programming terminology, 

each chromosome vector is formed as numbers from 1 

to 7. Here 1 indicates NL and 7 indicate PL and these 

numbers are a consequent part of each rule in the rule 

matrix (2).  

 

fis.rule(i).consequent = rule_number (2) 

 

Because each rule table includes 49 rules, the length 

of chromosome would be 49. Due to the similarity of 

some rule tables according to pre-simulation results, 

rule1, 2 and 4 are selected as group1, rule 3 and 5 are 

selected as group2. In order to increase the control 

performance of FPSS, only one rule table from each 

group (rule1 and rule3) is used in the initial population 

of GA. Other individuals in the population are 

randomly created.  

The objective function is determined in accordance 

with the aim of the optimization process. Moreover, it 

defines how well an optimized result is. The objective 

function is also called as a fitness function. The 

functioning of each individual of the population is 

measured according to its 'fitness' values.  Within this 

study, a function formed simulation file is used to 

calculate fitness values of chromosomes in the 

population. FPSS simulation system has four observed 

parameters which show the performance of the control 

system. These are deviations of the output voltage, 

speed, angle and electromechanical torque. Average 

values of these variations are used as fitness values of 

each individual. These are evaluated by IAE criteria (3) 

and supposed to be minimized by GA.  

 

1
fitness

IAE observed parameter
  (3) 

 

With the fitness values the GA generates a new and 

improved population from the old one using genetic 

operations. Most commonly used operations are the 

following: selection, crossover, and mutation. Selection 

is an operation whereby an old string is copied into a 

'mating pool' according to its fitness. More highly fitted 

strings receive a higher number of copies in the next 

generation. Crossover exchanges genetic material from 

two parent chromosomes, allowing their beneficial 

genes to be combined in their offspring. Mutation is an 

operation which is able to create a new genetic material 

in the population, changing some chromosomes 

according to a probabilistic law [24]. The methods of 

GA operators are @selectionstochunif, 

@crossoverscattered and @mutationadaptfeasible for 

selection, crossover, and mutation respectively as 

Matlab/gatool functions. Since usage of these rule 

tables speeds up the optimization process, GA stops 

due to reaching StallGenLimit data. Due to the elite 

count, the best chromosome is excluded by a mutation 

process. GA parameters used for optimization process 

are summarized in Table 7.  

 
Table 7. The parameters of the GA 

 

Population size  20 

Chromosome Size  49 

Elite Count 1 

CrossoverFraction 0.75 

MigrationInterval 5 

MigrationFraction 0.2 

Generations 100 

StallGenLimit 20 - 30 

 

Limit values of the homogenously dispersed trim 

functions used for membership functions for control 

inputs and outputs in GA application realized by 

Matlab /gatool (Table 8). Here the limit value of the 

control output was slightly changed in order to make 

fine tuning over performance results. 

 

Table 8. Limit values of membership functions 

 

Input/Output Limit values of MFs 

speed deviation ±0.02 

derivation of speed deviation ±0.003 

control output  ±0.6 

 

In order to find the best optimization procedure, six 

cases were used with four aims. That is, 24 

optimization studies were held, totally.  And four 

parameters were observed for each studies. While the 

aim is the minimization of the speed deviation swing, 

observed parameters can be variation of the swings of 

power angle, output voltage, speed deviation and 

electromagnetic torque. The cases include 20 or 30 GA 

generations, with determined population randomly or 

randomly and added five individuals and with centroid 

or bisector rule for defuzzification (Table 9). Where, 

the population with initials contains previous five rule 

tables as individuals of the initial population. Due to its 

difficulty, SMIB system was run in reactive loading 

condition during the all optimization studies. The 

performance results of the studies has been grouped by 

aim of the optimization (Figures 3-6). The performance 

is calculated according to the IAE performance 

evaluation criteria for four observed parameters. These 

are variations of the swings of power angle, output 

voltage, speed deviation and electromagnetic torque.  

Because SMIB system runs with error difference 

principle, these are named as t eV , , , T     here. 

The studies of optimizations with the Case 1, 2 and 3 

generally give good results. That is, the optimizations 

with initial population are superior then others with 
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random populations. Also, speed deviation aimed 

optimization looks generally successful. As a 

performance value, power angle swing seems the most 

difficult to optimize. Other than these, it can be said 

that case 6 is successful except electromagnetic torque 

swing optimization. 

 
Table 9. Case studies used for each aim 

 

 Opt. aim Pop. 

Type 

Gen. Defuzz. 

rule 

Case I 
min {

t

e

V , ,

, T

 

 
} 

with  

5 init. 

20 Centroid 

Case II 
min {

t

e

V , ,

, T

 

 
} 

with  

5 init. 

30 Centroid 

Case III 
min {

t

e

V , ,

, T

 

 
} 

with  

5 init. 

30 Bisector 

Case IV 
min {

t

e

V , ,

, T

 

 
} 

rand. 20 Centroid 

Case V 
min {

t

e

V , ,

, T

 

 
} 

rand. 30 Centroid 

Case VI 
min {

t

e

V , ,

, T

 

 
} 

rand. 30 Bisector 

 

 

 
 

Figure 1. Six optimization studies with four results and their 

average using minimization of the aim of power angle swing 

minimization 

 

 
 

Figure 2. Six optimization studies with four results and their 

average using the aim of output voltage swing minimization 

 
 

Figure 3. Six optimization studies with four results and their 

average using the aim of speed deviation swing minimization 

 

 
 

Figure 4. Six optimization studies with four results and their 

average using the aim of speed deviation swing minimization 

 

5. Simulation Results 
 

Due to its best average value, power angle swing 

minimization aimed with the Case 1 has been chosen 

for the proposed rule table representation among the 

optimization studies in Figures 3-6. Optimized rule 
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table and surface representation have been shown in 

Table 10 and Figure 7. 

 

Table 10. The proposed rule table 

 

 
p  

NL NM NS ZP PS PM PL 

NL NM NM NL Z PL NS Z 

NM NS NM NL NS NS Z PL 

NS NL NM NM NS PM PS PM 

Z NM NM NS Z PS PM NM 

PS PM PS NM PS PL PM PL 

PM NS Z PM NS Z PM PL 

PL Z Z PM PM PM PL PM 

 

Figure 5. Surface map of the proposed rule table 

 

Performance results of the proposed rule table in 

terms of four loading conditions are visualized in 

Figure 8. Reactive loading which is used during the 

optimization looks the worst case.  

 

 
Figure 6. Performance of the proposed rule table in terms of 

loading conditions 

 

In order to visualize the superiority of the proposed 

rule table, comparison studies were held (Figures 9-

12). Where, stability curves of the observed parameters 

versus time are shown comparing the adopted CPSS in 

[20] and the two groups of FPSS mentioned in chapter 

IV with proposed rule table. In addition, a disturbance 

is applied to the mechanical torque input in the SMIB 

system between 2-2.5 seconds with an amplitude of 0.5 

p.u. for all the case studies. Although the existence of 

overshoot, the output voltage has reached steady-state 

more quickly with the optimized FPSS rule table. 

Damping of the CPSS curves needs longer time.  

 

 
 

Figure 7. Comparison of proposed rule table in terms of 

power angel variation performance  

 

 
 

Figure 8. Comparison of proposed rule table in terms of 

output voltage variation performance  

 

 
 

Figure 9. Comparison of proposed rule table in terms of 

speed deviation variation performance  
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Figure 10. Comparison of proposed rule table in terms of 

electromagnetic torque variation performance  

 

6. Conclusion 

 

In this paper, rule table optimization is investigated 

in order to increase the performance of the PSS which 

is designed for the SMIB system performance. Adding 

to consequent parts of the rule tables which are 

previously designed for the SMIB system to the initial 

population of GA, optimization performances are 

speeded-up. Thus, optimizing the five previous rule 

table, a new improved fuzzy PSS rule table was 

proposed.  

Four aims with six case have been used during the 

investigation and four output parameters have been 

observed. Thus 24 optimization studies have been held. 

As a result minimizing power angle swing aimed 

optimization with centroid rule and 20 GA generations 

have been chosen as best.  

According to the comparison studies, superiority of 

the proposed rule table has been shown.  

It was shown that the proposed table has been 

successful for all loading conditions, as well. 

In addition, since bisector method caused little 

oscillations after the curves settle, use of centroid 

method is more appropriate during optimization 

process. 

As a result, it was shown that the superior controller 

can be derived using existing fuzzy rule tables.  
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