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Abstract: This paper investigates the co-channel interference effects on sum-rate based relay selection strategy. The 

investigation considers a dual-hop multiple full-duplex bi-directional wireless relay in the system model. According to 

analytical, asymptotic and the Monte-Carlo simulation results, sum-rate based relay section strategy outperforms the 

max-min based strategy. Results also show that the co-channel interference degrades the achievable diversity order 

from N to 0 and also causes system coding gain losses in high signal-to-noise ratio regimes. On the other hand, the co-

channel interference also severely affects the system achievable rate performance and degrades the performance curves 

at high SNR regimes.  
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1. Introduction 
 

Cooperative communication has got a lot attention in 

the cellular communications in recent years [1-9]. This 

is because, communications with the aid of wireless 

repeaters provide additional advantages on information 

exchange process. Forefront of these advantages can be 

improvement on the signal fading effects. Rapid 

increases of number of mobile users also increase the 

number of wireless repeaters in cellular coverage area. 

N available active wireless repeaters increases the 

system overhead severely. This process can be 

minimized with the help of a prudent relay selection 

process. Prudent relay selection strategy also provides 

an information exchange process in low signal-to-noise 

ratio (SNR) regimes. The relay terminal's operating 

modes, which are half-duplex (HD) or full-duplex 

(FD), also affect this process. In the case that the relay 

terminal operates in HD mode, the information 

exchange process can be completed in two phases, 

which are multiple access and broadcast phase. 

However, in the case that the relay terminal operates in 

FD mode, the information exchange process can be 

completed in a single phase. FD wireless relays, 

besides doubling the capacity also suffers from the 

loop-interference (LI), caused by transmitting and 

receiving the information exchange process at the same 

time period. The LI can be minimize with an efficient 

antenna design and/or advanced signal processing 

techniques. Co-channel interference (CCI) is another 

factor, which affects the system performance. In the case 

that the CCI is high, this severely affects the system 

performance and does not provide a reliable 

communications. 

 

Literature contains several types of studies in this area and 

forefront of these studies can be summarized as follows: 

[10] considers that source terminal communicates with the 

destination terminal with the aid of a selected FD relay 

among N available amplify-and-forward (AF) one-way 

relay (OWR) terminal. [10] Investigates a various FD relay 

selection strategies. [10] also considers that relay terminals 

have two antennas in such a system model. [11] also 

considers a similar system model structure as [10]. 

Differently from [10], [11] considers decode-and-forward 

(DF) based relay terminal and also considers Nakagami-m 

fading environment in such a system model. [11] also 

considers that there is a direct-link between source and 

destination terminals. In addition, [11] proposes two relay 

selection strategy. As distinct from [10, 11], [12] considers 

a different system model structure, where M source 

terminal communicates with the destination terminal via N 

available AF based FD relay terminal. [12] also considers a 

joint source and relay selection strategy in such a system 

model. In addition, [12] also assumes that there is a direct-

link between source and destination terminals. [12]'s joint 

source and relay selection strategy is based on 

instantaneous SNR value between source and destination 

terminals. In addition, relay selection strategy is based on 

classical max-min (MM) strategy. [13] and its extended 
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version [14], consider a similar system model structure 

as [10, 11]. Differently from [10, 11], [13, 14] consider 

that relay terminals posses N receive and transmit 

antennas. In addition, [13, 14] also investigates the 

effects of the joint relay and antenna selection 

technique on the system performance of such a system 

model. [13, 14] considers Rayleigh fading environment 

for the performance analysis of such a system model. 

[15] considers a similar system model structure as [10]. 

Differently from [10], [15] assumes that the FD relays 

operate in two-way. In addition, [15] investigates the 

effective SNR based best relay selection strategy on the 

system performance of such a system model. [16, 17] 

considers that source and destination terminals conduct 

information exchange with the help of FD based relay 

terminals in the system model. In addition, [16, 17] 

also considers that CCI affects the system model 

structure and investigates the effects of CCI on such a 

system model. [17] considers a Rayleigh fading 

environment, while [16] considers Nakagami-m fading 

environment. 

 

At a glance to the aforementioned literature, in order to 

minimize the system overhead and provides an 

information exchange at low SNR regimes, most of the 

studies considers different types of FD relay selection 

strategies. Our earlier study [18], considers sum-rate 

based opportunistic relay selection strategy. [19-21] 

also employs sum-rate based strategy for the user-pair 

selection process. [22] and [23] considers the same 

system structure and the selection strategy as [18] but 

considers more realistic scenarios that the channel state 

information is imperfect because of the channel 

estimation error and feedback delay, respectively.   [24] 

extends [18] by taking into consideration the CCI 

effects on such a system model. This paper extends 

[24] by providing the achievable rate analytical 

derivation and the diversity order analysis of such a 

system model. 

 

The remainder of this paper is organized as follows. 

Section II describes the system model and channel 

statistics. Section III presents the performance analysis 

results including both exact and high SNR situations 

for the SR-ORS and MM methods. Section IV provides 

numerical results and the paper concludes in section V. 

 

Notations: This paper uses (.)hf and (.)hF  to 

denote the probability density function (PDF) and 

cumulative distribution function (CDF) of a random 

variable (RV) h , respectively. The operator [.]E  

stands for expectation, while Pr(.)  denotes 

probability.  

 

2. System Model and Channel Statistics 
 

Figure 1 depicts a dual-hop FD TWR system structure. 

Here, 1S  and 2S  conduct information exchange with 

the help of N available FD wireless relaying. Since the 

relay terminal operates in FD mode, the information 

exchange process can be completed in a single phase. 

 
 

Figure 1. A dual-hop full-duplex TWR system model with a finite 

number of CCI. 

 

This paper also considers that each terminal has an omni-

directional antenna. jh , jg , jf , jk  and jm , 

1,...,j N  , represents the channel impulse response 

between 1S R , 2S R , 1ja S , jb R  and 

2jc S , respectively. jh  is a complex Gaussian RVs. 

with zero mean and variance 
2

jh . (i.e. 
2~ (0,

jj hh CN )). 

Likewise, 
2~ (0,

jj gg CN ), 
2~ (0,

jj ff CN ), 

2~ (0,
jj kk CN ) and 

2~ (0,
jj mm CN ). d, je  and p, 

2~ (0, dd CN ), 
2~ (0,
jj ee CN ) and 

2~ (0, pp CN ), represent the loop-interferences at 1S , R 

and 2S , respectively. Amplitudes of all channels are 

distributed according to Rayleigh distribution.   

 

The received signal at relay terminal can be written as 

 

1
j j

N

r s j s j j j j r j r

j

Z P xh P yg b p k P e n


        (1) 

Here, sP  , rP and jP are cooresponding transmit powers of 

mobile, relay terminals and jth  interference terminal 

,respectively. x , y and b j are corresponding transmit 

information, with a unit energy 
2[| | ] 1x E ,

2[| | ] 1y E  

and 
2[| | ] 1jb E  , of 1S , 2S and jth interference terminal, 

respectively. 
jrn is the additive white Gaussian noise 

(AWGN) with zero mean and variance 
2 (i.e. 

2~ (0, )
jrn CN ). Since the relay terminal operates in 

AF mode, the G amplification factor can be calculated as 
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2 2 2 2

0

1

| | | | | | | |[ ]

r
j N

s j s j j j r j

j

p
G

p h p g p k p e N




   
(2) 

 

After the amplification process, the received signals at 

1S  and 2S  can be calculated as (3) and (4), 

respectively. 

 

2

1

1

N

j s j j s j j j j j j j

j

S G P xh G P yg h G b p k h


   

 

1

1
j

N

j r j j r j j j j s S

j

G P e h Gn h a p f P d n


     (3) 

2

2

1

N

j s j j j s j j j j j j

j

S G P xh g G P yg G b p k g


     

2

1
j

N

j r j j j r j j j j s S

j

G P e g G n g c p m P p n


     (4) 

 

By using (3) and (4), the received signal-to-interference 

noise ratios (SINRs) at 1S  and 2S can be calculated as 

1

2 2 2

2 2 2 2 2 2 2 2

0

1

| | | |

| | | | | | | | | |[

j s j j

S N

j j j j j r j j j j

j

G P g h

G p k h G P e h G N h







 

   
2 2

0

1

| | | | ]
N

j j s

j

p f P d N


                 (5) 

2

2 2 2

2 2 2 2 2 2 2 2

0

1

| | | |

| | | | | | | | | |[

j s j j

S N

j j j j j r j j j j

j

G P g h

G p k g G P e g G N g







 

2 2

0

1

| | | | ]
N

j j s

j

p m P p N


                (6) 

 

Substituting the jG , (2), into (5) and  (6) and also 

doing some mathematical manipulations, 
1S  and 

2S  

can be represent as in (7) and (8), respectively. 

 

1

2 2

2 2 2 2 2 2 2 2

1 1

2

2 2 2 2 2 2

1

| | | |

| | | | | | | |

| |

| | | | | |

[

r s j j

N N

j j j j r j s

j j

S

r j

N

j j r j s

j

P P g h

p k p f P e P d

P h

p f P e P d

   



  

 



   
             

   


 
          

 

 



 

2

2 2 2 2 2 2

1 1

| |

| | | | | |

r j

N N

j j j j s

j j

P h

p f p k P d  
 


   

        
   
 

 

2

2 2 2 2 2 2 2 2

1 1

| |

| | | | | | | |

r j

N N

j j j j r j s

j j

P h

p f p k P e P d   
 


   

             
   
 

 

2 2

2 2 2 2 2 2

1

| | | |

| | | | | |

s j s j

N

j j r j s

j

P h P g

p k P e P d  




 

          
 


2 2

2 2 2 2 2 2

1 1

| | | |
1

| | | | | |

]s j s j

N N

j j j j r j

j j

P h P g

p f p k P e  
 


 
   

        
   
 

    (7) 

 

2

2 2

2 2 2 2 2 2 2 2

1 1

2

2 2 2 2 2 2

1

| | | |

| | | | | | | |

| |

| | | | | |

[

r s j j

N N

j j j j r j s

j j

S

r j

N

j j r j s

j

P P g h

p k p m P e P p

P g

p m P e P p

   



  

 



   
             

   


 
          

 

 



 

2

2 2 2 2 2 2

1 1

| |

| | | | | |

r j

N N

j j j j s

j j

P g

p m p k P p  
 


   

        
   
 

2

2 2 2 2 2 2 2 2

1 1

| |

| | | | | | | |

r j

N N

j j j j r j s

j j

P g

p m p k P e P p   
 


   

             
   
 

 

 
2 2

2 2 2 2 2 2

1

| | | |

| | | | | |

s j s j

N

j j r j s

j

P h P g

p k P e P p  




 

          
 


2 2

2 2 2 2 2 2

1 1

| | | |
1

| | | | | |

]s j s j

N N

j j j j r j

j j

P h P g

p k p m P e  
 


 
   

        
   
 

(8) 

Here, 

r

s

P

P
  [20],

2

2

| |s j

x

P h



 ,

2

2

| |s j

y

P g



 ,

2

2

| |

j

j j

k

P k





2

2

| |

j

j j

f

P f





2

2

| |

j

j j

m

P m





2

2

| |

j

r j

e

P e





2

2

| |s
d

P d



 and 

2

2

| |s
p

P p
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(7) and (8)  can be re-written as in (9) and (10), 

respectively. 

 

 

 

1

1 1

1

1 1 1 1

1 1 1

[

j j j

j j

x y

N N

k f e d

j j

S
x

N

f e d

j

 

   




  

 



   
         

   

 
      

 

 



 

 
1 1

1 1 1
j j

x

N N

f k d

j j



  
 


   

     
   
 

 

 
1 1

1 1 1 1
j j j

x

N N

f k e d

j j



   
 


   

         
   
 

 

 
1

1 1 1
j j

x y

N

k e d

j

 

  




 

      
 


 

1 1

1

1 1 1

]

j j j

x y

N N

f k e

j j

 

  
 


 
   

        
   
 

   (9) 

 

2

1 1

1

1 1 1 1

1 1 1

[

j j j

j j

x y

N N

k m e p

j j

S
y

N

m e p

j

 

   




  

 



   
            

   

 
         

 

 



 

1 1

1 1 1
j j

y

N N

m k p

j j



  
 


   

        
   
 

 

1 1

1 1 1 1
j j j

y

N N

m k e p

j j



   
 


   

            
   
 

 

1

1 1 1
j j

x y

N

k e p

j

 

  




 

         
 


 

1 1

1

1 1 1

]

j j j

x y

N N

k m e

j j

 

  
 


 
   

        
   
 

(10) 

3. Performance Analysis 
 

This subsection investigates the system performance by 

using the outage probability and achievable rate 

performance metrics. 

 

3.1. The Outage Probability 
 

The outage probability defines as the probability that the 

achievable capacity cannot support the pre-defined target 

rate, R in bps/Hz. In other words, the outage probability is 

the CDF of received SNR/SINR evaluated at target 

threshold rate, th  [26]. In this regard, (9) and (10), with 

the help of min(X,Y)
XY

X Y



, can be upper-bounded 

as in (11) and (12), respectively. 

1

( )( )

( )

x y

C E A B C E
S

yx

C E A B C E

 

      




      

    



    

 

 

1

yup x

C E A B C E

min ,
+ ( + + + + )

S


 

      

 
   

 
  (11) 

2

( )( )

( )

x y

D F A B D F
S

y x

D F A B D F

 

      


 

      

    



    

 

 

2

yup x

D F A B D F

min ,
+ ( + + + + )

S

 
 

      

 
   

 
 (12) 

Here, 

1

1
j

R

N

A k

j



 


  , 1
jB e   , 1C d   ,    

1D p   , 

1

1
j

S

N

E f

j



 


  , 

1

1
j

K

N

F m

j



 


  . 

 With the help of (11) and (12), the end-to-end (e2e) 

SINR can be calculated as 

 
1 2

up up

2 S Smin ,e e       (13) 

Since the best relay selection strategy is based on the SR 

expression, (14), by using the logarithm properties and with 

the help of [18,20,27], (14) can be approximated 

to min(X,Y) , (15), expression. 

1 2

FD FD FD

2 2log (1 ) log (1 )S SSR R          (14) 

1 2

1 2
FD

FD FD
2

FD

2 1

2

th

R

S S

FD

S S



 

 


 


           (15) 
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The CDF expression of 
FDSR  is given by the 

following proposition. 

Proposition 1: up(FD)

SRF can be calculated as 

 
   1 1

(FD)
th

3 1 3 1

up(FD) FD

SR th

1

1[ s g s hi i

N
P P

i

F e

   




   
  
  
 



 

    
(FD) (FD)

th th1 1[
j i i j

M M

j k s g s h j kP P P P

 


   
     
      
   

 

1
(FD) (FD)

th th1 1

j i i jr e s h s g r cP P P P

 


  
    
     
  

 

1 1
1 (FD) 1 (FD)

th th1 1 1 1

i is d s g s d s p s h s pP P P P P P

   
 

      
                       

 

(FD) (FD)

th th1 1 1 1 ]]
j i j j i j

M M M M

j f s g j f j m s h j mP P P P P P

 
 

       
         
            
       

(16) 

 

Proof: See Appendix A. 

 

Here, 
h , g , 

jk ,
jf  ,

jm  , 
je , 

jc , d  and p  are mean of
2| |h , 

2| |g , 
2| |jk , 

2| |jf , 
2| |jm , 

2| |je , 
2| |jc , 

2| |d  and
2| |p , 

respectively. If the MM based relay selection strategy 

is used, the target threshold rate can be calculated as: 

2 1MM R

th   . 

 

3.2. Asymptotic Analysis 
 

By using the Taylor series expansions exp  term can 

be written as: exp( ) 1x x  for 0x  [28]. By 

doing variable changes in (16), the asymptotic CDF 

expression can be calculated as 

 
   1 1

up(FD) FD (FD)

SR th th

1

3 1 3 1
1 (1[

i i

N

i s g s h

F
P P

   
 

 





  
    

   
  

(FD) (FD)

th th1 1[
j i i j

M M

j k s g s h j kP P P P

 


   
     
      
   

 

1
(FD) (FD)

th th1 1

j i i jr e s h s g r cP P P P

 


  
    
     
  

 

1 1
1 (FD) 1 (FD)

th th1 1 1 1

i is d s g s d s p s h s pP P P P P P

   
 

      
                       

  

 

(FD) (FD)

th th1 1 1 1 ]]
j i j j i j

M M M M

j f s g j f j m s h j mP P P P P P

 
 

       
         
            
       

       (17) 

 

3.3. Achievable Rate Analysis  

 

This subsection now focuses on achievable rate analysis of 

such a system model. By using the Jensens' inequality the 

upper-bounded achievable rate expression can be 

formulated with the help of [26, Eq. (25)] as  

     
1 22 2log 1 log 1up up

S SAR      
 

E E        (18) 

By using [26, Eq. (26)],  
1

up

SE  can be formulated as  

   
1 10

1 ( )
S

up

S F x dx


 E      (19) 

In order to continue analysis, (19) requires the 
1

( )
S

F x  

expression. 
1

( )
S

F x can be calculated as in following 

proposition.  

 

Proposition 2: 
1

( )
S

F x can be calculated as  

 
1

12 (3 2)

FD

th

1 1
( ) 1 [ ]

th
s h s g

S

P P th th

s d s h s g s d

F x e
P P P P




 



 


 

  
   

   
  

           
 

1 1[ ]
M M

th th

j f s h s g j fP P P P

 

 



   
              

 

1 1[ ]
j j

M M

th

j k s g j kP P P







   
    
     
   

 

1

1 1[ ]
j j

th

r e s g r eP P P







  
   
    
  

   (20) 

 

Proof: See Appendix B.  

 

Substituting (20) into (19), following expression can be 

obtained.  

 
1

2 (3 2)

0

th
s h s gP Pup

S e




 


 
   

     E  

1

2

( )
1

th s h s g

s d

s h s g

P P
P

P P







   
      

 

2

( )
1

M

th s h s g

j f

s h s g

P P
P

P P







   
      

 

1

1 1
j j

M

th th
j k r e th

s g s g

P P d
P P

 


 

 

   
              

 (21) 
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By using partial fraction decomposition techniques, 

(21) can be written as  

 
1

2 (3 2)

0

th
s h s gP Pup

S e




 


 
   

     E  

2

1

( )
1

[
th s h s g

s d

s h s g

P P
P

P P






   

     

 

2

1

( )
1

]
M

th s h s g

j f

s h s g

P P
P

P P






   

     

 

1 1

11

[ ]

j
j

thM

thth
r ej k

s gs g

d

PP
PP







  

           

(22) 

 

(22) can be written as  

 
1

2 (3 2)

0
[ ]

th
s h s gP Pup

S the T d




 
 

 
   

     E  

 

 
1

2 (3 2)

0

th
s h s gP Pup

S e




 


 
   

     E  

2

( )
1

[
s d s h s g

th

s h s g

A

P P P

P P







    

    

 

1

2

( )
1

]
M

i

i
i

j f s h s g

th

s h s g

B

P P P

P P









    

    

  

1
11

[ ]
j

j

M
k

thk
k r ej k

thth
s gs g

C D
d

PP

PP









 
  

         

 (23) 

Where,

2 2

( )

( )
lim 1

s h s g

s d s h s g

s d s h s g

P P
s h s gy

P P P

P P P
A y T

y P P





 


   

    
      

2 2

( )

( )
lim 1

( )!s h s g

j f s h s g

M
M i

j f s h s g

i M i
P P

s h s gy
P P P

P P P
B y T

M i y P P










 


   

    
       

 

lim 1
( )!

j

s g

j k j

M
M k

j k

k M kP
y s g

P

P
C y T

M k y P














 
      

 

lim 1
j

s g

r e j

r e

P
y s g

P

P
D y T

y P










 
     

 

By using [29, Eq. (10,11)] and solving the integral 

expression with the help of [30], (23) can be obtained as 

 
1

1

1

1 1 2 (3 2)

( ) (1)

M
up

S k

k s h s g

A C
k P P




 





 
        

E

0,1:1,1:1,1

1,0:1,1:1,1

0 0 (1 )

0 0 0
( | | |

k
G


  

2

( )

,
2 (3 2) 2 (3 2)

)

jj ks d s h s g

s h s g s g

s h s g s h s g

PP P P

P P P

P P P P



 

 

   

      
           

    
             

 

1

1 1 2 (3 2)

(1) (1) s h s g

A D
P P



 



 
         

 

0,1:1,1:1,1

1,0:1,1:1,1

0 0 0

0 0 0
 ( | | |G  

2 2

( ) ( )

,
2 (3 2) 2 (3 2)

)

s d s h s g j f s h s g

s h s g s h s g

s h s g s h s g

P P P P P P

P P P P

P P P P

 

 

 

   

          
            

    
             

1

1 1

1 1 2 (3 2)
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Please note that   term is set to 1  in (24). Following 

the same procedures,  
2

up

SE  can be calculated. This 

derivation is omitted because of the space limitation. 

Substituting (24) and derived  
2

up

SE  into (18), the 

final upper-bounded achievable rate expression can be 

calculated for such a system model. 

 

3.4. The Diversity Order Analysis 

 

The asymptotic CDF expression, (17), can be re-

written as 

 up(FD) FD (FD)

SR th th1 ( (1 ))[ ]NF a b      

                          
(FD) (FD)

th th1 (1 )[ ]Nb ab    (25) 

Interpreting (25), the diversity order, which is the least 

power of 
(FD)

th , is the zero. This result has an 

agreement with figure 2. Since the performance curves 

saturate at high SNR regimes. In other words, the 

performance curves’ slope at high SNRs is zero. 

 

4. Main Results 

 
This section validates the theoretical analysis by means 

of the Monte-Carlo simulation results. Figure 2 

provides two different information: The first one, 

which is colored with black, is related to sum-rate 

based relay selection. The other one, which is colored 

with blue, is related to MM based relay selection 

strategy. The LI variances, 
2

d , 
2

je  and, 
2

p  are 

equal to each other and set to 
310

. The target rate, R, 

is set to 1.00  bps/Hz. M is set to 1  in such a system 

model performance analysis. The transmit powers of 

CCI are set to : /100j sP P . 

  
Interpreting the figure 2 based on these assumptions, in 

low SNR regimes, the SR based relay selection 

outperforms the MM based relay selection strategy. In 

high SNR regimes, both selection strategy achieves the 

diversity order. The SR based relay selection strategy 

provides better performance values in terms of coding 

gain in comparison to MM based strategy. On the other 

hand, the CCI degrades the achievable diversity order 

from N to 0 and causes system coding gain losses in 

both selection strategy. A large number of FD relay 

provides better performance values than a system 

model that contains a small number of relay terminals.  

 

Figure 3 provides achievable rate performance analysis 

comparisons of such a system model. Figure 3 provides 

two types of information: The first one, which is 

colored with red is related to system model contains 

two and four relays and under effect of a single CCI. 

The second one, which is colored with black is related 

to the syetem model that contains  two and four relays 

and under effect of two CCI. 

 

 
Figure 2: The end-to-end outage probability performance 

comparison of the SR and MM based relay selection 

strategies. 

 

 
Figure 3: The end-to-end achievable rate performance 

analysis of such a system model. 

 

A large number of relay terminals provides better 

performance values in comparison to a small number of 

relay terminals in low and high SNR regimes. CCI severely 

affects the system achievable rate performance and 

degrades the performance curves in high SNR regimes. 

 

5. Conclusions 
 

This paper has investigated the CCI effects on SR based 

opportunistic relay selection strategy. The investigation has 

also considered a dual-hop multiple full-duplex two-way 

wireless relaying networks. According to Monte-Carlo 

simulation results, the SR based relay selection strategy 

outperforms the MM based relay selection strategy in terms 

of the end-to-end outage probability in such a system 

model. The CCI severely affects the system performance 

and degrades the achievable diversity order from N to 0 and 

also causes system coding gain losses. On the other hand, 

CCI also severely affects the system achievable rate 

performance and degrades the performance curves in high 

SNR regimes.  
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Appendix A 

Proof of Proposition 1 

 
 Starting with (14) and (15) and following the same 

procedure of Appendix III of [25] and also assuming 

that the variables are independent to each other 

following expression can be obtained. 
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         (26) 

The integral expressions in (26) can be solved with the help 

of [28, (Eq. 
113.310 ,

33.351 )]. In addition, with the help 

of order statistics [31], (16) can be obtained. 

 

Appendix B 

Proof of Proposition 2 
 

Starting with (11) and following the same procedures as 

Appendix III of [20] and also assuming that the variables 

are independent to each other following expression can be 

obtained 
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  (27) 

First and forth lines integrals and also second and third 

lines integrals in (27) can be solved with help of [28, 

(Eq. (
113.310 )] and [28, (Eq. (

33.351 )], respectively. 

The final expression can be obtained as in (20). 
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