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ÖZET 

Bu çalışma tessarinesler düşünülerek, üstel homotetik hareketler üzerine detaylı 

bir çalışmadır. Bunu yapabilmek için, tessarines çarpım ve toplam kuralları 

kullanılarak bir matris tanımladık ve bu matrisin 4- boyutlu Öklid uzayında çeşitli 

cebirsel özelliklerini verdik. Daha sonra üstel hareketin üstel homotetik hareket 

olabilmesini ispatladık. 

Bu süreç hızları, pol noktaları ve pol eğrileri hakkında bazı teoremler 

tanımlamamıza izin verdi. Sonunda, her 𝑡 anında, bir 𝑀 hiperyüzeyi üzerinde 

eğrilerin türevleri ve 𝑛’ inci dereceden regular eğriler tarafından tanımlanan üstel 

hareketin sadece (𝑛 − 1)’ inci derecen bir hız merkezine sahip olduğu bulundu. 

Anahtar Kelimeler: Tessarineler, Homotetik üstel hareket, Hiperyüzey, Regüler 

eğri. 
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ABSTRACT 

This paper is a detailed study on homothetic exponential motions by considering 

tessarines. To do this, we introduce a matrix by using tessarines product and 

addition rules and give a variety of algebraic properties of this matrix in four 

dimensional Euclidean space E4. Then, the exponential motion is proven to be 

homothetic exponential motion.  

This process allows us to define some theorems about velocities, pole points, and 

pole curves. Finally, It is found that at every t-instant an exponential motion 

defined by the regular curve of order n and derivations curves on the hypersurface 

M has only one acceleration center of order (n − 1). 

 

Keywords: Tessarines, Homothetic exponential motion, Hypersurface, 

Regular curve. 
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1. INTRODUCTION  

In 1848, The tessarines were first time described by James Cockle as 

a successor to complex numbers (using more modern notation for 

complex numbers) and algebra similar to the quaternions. As a set, 

the tessarines are coincided with 4 -dimensional vector space R4 over 

real numbers. Cockle used tessarines to isolate the hyperbolic cosine 

series and the hyperbolic sine series in the exponential series. He also 

showed how zero divisors arise in tessarines, inspiring him to use the 

term ”impossible.” The tessarines are now best known for their 

subalgebra of real tessarines t = w + yj, also called split-complex 

numbers, which express the parameterization of the unit hyperbola 

[1 − 5].  

In En, W. Clifford and James J. Mc Mahon have given a treatment 

of a rigid body’s motion generated by the most general one 

parameter affine transformation [6]. Another treatment was given by 

H.R. Müller for the same kind of motion [7]. Subsequently, 

properties of the planar homothetic motions and three dimensional 

spherical homothetic motions are given by I. Olcaylar [8]. The 

exponential motions were given by A.P. Aydın [9] and the dual 

homothetic exponential motions were given by V. Asil [10]. 

To state the geometry of the motion of a point in the motion of space 

is significant in the study of kinematics or spatial mechanisms or in 

physics. The geometry of such a motion of a point or a line has a 

number of applications in geometric modeling and model-based 

manufacturing of mechanical products or in the design of robotic 

motions. Hacısalihoğlu [11, 12] showed some properties of 1-

parameter homothetic motion in Euclidean space En. Subsequently, 

Kula and Yaylı [13] expressed Hamilton motion by means of 

Hamilton operators in semi-Euclidean spaces E4
2 and showed that 

this motion is a homothetic motion.  
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In this paper we give a detailed study on homothetic exponential 

motions by considering tessarines. To do this, we introduce a matrix 

by using tessarines product and addition rules and give a variety of 

algebraic properties of this matrix in four dimensional Euclidean 

space E4. Then, the exponential motion is proven to be homothetic 

exponential motion. This process allows us to define some theorems 

about velocities, pole points, and pole curves. Finally, It is found that 

at every t-instant an exponential motion defined by the regular curve 

of order n and derivations curves on the hypersurface M has only 

one acceleration center of order (n-1). We hope that these results will 

contribute to the study of space kinematics and physics. 

2. TESSARINES  

A tessarine is given as 

X = x0+x1  i1+x2 i2+x3 i3 

where the imaginary units i1, i2 and i3 are governed by the rules: 

 𝑖1
2 = −1, 𝑖2

2 = +1 , 𝑖3
2 = −1  

and  

i1i2= i2i1= i3 : i1.i3= i3i1= −i2 : i2i3= i3i2= i1.  

Let X and Y be tessarines. The addition, subtraction of X and Y are 

given by  

X ∓ Y = (x0∓y0 ) + (x1 ∓y1 )i1+(x2∓y2)i2+(x3∓y3)i3  

and multiplication of these numbers as follows  

X.Y = Y.X = (x0+x1 i1+x2 i2+x3 i3).(y0+i1y1+i2y2+i3y3)                       

=  (x0y0−x1y1−x2y2+x3y3) + i1(x0y1+x1y0 − [x2y3+x3y2]) 

+i2(x0y2+x2y0 − [x3y1+x1y3]) + i3(x0y3+x3y0 + [x1y2+x2y1]). 

It is easy to see that the multiplication of two tessarines is 

commutative. It is also convenient to write the set of tessarines as  

T = {X | X = x0+x1 i1+x2 i2+x3 i3 | (x1, x2 , x3 , x4 ) ∈ R} . (1) 
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Definition 2.1. (The conjugate of the tessarine): The conjugate of 

the tessarine X is shown by X_ and also there are different 

conjugations of tessarines according to the imaginary units i1; i2 and 

i3 = {i1 and i2} as follows: 

1: X* = (x0-x1i1) + i2(x2-x3i1), 

= x0-x1i1+x2i2-x3i3. 

2: X*  = (x0+x1i1) + i2(x2+x3i1), 

= x0+x1i1-x2i2-x3i3. 

3: X*  = (x0-x1i1) - i2(x2-x3i1), 

= x0-x1i1-x2i2+x3i3. 

The conjugation of X plays an important role both for algebraic and 

geometric properties for tessarines. Multiplication of the tessarine 

with conjugate is given according to the imaginary units i1; i2 and 

i3 as following; 

1. XX∗ = x0
2 + x1

2 + x2
2 + x3

2 + 2i2(x0x2 + x1x3),                  

2. XX∗ = x0
2 − x1

2 + x2
2 − x3

2 + 2i1(x0x1 − x2x3),          (2) 

3. XX∗ = x0
2 + x1

2 − x2
2 − x3

2 + 2i3(x0x3 − x1x2).                   

The system T is a commutative algebra. It is referred as the tessarine 

algebra and shown with T, briey one of the bases of this algebra is 

{1, i1, i2, i3}  and the dimension is 4. From equation (1), we can give 

the representation to show a mapping into 4x4 matrix as follows 

Ø: X = x0+x1 i1+x2 i2+x3 i3ϵ T  Ø(X) = [

x0 −x1 

x1 x0

   x2 −x3 

   x3     x2
x2 −x3 

x3 x2

   x0 −x1 

    x1 x0

] 

T is algebraically isomorphic to the matrix algebra 
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A =[

x0 −x1 

x1 x0

   x2 −x3 

   x3     x2
x2 −x3 

x3 x2

   x0 −x1 

    x1 x0

] 

A and Ø (X) is a faithful real matrix representation of t. 

Lemma 1. i. X = Y ⇔  Ø (X) =  Ø (Y) ii. Ø (XY)  ⇔  Ø (X) Ø (Y)   

𝐢𝐢𝐢. Ø (𝛌𝐗) = 𝛌Ø (𝐗) ;  𝛌 ∈ 𝐈𝐑    𝐢𝐯.  Ø (𝟏) = 𝐈𝟒. 

3. TESSARINES AND HOMOTHETIC EXPONENTIAL 

MOTIONS IN 4-DIMENSIOAL EUCLIDEAN SPACE 

Definition 3.1. (Matrix Exponential): The exponential 

transformation described as 

exp : GL(n; IR)  GL(n; IR) ∁ E4 

(t,A)  exp (tA) = etA = ξ(t) =∑
tk

k!

∞
k=0 Ak = I + tA +

t2

2!
A2 + ⋯ 

is investigated in the view of kinematic under the condition of A. It 

is not difficult to show that this sum converges for all n x n complex 

matrices A of any finite dimension. 

Definition 3.2. In equations H(t) = h(t)ξ(t) and ξ(t) = etA. The matrix 

A is orthogonal matrix in the sense of Euclidean space. h(t) is a non-

constant scalar matrix, t a real parameter provided that 

                                            [
X
1
] = [

H C
0 1

] . [
X0

1
]   (3) 

[
X
1
] = [

h(t)ξ(t) C
0 1

] . [
X0

1
] 

which is called a homothetic exponential motion in the Euclidean 

space of 4-dimensions. In equation (3), X, X0 and C are 3x1 type 

matrices. ξ, h and C are differentiable functions of C∞ class of the 

parameter t. X and X0 correspond to the position vectors of the same 

point with respect to the rectangular coordinate frames of the moving 

space R and the fixed space R0, respectively. At the initial time t = t0 
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we consider the coordinate systems in R and R0 are same. We assume 

that h = h(t)  ≠ constant, and to avoid the cases of pure translation 

and pure rotation we also assume for 

ξ 1(t) = A ξ (t), C1≠ 0 

and 

Hı(t) =
dH

dt
= hı(t)ξ(t) + h(t)ξı(t) = (hı(t) + h(t)A)ξ(t) 

where (ı) indicates 
𝑑

𝑑𝑡
 . On the other hand, since h = h(t) is scalar 

matrix, its inverse and transpose are 

h-1=
1

h
I, hT=h, here T is transpose in hT. 

Since ξ(t) is a orthogonal matrix, the inverse of H is  

H-1= h-1 ξT, ξ-1 = ξT . 

From the equation (3), we can also have 

           X0= H-1X + C0   (4) 

where –H-1C= C0. Equations (3) and (4) express the coordinate 

transformations between the fixed and moving space. 

From equation (2), let 

M ={α= (α0 , α1, α2, α3= ; α0α2+ α1α3 = 0; α≠0} ∁ E4 be a hypersurface 

and 

S3 = α0
2 + α1

2 + α2
2 + α3

2 = 1 a unit hypersphere. 

Let us consider the following curve; 

α: I ∁ R  E4 defined by, 

α (t)= α0(t), α1(t), α2(t), α3(t))  for every t ∈ I. 

We suppose that the curve α(t) is differentiable regular curve of order 

n, (i.e.‖α(𝑛)(𝑡)‖≠0. The operator H corresponding to _(t) is defined 

by the following matrix [14]: 
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A = A(α (t)) =[

α0(t) −α1 (t)
α1(t) α0(t)

   α2(t) −α3 (t)
   α3(t)     α2(t)

α2(t) −α3 (t)
α3(t) α2(t)

   α0(t) −α1 (t)
    α1(t) α0(t)

]  (5) 

Let ‖α𝚤(𝑡)‖ = 1 ; α (t) be a unit velocity curve. If α (t) does not pass 

through the origin, and α(t) ≠0 , the above matrix can be represent as 

H = h ξ = hetA 

 

H=h

[
 
 
 
 
 
 
α0(t)

ℎ

−α1 (t)

ℎ
α1(t)

ℎ

α0(t)

ℎ

   α2(t)

ℎ

−α3 (t)

ℎ
   α3(t)

ℎ

    α2(t)

ℎ
α2(t)

ℎ

−α3 (t)

ℎ
α3(t)

ℎ

α2(t)

ℎ

   α0(t)

ℎ

−α1 (t)

ℎ
    α1(t)

ℎ

α0(t)

ℎ ]
 
 
 
 
 
 

  (6) 

where, 

h: I ∁  R  R 

t  h(t) = ‖α(𝑡)‖ =√|α0
2 + α1

2 + α2
2 + α3

2|. 

Theorem 2. Let α (t) ∈ S3 ∩ M: In equation 

H = h) ξ = hetA 

h is a scalar matrix then, the matrix is an orthogonal matrix i.e. the 

matrix  ξ  is SO(4). 

Proof. If  α (t) ∈ S3, where α0
2 + α1

2 + α2
2 + α3

2  =1; using equations 

(5) and (6), from equation H = h ξ, we obtain that ξ ξ T = ξ T ξ = I4 

and det ξ  = 1. 

Corollary 3. Let α (t) ∈M The homothetic exponential motions are 

regular and have only one instantaneous rotation center at all-time t 

in Euclidean space E4 
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Proof. Hı= (hı+h A) ξ  = h ξ (A +
hı(t)

h
I4), where if we define as 

λ =
ℎ𝚤

ℎ
 , then last equation is 

Hı()= h ξ  (A - λI): 

From above equation, we have 

detHı = det (h ξ (t)) det(A - λI). 

Since detHı = 0, that is; Hı is singular, we get 

h = 0 or det (A - λI) = 0: 

Where h≠0. Otherwise, the exponential motion will be pure 

translation. Hı is always regular. 

Theorem 4. The exponential motion defined by the equation (3) in 

Euclidean space E4 is a homothetic exponential motion. 

Proof. The matrix determined by the equation (3); can be written 

H = h ξ(t) = heA, 

where due to H ∈ SO(4) this matrix determined is a motion with one 

parameter. 

Theorem 5. Let α (t) be a unit velocity curve and αı(t) ∈ M then the 

derivation operator Hı of H = h ξ is real orthogonal matrix in E4. 

Proof. Since α(t) is a unit velocity curve, 

(α0
𝚤 (𝑡))2 + (α1

𝚤 (𝑡))2 + (α2
𝚤 (𝑡))2 + (α3

𝚤 (𝑡))2 = 1 

and αı(t) ∈ M, then 

α0
𝚤 (𝑡)α2

𝚤 (𝑡) + α1
𝚤 (𝑡)α3

𝚤 (𝑡) = 0 

Thus, ξı(ξı)T = (ξı)T ξı and det ξı = 1. 

Theorem 6. If α(t) is a unit velocity curve and αı(t) ∈ M; the 

exponential motion is a regular exponential motion and it is 

independent of h: 
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Proof. By using theorem 3, det ξı = 1 and thus the value of det ξı is 

independent of h: 

Theorem 7. If α(t) is a spherical curve on M , then the exponential 

motion is rotation exponential motion. 

Proof. As α(t) is a spherical curve on S3, then 

α0
2(𝑡) + α1

2(𝑡) + α2
2(𝑡) + α3

2(𝑡) = 1 

 

and H HT = HT H = I4: H is a orthogonal matrix and det H = 1: Thus 

H is a rotating matrix in Euclidean space E4. 

 

4. VELOCITIES, POLE POINTS AND POLE CURVES OF 

THE MOTION 

Differentiating the equation (3) with respect to t we get 

Xı= Hı X0+H X0+Cı 

= Hı X0 +h ξX0 + Cı 

where Hı X0= h ξX0 is the relative velocity H X0+Cı is the sliding 

velocity, and X0 is the absolute velocity of point X0. In this case the 

following theorem can be given. 

Theorem 8. In Euclidean space E4, for homothetic exponential 

motion with one parameter, the absolute velocity vector of a moving 

system of point X0 at that time t is the sum of the sliding velocity and 

relative velocity of X0. 

To find the pole point, we have to solve the equation (3); where 

X0 =- (Hı )-1(Cı). 

Theorem 9. If α(t) is a unit velocity curve and  

αı(t) ∈M, then the pole point corresponding to each t-instant in R0 is 
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the rotation by (Hı) -1 of the speed vector (Cı) of the translation vector 

at that moment. 

Proof. Since the matrix Hı is orthogonal, then the matrix (Hı)T is 

orthogonal, too. Thus it makes a rotation. 

Corollary 10. In a homothetic exponential motion in Euclidean space 

E4 the tangent vectors of curves during motion are coinciding after 

the rotation ξ and translation h. 

5. ACCELARATIONS AND ACCELARATION CENTRES 

OF ORDER (n - 1) 

Definition 5.1. If H = h(t) ξ (t); h(t) is a scalar matrix and then ξ (t) 

is an orthogonal 4x4 matrix, the n th-order derivatives of H is given 

by 

H(n) =[∑ (
𝑛
𝑘

𝑛
𝑘=0 )ℎ(𝑛−𝑘)𝐴𝑘] ξ. 

Definition 5.2. The set of the zeros of sliding acceleration of order n 

is defined the acceleration centre of order (n - 1). By the above 

definition, we have to solve the solution of the equation 

H(n) X0 + C(n)  = 0; 

                       [∑ (
𝑛
𝑘

𝑛
𝑘=0 )ℎ(𝑛−𝑘)𝐴𝑘] ξ𝑋0 + 𝐶(𝑛)= 0,                                  (7) 

where 

H(n) =
dnH

dtn
  and C(n) =

dnC

dtn
 

 

We know that α(t) is a regular curve of order n and (α(t))(n) ∈M. Then 

we have 

 

α0
(𝑛)(𝑡)α2

(𝑛)(𝑡) + α1
(𝑛)(𝑡)α3

(𝑛)(𝑡) = 0 
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Thus 

{(α1
(𝑛)

)2 + (α2
(𝑛)

)2 + (α3
(𝑛)

)2+(α4
(𝑛)

)2≠0} 

α𝑖
(𝑛)

=
𝑑𝑖

𝑛α

𝑑𝑡𝑛 .  Also, we have 

det H(n) =((α1
(n)

)2 + (α2
(n)

)2 + (α3
(n)

)2 + (α4
(n)

)2)2. 

Then det H(n) ≠0. Thus matrix H(n) has an inverse and by equation 

(7), 

the acceleration centre of order (n-1) at every t-instant, is 

X0 =[H(n) ]
−1

[−C(n) ]. 

Example 1. Let α: I ∁ R M ∁  E4 be a curve given by 

t α (t) =  
1

√2
(cost, sint, sint, cost). 

Note that α(t) ∈ S3 and since ‖α𝚤(𝑡)‖ = 1, then α (t) is a unit velocity 

curve. Moreover, α𝚤(t) ∈ M; α𝚤𝚤(t) ∈ M,...,( α (t))n ∈ M. Thus α (t) 

satisfies all conditions of the above theorems. 
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