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ÖZET 

Bu çalışmada, değişmezlik grubu için alt yörüngesel çizgeleri araştırdık. Fu,N 

çizgesinde devre olabilmesi için gerekli ve yeterli şartları verdik. Ayrıca Γ[N] 

grubunun üretici eliptik elemanlarıyla, Fu,N  çizgesindeki devrelerin uzunlukları 

arasındaki bazı bağıntıları gösterdik. 

Anahtar Kelimeler: Değişmezlik grubu, Yörünge, Blok, Alt yörüngesel çizge, 

Devre. 
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ABSTRACT 

In this paper, we investigate some suborbital graphs for the invariance group. We 

gave a necessary and sufficient condition for the graph Fu,N to be circuit. And 

also we went further to show some relations between the lengths of circuits in F 

Fu,N and the generate elliptic elements of the group Γ[N]. 
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1. INTRODUCTION  

Towards the end of the 19th century, some significant results which 

could serve as a basis for discrete groups theory were first 

displayed by Henry Poincare and these were used in the 

generalization of elliptic functions theory. Many scientists carried 

out studies on functions left invariant by these discrete groups 

which were named Fuchsian groups and systematic work of which 

were developed by Henry Poincare. With the discovery of   Non-

Euclidean geometry and invariant theory in the 19th century, linear 

fractional transformation groups gained a particular importance and 

were deeply studied by analysis and algebraic methods, due to 

them being suitable to topologic group structure. Due to their 

importance in elliptic curves, integral quadratic forms and elliptic 

modular functions, congruence subgroups of Γ modular group 

Γ(𝑁), Γ0(𝑁), Γ1(𝑁) etc. groups were mostly studied. It has become 

evident in recent years that congruence subgroups of Γ modular 

group played an important role in proving Pierre de Fermat’s Last 

Theorem in 1637.  

 The main purpose on this issue in previous studies and  in 

this study, is to set the foundations of a new method which would 

help to identify the congruence subgroups in modular group much 

better, which have been subject to many studies and gaining 

particular importance since 1970s and to reveal how the producing 

elements of the congruence subgroups can be gained by this 

method (in fact, one of the most important discrete group the 

normalizer of Γ0(𝑁) in PSL(2, ℝ)).With this corresponded which 

we name as the graph method, the relations between the length of 

some closed circuits and the orders of the elliptic elements in the 

subgroups are examined. It is by this way that the signature 

problem was transferred to the suborbital graphs and a new 

approach was tried to be obtained.  

 

http://tureng.com/search/algebraically


Murat BEŞENK 

 18 

2. PRELIMINARIES 

Let ℂ the field of complex number and ℂ̂  the Riemann sphere. The 

modular fractional linear transformation is a map 𝑇: ℂ̂ ⟶ ℂ̂, 

𝑇(𝑧): =
𝑎𝑧+𝑏

𝑐𝑧+𝑑
   where  𝑎, 𝑏, 𝑐, 𝑑 ∈ ℤ are parameters which satisfy 

𝑎𝑑 − 𝑏𝑐 = 1. It is isomorphic to the integral uimodular matrix 

group   

 Γ ≔ PSL(2, ℤ) = {(
𝑎 𝑏
𝑐 𝑑

) ∶  𝑎, 𝑏, 𝑐, 𝑑 ∈ ℤ, 𝑎𝑑 − 𝑏𝑐 = 1 } . 

 Γ  is clearly discrete group and hence a  Fuchsian group. It is 

known that modular group acts freely properly discontinuously on 

complex upper half plane ≔ {𝑧 ∈ ℂ: Im𝑧 > 0}. For a natural 

number  𝑁 let  𝑧𝑁   denote the residue class of 𝑧 ∈ ℤ  modulo 𝑁  

and let  ℤ𝑁  denote the ring of all residue classes modulo 𝑁. As 

before Γ denotes the group of homogeneous modular 

transformations which is isomorphic to the special linear group 

SL(2, ℤ). Correspondingly, we use the sembol Γ𝑁   for the group  

SL(2, ℤ𝑁).  

Definition 2.1. The ring homomorphism 𝑧 → 𝑧𝑁  of  ℤ onto  ℤ𝑁  

induces the group homomorphism  𝜎 of Γ   into  Γ𝑁   with       

𝜎:Γ → ΓN ,(
𝑎 𝑏
𝑐 𝑑

) → (
𝑎𝑁 𝑏𝑁

𝑐𝑁 𝑑𝑁
).  

The kernel Γ(𝑁) ≔ {(
𝑎 𝑏
𝑐 𝑑

) ∈ Γ ∶  (
𝑎 𝑏
𝑐 𝑑

) ≡ (
1 0
0 1

) 𝑚𝑜𝑑𝑁} 

of  𝜎   is a  normal subgroup of  Γ  and  is called the homogeneous  

principal congruence group of level 𝑁. And also the image  𝜎(Γ) is 

isomorphic to the full group  Γ𝑁. The homogeneous group   

Γ[𝑁] ≔ Γ(𝑁) ∪ (−𝐼)Γ(𝑁) 

will likewise be called  the principal congruence group.  

For example   Γ1 ≔ Γ[2] ∪ Γ[2]𝑇, 𝑇2 = −𝐼  is also called the theta 

group. 
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Let 𝑀 = (
𝛼 𝛽
𝛾 𝛿

)  be a matrix of order 𝑁. We assume that the 

entries of  𝑀 are relatively prime, (𝛼, 𝛽, 𝛾, 𝛿) = 1. The linear 

transformation corresponding to 𝑀 will be called a transformation 

of order 𝑁. For fixed 𝑁  we will let 𝜇𝑁 denote both the set of all 

such matrices and their corresponding transformations. By a 

transformation group  Γ𝑀 of order  𝑁  we mean the group  Γ𝑀 ≔

Γ ∩ 𝑀−1Γ𝑀,  which may be considered either as a group of 

matrices or as a group of linear transformations. 

Let  𝑗 be a non-constant modular function for the full modular 

group. Extended complex upper half plane we will be denoted by  

∗ ≔  ∪ ℚ ∪ {∞} and then we define the function  𝑗𝑀  by  

𝑗𝑀(𝜏) ≔ 𝑗(𝑀(𝜏)) , 𝜏 ∈ ∗. 

Definition 2.2. The invariance group for all transforms  𝑗𝑀 of  𝑗  of 

order  𝑁   is the group   Γ∗(𝑁) ≔ {𝑇 ∈ Γ ∶  𝑇 = (
𝛼 𝛽
𝛾 𝛿

) ≡

(
𝛼 0
0 𝛼

) 𝑚𝑜𝑑𝑁}. 

From this we see that the index of the principal congruence group  

Γ(𝑁) in  Γ∗(𝑁) is equal to  the number 𝜂 of incongruent solutions 

modulo 𝑁 of the congruence  𝑥2 ≡ 1 (𝑚𝑜𝑑𝑁).  If  𝑁 has the  

prime  factorization    

               𝑁 = 2𝑎𝑝1
𝑟1 … 𝑝𝑠

𝑟𝑠  with  2 < 𝑝1 < ⋯ < 𝑝𝑠  and  𝑠 > 0 

then  𝜂 known  to be        

    𝜂 = {

2𝑠 , 𝑎 = 0     or   𝑎 = 1

2𝑠+1 , 𝑎 = 2

2𝑠+2 , 𝑎 > 2

     thus   the index of  Γ∗(𝑁)  

in Γ  is equal to  |Γ: Γ∗(𝑁)| =
|Γ:Γ(𝑁)|

𝜂
 . We note especially that 𝜂 =

{
1 , 𝑁 = 1    or   𝑁 = 2

2 , 𝑁 = 𝑝1
𝑟1    or   𝑁 = 2𝑝1

𝑟1  and in this cases Γ∗(𝑁) =  Γ[𝑁]. 
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In addition to that a complex form can be put on the quotient group 

/Γ  to get a noncompact Riemann surface. A general 

compactification of  Riemann surface is achieved by adding finitely 

many points named the cusps of Γ. In particularly , this is done by 

considering the action of Γ on the ∗. The group Γ acts on the 

subset ℚ ∪ {∞}. If Γ acts transitively on ℚ ∪ {∞}, the space ∗/Γ 

becomes the special compactification of /Γ. 

Remark 2.3. Actually quotient groups of  complex upper half 

plane  that are compact do form for Fuchsian groups Γ other than 

subgroups of the modular group which is known; a class of them 

constructed from quaternion algebras is also of significance in 

number theory and combinatoric theory and it also has the merit of 

being fairly interesting to many number theorists. 

3. PERMUTATION GROUPS AND IMPRIMITIVE ACT  

Every element of the extended set of rational ℚ̂ ≔ ℚ ∪ {∞}  can be 

represented as a reduced fraction  
𝑥

𝑦
  with 𝑥, 𝑦 ∈ ℤ  and  (𝑥, 𝑦) = 1. 

Since  
𝑥

𝑦
=

−𝑥

−𝑦
 , this representation is not unique. We represent ∞  

as  
1

0
=

−1

 0
. The action of the matrix (

𝛼 𝛽
𝛾 𝛿

) ∈ Γ∗(N) on 
𝑥

𝑦
   is 

(
𝛼 𝛽
𝛾 𝛿

) :
𝑥

𝑦
⟶

𝛼𝑥+𝛽𝑦

𝛾𝑥+𝛿𝑦
 . The action of a matrix on 

𝑥

𝑦
  and on 

−𝑥

−𝑦
  is 

identical.  

Definition 3.1. Let  (𝐺, Ω)  be transitive permutation group, 

consisting of a group 𝐺 acting   on a set  Ω   transitively. An 

equivalence relation ≈ on Ω  is called 𝐺 − 𝑖𝑛𝑣𝑎𝑟𝑖𝑎𝑛𝑡   if whenever  

𝜈1, 𝜈2 ∈ Ω  satisfy  𝜈1 ≈ 𝜈2  then  𝑔(𝜈1) ≈ 𝑔(𝜈2) for all 𝑔 ∈ 𝐺. The 

equivalence classes are called blocks. 

We call (𝐺, Ω)  imprimitive, if Ω  admits some 𝐺 −invariant 

equivalence relation different from 

(i)  the identity relation, 𝜈1 ≈ 𝜈2  if and only if 𝜈1 = 𝜈2; 

https://en.wikipedia.org/wiki/Complex_manifold
https://en.wikipedia.org/wiki/Noncompact
https://en.wikipedia.org/wiki/Alexandroff_compactification
https://en.wikipedia.org/wiki/Fuchsian_group
https://en.wikipedia.org/wiki/Quaternion_algebra
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(ii) the universal relation, 𝜈1 ≈ 𝜈2  for all  𝜈1, 𝜈2 ∈ Ω . 

Otherwise (𝐺, Ω)  is called primitive. These two relations are 

supposed to be trivial relations. In conclusion we have, 

Lemma 3.2. Let (𝐺, Ω) be a transitive permutation group. (𝐺, Ω)  is 

primitive if and only if 𝐺𝜀, the stabilizer of  𝜀 ∈ Ω is a maximal 

subgroup of 𝐺 for each 𝜀. 

From the lemma above we see that whenever, for some 𝜀, 𝐺𝜀 <

𝐻 < 𝐺, then Ω admits some 𝐺 –invariant equivalence relation other 

than the trivial cases. Because of the transitivity, every element of 

Ω has the form 𝑔(𝜀) for some 𝑔 ∈ 𝐺. Thus one of the non-trivial 𝐺 

-invariant equivalence relation on Ω is given as follows: 

𝑔1(𝜀) ≈ 𝑔2(𝜀)  if and only if    𝑔2 ∈ 𝑔1 𝐻. 

The number of  blocks  is the index  |𝐺: 𝐻|. 

We have the following statements: 

4. MAIN CALCULATION 

Lemma 4.1. (i) Γ∗(𝑁) acts transitively on ℚ̂. 

(ii) Let Γ[𝑁]  which is the principal congruence subgroups of Γ. 

Then Γ∞
∗ (𝑁) < Γ[𝑁] < Γ∗(𝑁)  for each 𝑁, where Γ∞

∗ (𝑁)  is the 

stabilizer of ∞ in  ℚ̂ is the set of  {(
1 𝜆
0 1

) : 𝜆 ∈ ℤ}. 

Proof.  

 (i)  It is enough to show that the orbit containing ∞ is ℚ̂. If   
𝑥

𝑦
∈ ℚ̂, 

then as (𝑥, 𝑦) = 1, there exits 𝜐1, 𝜐1 ∈ ℤ with  𝑥𝜐1 − 𝑦𝜐1 = 1. Then 

the element (
𝑥 𝜐2

𝑦 𝜐1
) of  Γ∗(𝑁) sends ∞ to 

𝑥

𝑦
. 

(ii) Since the action is transitive, stabilizers of any two points in ℚ̂  

are conjugate. So it is sufficient to consider the stabilizer Γ∞
∗ (𝑁) of 
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∞. The consists of the elements of the form  (
1 𝜆
0 1

)   with 𝜆 ∈ ℤ. 

Hence 

𝑇(∞) = (
𝛼 𝛽
𝛾 𝛿

) (
1
0

) = (
1
0

) 

Then 𝛼 = 1, 𝛾 = 0, 𝛿 = 1  and 𝛽 = 𝜆 ∈ ℤ. Therefore 𝑇 = (
1 𝜆
0 1

). 

So Γ∞
∗ (𝑁) is the infinite cyclic group by the element (

1 1
0 1

). That 

is, Γ∞
∗ (𝑁) = 〈(

1 1
0 1

)〉. 

And also, it is clearly that Γ∞
∗ (𝑁) < Γ[𝑁] < Γ∗(𝑁). Hence, this 

completes the proof. 

 We now consider imprimitivity of the action on Γ∗(𝑁)  on ℚ̂. 

This will be a special case of the following: 

We will define an equivalence relation  ≈  induced on ℚ̂ by Γ∗(𝑁). 

Then  Γ∗(𝑁) acts imprimitively on ℚ̂.  Let  ≈  denote the Γ∗(𝑁) 

invariant equivalence relation on ℚ̂ by Γ[𝑁], and  let   𝜌1 =
𝛼1

𝛾1
  and  

𝜌2 =
𝛼2

𝛾2
   be elements of ℚ̂. Then there are the elements 𝑇1 ≔

(
𝛼1 𝛽1

𝛾1 𝛿1
)  and 𝑇2 ≔ (

𝛼2 𝛽2

𝛾2 𝛿2
)  in Γ∗(𝑁) such that 𝜌1 = 𝑇1(∞),   

𝜌2 = 𝑇2(∞). So we have  

𝜌1 ≈ 𝜌2  if and only if   𝑇1
−1𝑇2 ∈ Γ[𝑁]. And so from the above we 

can easily calculate that 

   𝑇1
−1𝑇2 = (

𝛼2𝛿1 − 𝛾2𝛽1 𝛿1𝛽2 − 𝛿2𝛽1

𝛼1𝛾2 − 𝛼2𝛾1 𝛼1𝛿2 − 𝛾1𝛽2
) ∈ Γ[𝑁]. Hence   𝛼1𝛾2 −

𝛼2𝛾1 ≡ 0 (𝑚𝑜𝑑𝑁) is obtained. Similarly   if   𝜉1 =
𝛽1

𝛿1
  and  𝜉2 =

𝛽2

𝛿2
   

then 𝜉1 = 𝑇1(0), 𝜉2 = 𝑇2(0). Thus 𝜉1 ≈ 𝜉2  if and only if   

𝑇1
−1𝑇2 ∈ Γ[𝑁]. It has clearly here  𝛿1𝛽2 − 𝛿2𝛽1 ≡ 0 (𝑚𝑜𝑑𝑁) is 

achieved.  
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By our general discussion of imprimitivity, the number of the 

blocks under  ≈ is given by |Γ∗(𝑁): Γ[𝑁]|.  ∞ and 0 are blocks 

respectively 

  [∞] ≔ [
1

0
] = {

𝑎

𝑏
| 𝑎, 𝑏 ∈ ℤ, (𝑎, 𝑏) = 1 and  𝑏 ≡ 0 (𝑚𝑜𝑑𝑁) }   and  

  [0] ≔ [
0

1
] = {

𝑎

𝑏
| 𝑎, 𝑏 ∈ ℤ,   (𝑎, 𝑏) = 1  and  𝑎 ≡ 0 (𝑚𝑜𝑑𝑁)}. 

Now we have  two definition, 

Definition 4.2. 𝑋 ≠ ∅ is a set and  Δ ⊂ 𝑋 × 𝑋 is a relation. G=

(𝑋, Δ)  pair is called a graph. Elements of 𝑋 are vertices of graph 

and elements of Δ are edges of the graph. If (𝑎, 𝑏) ∈ Δ this is 

indicated as 𝑎 ⟶ 𝑏. If (𝑎, 𝑏) ∈ Δ or (𝑏, 𝑎) ∈ Δ,  𝑎 and 𝑏 are 

connected by an edge. In this case, 𝑎 and 𝑏 are called neighboring 

vertices. 

Definition 4.3. Let 𝑎 = 𝑎0, 𝑎1, 𝑎2, … , 𝑎𝑛 = 𝑏  be a sequence of G 

graph vertices. If for   1 ≤ 𝑖 ≤ 𝑛, 𝑎𝑖−1 and 𝑎𝑖 are connected with 

an edge, then this is indicated with the expression from 𝑎 to 𝑏 there 

is a path with the length of 𝑛. If 𝑎 = 𝑏 and 𝑎0, 𝑎2, … , 𝑎𝑛−1 vertices 

are all different, then this is called a 𝑛 edged circuit. Furthermore, 

if for the pairs of 𝑎𝑖, 𝑎𝑖+1,  𝑎𝑖 → 𝑎𝑖+1 then this is a circuit directed 

at a circuit. A three edged circuit is called a triangle, four edged 

circuit is quadrilateral and six edged circuit is called a hexagon.  

Sims introduced the idea of suborbital graphs for a finite 

permutation groups 𝐺 acting on a set Ω. These are graphs with a 

vertex set Ω, on which 𝐺 induces automorphism. We summarize 

Sims’ theory as follows. 

 

 

Let (𝐺, Ω)  denote a transitive permutation group. Then 𝐺 acts on a 

Cartesian product set Ω × Ω  by  Π: 𝐺 × (Ω × Ω) ⟶ (Ω × Ω).  For 

(𝜈1, 𝜈2) ∈ Ω × Ω  and 𝑔 ∈ 𝐺, we define  
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Π(𝑔, (𝜈1, 𝜈2)) = (𝑔(𝜈1), 𝑔(𝜈2)). Therefore (𝐺, Ω × Ω  ) becomes a 

permutation group. The orbit of this action are called suborbitals of 

𝐺, that containing (𝜈1, 𝜈2) being denoted by 𝛰(𝜈1, 𝜈2). From 

𝛰(𝜈1, 𝜈2) we can form a suborbital graph 𝐺(𝜈1, 𝜈2): its vertices are 

the elements of Ω, and there is a directed edge from  𝑎 to 𝑏 if   

(𝑎, 𝑏) ∈ 𝛰(𝜈1, 𝜈2). A directed edge from  𝑎 to 𝑏 is denoted by  

𝑎 ⟶ 𝑏. In this case we will say that there exists an edge 𝑎 ⟶ 𝑏 in 

𝐺(𝜈1, 𝜈2). We can also say that the reader is refereed to [1], [2], [5], 

[13], [14] and [15] for some relevant previous work on suborbital 

graphs. 

In this paper our calculation concern Γ∗(𝑁), so we can draw 

this edge as a hyperbolic geodesic in the complex upper half plane  

. Here graph is a combination of hyperbolic lines.  In this study, 

we investigate that 𝐺 and Ω are Γ∗(𝑁) and ℚ̂, respectively. Since 

Γ∗(𝑁) acts transitively on ℚ̂, each suborbital contains a pair (∞, 𝜌) 

for some 𝜌 ∈ ℚ̂; writing 𝜌 =
𝑢

𝑁
 , (𝑢, 𝑁) = 1, we denote this 

suborbital by 𝛰𝑢,𝑁 ≔ 𝛰(
1

0
,

𝑢

𝑁
) and the corresponding  suborbital 

graph by 𝐺𝑢,𝑁 ≔ 𝐺(
1

0
,

𝑢

𝑁
). 𝐺𝑢,𝑁 is a disjoint union  of all subgraphs 

forming  blocks with respect to ≈  Γ∗(𝑁)  invariant equivalence 

relation. Γ∗(𝑁) permutes these blocks transitively  and so all of the 

subgraphs are isomorphic. Therefore it is sufficient to do the 

calculations only for the block [∞].  

 Let  𝐹𝑢,𝑁 ≔ 𝐹(
1

0
,

𝑢

𝑁
)  denote the subgraph of 𝐺𝑢,𝑁  whose 

vertices form the block [∞]. We represent the edges of 𝐹𝑢,𝑁  as 

hyperbolic geodesics in the upper half-plane . And also we can 

show that the subgraph 𝐹𝑢,𝑁 of 𝐺𝑢,𝑁 does not cross in the upper 

half-plane. 
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Theorem 4.4. Let  
𝛼1

𝛾1
 and  

𝛼2

𝛾2
  be in the block  [∞]. Then there is 

an edge                     

𝛼1

𝛾1
⟶

𝛼2

𝛾2
  in    𝐹𝑢,𝑁  if and only if  either 

(a)  𝛼2 ≡ 𝑢𝛼1 (𝑚𝑜𝑑𝑁),  𝛾2 ≡ 𝑢𝛾1 (𝑚𝑜𝑑𝑁) and 𝛼1𝛾2 − 𝛾1𝛼2 = 𝑁        

(b)  𝛼2 ≡ −𝑢𝛼1 (𝑚𝑜𝑑𝑁),  𝛾2 ≡ −𝑢𝛾1 (𝑚𝑜𝑑𝑁) and 𝛼1𝛾2 −

𝛾1𝛼2 = −𝑁. 

Proof. Let  
𝛼1

𝛾1
⟶

𝛼2

𝛾2
∈ 𝐹𝑢,𝑁, then  there exists some 𝑇 ≔

(
𝛼 𝛽
𝛾 𝛿

) ∈ Γ∗(𝑁) such that  𝑇 (
1

0
) =

𝛼

𝛾
=

𝛼1

𝛾1
   and  𝑇 (

𝑢

𝑁
) =

𝛼𝑢+𝛽𝑁

𝛾𝑢+𝛿𝑁
=

𝛼2

𝛾2
.  Hence 𝛼 = 𝛼1 , 𝛾 = 𝛾1. Then these equations  𝛼2 ≡

𝑢𝛼1 (𝑚𝑜𝑑𝑁) and  𝛾2 ≡ 𝑢𝛾1 (𝑚𝑜𝑑𝑁) are satisfied. So we have the 

matrix equation 

(
𝛼 𝛽
𝛾 𝛿

) (
1 𝑢
0 𝑁

) = (
𝛼1 𝛼2

𝛾1 𝛾2
). 

If we take determinant, it is easily seen that  𝛼1𝛾2 − 𝛾1𝛼2 = 𝑁. 

 

          

           2-gon    H - Quadrilateral                           H - Triangles 

Figure 1.  Circuits  
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      Conversely, we suppose that   𝛼2 ≡ 𝑢𝛼1 (𝑚𝑜𝑑𝑁),  𝛾2 ≡

𝑢𝛾1 (𝑚𝑜𝑑𝑁)    and   𝛼1𝛾2 − 𝛾1𝛼2 = 𝑁. Then there exist integers  

𝜃1 and 𝜃2 such that  𝛼2 = 𝑢𝛼1 + 𝜃1 𝑁  and  𝛾2 = 𝑢𝛾1 + 𝜃2𝑁. In 

this case 

(
𝛼1 𝜃1

𝛾1 𝜃2
) (

1 𝑢
0 𝑁

) = (
𝛼1 𝑢𝛼1 + 𝜃1 𝑁
𝛾1 𝑢𝛾1 + 𝜃2𝑁

) = (
𝛼1 𝛼2

𝛾1 𝛾2
) 

is obtained. Since 𝛼1𝛾2 − 𝛾1𝛼2 = 𝑁 from determinants we get 𝛼1𝜃2 − 

𝛾1𝜃1 = 1. Consequently,  (
𝛼1 𝜃1

𝛾1 𝜃2
) ∈ Γ∗(𝑁) and   

𝛼1

𝛾1
⟶

𝛼2

𝛾2
∈

𝐹𝑢,𝑁. 

(b) The proof for minus sign is similar. We get above  matrix 

equation with 𝛼2  and 𝛾2  replaced by  −𝛼2  and −𝛾2, so that 
𝛼1

𝛾1
⟶

−𝛼2

−𝛾2
=

𝛼2

𝛾2
∈ 𝐹𝑢,𝑁. 

Theorem 4.5. The graph 𝐹𝑢,𝑁 contains directed triangles if and 

only if  𝑢2 ± 𝑢 + 1 ≡ 0 (𝑚𝑜𝑑𝑁). 

Proof. Assume first that 𝐹𝑢,𝑁 has a triangle 
𝑘0

𝑙0
⟶

𝑚0

𝑛0
⟶

𝑥0

𝑦0
⟶

𝑘0

𝑙0
. It can be easily shown that Γ[𝑁] permutes the vertices and 

edges of  𝐹𝑢,𝑁 transitively. Therefore we suppose that the above 

triangle is transformed under  Γ[𝑁] to the 
1

0
⟶

𝑢

𝑁
⟶

𝑥0

𝑦0
⟶

1

0
 . 

Without loss of generality, from the edge of   
𝑢

𝑁

<
→

𝑥0

𝑦0𝑁
  the 

equation of  𝑥0 ≡ −𝑢 2(𝑚𝑜𝑑𝑁) and from the  𝑢𝑦0𝑁 − 𝑁𝑥0 = −𝑁 

equation, 𝑥0 = 𝑢𝑦0 + 1  is achieved.  

For 𝑦0 = 1 situation, 
𝑢

𝑁
⟶

𝑥0

𝑁
  and  𝑥0 = 𝑢 + 1   and eventually  

𝑢

𝑁

⟶
𝑢+1   

𝑁
 is found. And also  𝑢 + 1   ≡ −𝑢 2(𝑚𝑜𝑑𝑁) then 𝑢 2 +

𝑢 + 1   ≡ 0(𝑚𝑜𝑑𝑁). Again  𝑦0 = 2  can not be true because for  
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𝑥0

2𝑁
⟶

1

0
  there is not an edge condition. Similarly if  

𝑢

𝑁

>
→

𝑥0

𝑦0𝑁
  

holds then we conclude that  𝑢 2 − 𝑢 + 1   ≡ 0(𝑚𝑜𝑑𝑁). 

Consequently we have  𝑢2 ± 𝑢 + 1 ≡ 0 (𝑚𝑜𝑑𝑁). 

On the other hand suppose that  𝑢2 ± 𝑢 + 1 ≡ 0 (𝑚𝑜𝑑𝑁). Then, 

using Theorem 4.4., we see that 
1

0
⟶

𝑢

𝑁
⟶

𝑢±1

𝑁
⟶

1

0
  is a 

triangle in  𝐹𝑢,𝑁. Hence, as the hyperbolic triangle the following 

shape:                                                                         

 

Figure 2.  -Triangle in 𝐹𝑢,𝑁 

 

Corollary 4.6. For some  𝑢 ∈ ℕ, 𝐹𝑢,𝑁 contains a triangle  if and 

only if the group Γ[𝑁] has a period 3. 

Proof. Firstly suppose 𝐹𝑢,𝑁 contains a triangle. Then, Theorem 4.5. 

shows that 𝑢2 ± 𝑢 + 1 ≡ 0 (𝑚𝑜𝑑𝑁). Therefore we have the 

elliptic element   

𝜑 ≔ (−𝑢
𝑢2±𝑢+1

𝑁

−𝑁 𝑢 ± 1
)  of order 3 in Γ∗(𝑁). That is, 𝜑3 = ∓𝐼. The 

elements of this form must be in Γ[𝑁]. It is clear that, 𝜑 (
1
0

) =

                 
𝑢

𝑁
                       

𝑢±1

𝑁
 

 

Figure 2.  -Triangle in 𝐹𝑢,𝑁 

 

ℝ̂ 

 

 

   ∞                           ∞ 
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(
𝑢
𝑁

),  𝜑 (
𝑢
𝑁

) = (
𝑢 ± 1

𝑁
),  𝜑 (

𝑢 ± 1
𝑁

) = (
1
0

). That is, 
1

0
⟶

𝑢

𝑁
⟶

𝑢±1

𝑁
⟶

1

0
. 

Conversely, suppose that Γ[𝑁] has a period for order 3, so Γ[𝑁] 

contains an elliptic element of order 3. Let this element be 𝜑1 =

(
𝑎 𝑏
𝑁 −𝑎 ± 1

), det 𝜑1 = 1. From this we get  𝑁|(𝑎2 ± 𝑎 + 1). 

Therefore 𝐹𝑢,𝑁 contains a triangle. 
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