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ABSTRACT 
Single Cylinder Diesel Engines are simple and very economical in manufacturing. Their multipurpose usability 

and the capability to deliver the maximum power possible within a given envelope makes them very demanding 

engines in the market. Simulation tools are widely used nowadays to minimize the energy and time needed for a 

real engine design and development. Zero-dimensional models are very suitable and reliable to observe the 

engine operation under different conditions. Contrary to the previous studies, this paper presents a comparison 

between the practical and simulation model data of a single cylinder Diesel Engine. The purpose of this research 

was to investigate the fundamental variations between the simulation and experimental results with the help of 

characteristic engine performance maps. Experiments were conducted on a practical 1.16 L Diesel Engine under 

variable conditions which were then repeated on the simulation model to analyze and evaluate the differences 

between the obtained results. Zero-dimensional modelling was performed using GT-Power, a powerful 

commercial engine simulation software. This study also involved the prediction of optimum speed (RPM) of the 

engine by performing a vibration analysis using a wireless accelerometer. The maximum torque of the 1.16 L 

Erin Engine is given to be 80 Nm @ 1,800 RPM, while the simulation model indicated it to be 78 Nm at the 

same RPM value. Likewise, maximum power output was indicated to be 18 kW @ 2,400 RPM, while the 

experimental results showed it to be 15 kW @ 2,400 RPM. These results laid down a liable basis for the 

prediction of several operating parameters of the engine which could act as a solid rung for further studies on this 

subject. 

 

Keywords: Single-cylinder, Diesel Engines, Zero-dimensional Model, Combustion Analysis, Engine 
Maps, Vibration Analysis 

 

INTRODUCTION 
 With an increase in the fuel prices and emission standards, researchers have been forced to look for a 

perfect combination of efficient, low fuel-combustion and low emission engine. 

Diesel engines have a very high expansion ratio and possess the ability of lean burning which makes them one of 

the most highly efficient engine in the market. 

 The emission standard and regulations all over the world are becoming increasingly stern and region 

due to the risk these emission possess on human health [1]. This poses a serious challenge to the researchers and 

Automobile industries to obtain an optimal value of efficiency-emissions-MPRR trade-offs. This task is not only 

intricate but requires a lot of statistical and experimental research [2]. 

 In the current scenario, practically examining an engine is becoming less popular because of the high 

cost and energy needed for its setup. Simulation techniques such as: Zero Dimensional Simulation Models [3-7] 

are being practiced more often to nearly estimate the behavior of the engine under different circumstance. This 

means that the engine output parameters can be predicted based on the engine input parameters with a very low 

deviation from practical results [8]. 

 The performance of an Internal Combustion Engine under variable loads and conditions can fully 

represented by a performance map [9-10]. GT-Power (GT-Suite) is designed for steady state and transient 

simulations suitable for engine/power train control analysis and can be used to simulate all kinds of Internal 

Combustion (IC) engines [11]. The software uses one dimensional gas dynamics to represent the flow and heat 

transfer in the components of the engine model. GT-Power has the capability to build models of engines that are 

very close to reality. To make the model work as the real engine, it is most crucial to emulate the real engine 
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down to the smallest pipe and angle. To model the engine in GT-Power there are objects like cylinders, 

crankcases, pipes, turbochargers and so on, that are easy to modify by desire and requirement. 

 As by its name Zero Dimensional Models do not consider any dimensions of flow field but only involve 

the in-cylinder envelope of heat release rates. The first law of thermodynamics is widely involved in the working 

fluid of this system. Many of these parameters directly affect the performance of the engine [12-13]. Thus, these 

tools do not only help in the pre-optimization of the actual thermodynamic cycle of the engine, but also give a 

close overview of their real working under various environments and conditions [14-17]. 

 Repeating a practical experiment on a simulated model gives drastically similar results provided that the 

input parameters are given precisely and accurately [18]. This comparison of experimental and simulation data 

can not only help in better understanding of the contrast between the realistic and simulated model but will also 

give estimations of various parameters which can be utilized in further studies.  

 In-cylinder pressure and engine block vibration signals have a direct connection [19]. Vibration 

measurement on the engine block or cylinder heads has been used successfully for the detection of faults in 

diesel engines [20-23]. This phenomenon can be applied in further studies for engine parameters optimization. 

 Vibration and noise analysis of the engine are becoming more practical to determine the performance of 

the engine under different operating conditions. These analyses can setup a core basis of non-intrusive 

measurements of diesel engine and can play an important role in engine optimization [24-26]. 

 

EXPERIMENTAL SETUP AND METHODOLOGY 
The engine chosen to carry out experimentation was a single cylinder, four stroke, vertical, water cooled, 

direct injection computerized Engine from Erin Motors as shown in Figure 1. Table 1 gives a detailed account of 

the technical specifications of the engine, while its technical dimensions can be seen from Figure 2. It is a 1.16 

Liters four-stroke engine with single cylinder. The engine is naturally aspirated with a compression ratio of 14.6. 

The fuel injection system is directly mounted in the cylinder head and the fuel is injected directly into the 

combustion chamber. Because this injector sprays directly into the combustion chamber, therefore, it operates at 

very high pressures. 

 

     

Figure 1. 1.16 L Single Cylinder Diesel   Figure 2. Dimensions of the Engine 

  Engine by Erin Motors 

 

The setup of the Engine in the Engine Testing Laboratory is shown in Figure 3. The engine was connected with 

an AC Dynamometer to examine the performance of the engine under various load conditions. The whole 

operational support was provided by Erin Motor and Automotive Technologies Research & Development  
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Table 1. Engine Specifications 

Number of Cylinders 1 

Displacement (cm
3
) 1,160 or 1.16 L 

Valves Per Cylinder 4 

Bore x Stroke (mm) 108 x 127 

Compression Ratio 14.6 : 1 

Power Output (kW) @ Speed (rpm) 18 @ 2,400 

Max. Torque (Nm) @ Speed (rpm) 80 @ 1,800 

Specific Fuel Consumption (g/kWh) 255 

Cooling Water Cooled 

Min. Idling Speed (rpm) 600 

Aspiration Naturally Aspirated 

Net Weight 169 kg 

Max Oil Capacity 4.5 Litres 

Combustion System Direct Injection 

Rotation Clockwise 

Starter 12V – 2 kW 

Alternator 14 V – 125 A 

Intake Valve Opening Crank Angle 54° 

Intake Valve Closing Crank Angle 74° 

Exhaust Valve Opening Crank Angle 74° 

Exhaust Valve Closing Crank Angle 54° 

Maximum Valve Lift 11 mm 

Crank Angle at start of Injection 19° BTDC 

 
 

Company Turkey (OTAM). All the practical experimentation was conducted under controlled environments. The 

Engine was operated from the Control/Operating Room by a special software, iLAB, which connected the whole 

Engine system with the computer. 

 

 

Figure 3. Experimental Setup in Engine Testing Laboratory 

 

The parameters of piston and cylinder of the Engine were measured and recorded as shown in Table 2. The 

engine’s performance was investigated under many conditions and environments and the data was recorded 

digitally by various sensors. This data was then processed to get the results in the form of graphics to make them 

more comparable. The next stage involved the creation of the model of the same engine on GT-Power.  
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The first step for GT-Power modelling was to measure each technical parameter of the diesel engine. 

Table 2. Cylinder, Piston and Crank Dimensions 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4. Engine Simulation Model in GT-Power 

 

Numerous parameters of the engine were taken into account and the measurements of even small portions 

were recorded using Laboratory Measurement Tools. This data of measurement was performed by practically 

measuring the components and also by taking their readings from the technical drawings. This is a very critical 

step for GT-Power data input library.  

A simulation model of the engine was setup in GT-Power also in order to get the data from zero dimensional 

simulation. Figure 4 gives a basic over view of the simulation map setup in this commerical engine software. The 

model breaks down to a number of branches containing intake system, single cylinder and exhaust system. Every 

single component of the engine was defined with its particular reading to obtain accurate and precise results. 

The system consisted of one Environment Inlet and Exit, Two Inlet and Exhaust Runners, Two Inlet and 

Exhaust Ports, Two Inlet and Exhaust Valves, One Cylinder, One Direct Injection Injector and One Crank-Shaft 

Engine System Once the model was fully setup, information such as case specific input, type of simulation, and 

desired output were described. Most of this was accomplished through case setup in GT-Power. 

B Bore 108 mm 

S Stroke 127 mm 

r Connecting rod length 198 mm 

a Crank offset 63.5 mm 

s Piston position Varies 

θ Crank angle Varies 

Sc Clearance Height 9.3 mm 

Vc Clearance Volume 85 cm
3 

Vd Displacement Volume 1165 cm
3 
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RESULTS AND DISCUSSION 
Average piston speed of an engine can be described as the mean speed of the piston and is a function of 

stroke and RPM as shown in equation 1 [9]. 

  

𝑈𝑝 = 2. 𝑆. 𝑁 (1) 

where; 

 Up : Average Piston Speed in m/s 

 S    : Stroke length in m 

 N : rpm/60 revolutions per second 

 

According to the above mentioned equation, the maximum mean piston speed for our engine can be 

calculated as: 

 

𝑈𝑝𝑚𝑎𝑥 = 2(127 × 10−3) (
2400

60
) = 10.16 𝑚/𝑠 

 

The term of maximum piston speed (Upmax) is widely used for the classification of the engines. The 

maximum mean piston speed of this engine at 2400 RPM is calculated to be 10.16 m/s which classifies this 

engine in the category of ‘low speed diesel and medium speed diesel engines’. 

 

 

Figure 5. Average Piston Speed with RPM of the Engine 

 

The trend of average piston speed against RPM is shown in the Figure 5. This clearly goes along the logic of 

increase in the avergae piston speed with an increase in RPM. 

The conchoids of the practical and simulated model engine maps, shown in Figure 6 and Figure 7, appeared 

to be similar apart from some little contraries shown at lower RPMs, which indicate practical operational 

performance difference of the engine for low RPMs. For the range of high load, the minimum Specific Fuel 

Consumption (SFC) is seen to be at low engine speed. The conchoids start to become flat at low load range. The 

increase in throttle and frictional losses in relation to the useful torque output is the main reason behind this 

trend. A visible increase in fuel consumption is described by a sharply increasing gradient of fuel consumption at 

a constant load with respect to increasing RPMs because of the effect caused by these two factors. Moving from 

the region of lowest BSFC on a line of constant RPM, towards lower values of BMEP, mechanical efficiency 

falls, because the IMEP decreases. The specific fuel consumption is shown to be the lowest (highest fuel 

efficiency) at high BMEP with a relatively low piston speed.  

The comparison of these maps clearly indicates a similarity between the obtained results from both cases. 

Although some fluctuations and anomalities were seen to exist but generally the trend of the lines was seen to be 

the same. Comparing Figure 8 and Figure 9, the torque values for particular BSFC values in the experimental 
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Figure 6. Engine Performance Map from Experimental Results (BMEP-RPM-BSFC) 

 

 

Figure 7.  Engine Performance Map from GT-Power Model (BMEP-RPM-BSFC) 
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Figure 8. Engine Performance Map from Experimental Results (Engine Torque-RPM-BSFC) 

 

 

Figure 9. Engine Performance Map from GT-Power Model (Engine Torque-RPM-BSFC) 

 

Note the region of lowest Brake Specific Fuel Consumption (BSFC) (highest efficiency) at a relatively low 

piston speed and a relatively high Brake Mean Effective Pressure (BMEP). This is where the product of 
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indicated, mechanical and combustion efficiencies is highest. A broad comparison between the performance 

maps obtained from practical and simulation results gives a perspective on working differences for further 

conjectures. 

 

 

Figure 10.  Engine Performance Map from Experimental Data (BMEP-RPM-Exhaust Temperature) 

 

 

Figure 11.  Exhaust Temperature with RPM and Torque (Experimental Results) 

The sharp increase in exhaust gas temperature to high loads necessitates specific measures to protect the 

exhaust gas. This map is very important in calibrating the ignition angle and Exhaust Gas Recirculation (EGR) 

rates which can lead to an effective operation of the catalytic convertors, protecting them from thermal aging at 

high temperatures and cooling-down at low temperatures. It is very important for the catalytic convertors to 

quickly reach the light-off temperature in order to covert the raw emission to harmless components. The map 

shown in Figure 10 clearly indicates the relation between Exhaust Temperature, BMEP and RPM of the engine. 

As the RPM increases, the BMEP is ought to increase. The same trend is also shown in Figure 11, where the 
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exhaust temperature is seen to increase with an increase in torque and RPM. This means that more fuel 

combustion will ultimately will result in more heat being produced in the engine. Therefore, the indication of 

higher exhaust temperature with an increase in RPM, BMEP and torque is a true validation of more combustion. 

 

 

 

Figure 12. BMEP with RPM obtained from GT-Power Model 

 

The hypothetical constant pressure inside the cylinder acting on the piston during the expansion stroke is the 

mean effective pressure and produces the same amount of work as of an actual cycle. It is one of the major 

parameters to determine the engine performance. Top Dead Center Firing (TDCF) is the point that indicates the 

highest pressure inside the cylinder because this step needs a high pressure to initiate combustion. The highest 

BMEP is around 8.48 bars at 2250 rpm engine speed. The graph shown in Figure 12 indicates that BMEP 

increases with an increase in the value of RPM and then starts to decrease after reaching its maximum value of 

8.47 bars at 2250 RPM. 

The P-v diagram of the simulated engine model was obtained from GT-Power with respect to different 

engine speeds. P-v diagram for RPMs from 800 till 1200 is shown in the Figure 13 with their particular IVO, 

IVC, EVO, EVC, SOI and SOC for every 200 rpm interval. Figure 14 diversifies the experimental and 

simulation results of applied torque in characteristic with output power and RPM. The solid lines in the Figure 

represent the practical results while the dotted lines represent the data obtained from the simulation model. For 

low RPMs, the difference between the two cases seemed to be within an average of 25 % range, while with an 

increase in engine speed (RPM) the lines tend to get closer to each other. At RPM value of 2,000 the difference 

between them remained to be within 5%. The results shown for applied torques of 30 Nm (grey lines) and 40 Nm 

(yellow lines) seemed to show the greatest difference between practical and simulated results. 

The trend of power with rpm of the Engine is described by the graph shown in Figure 15. The red line indicates 

the data from GT-Power while the blue line indicates the results obtained from experimental data. The dashed 

line shows predicted trend for higher values of RPM for experimental data.  

This prediction is made because the practical experimentation was done until the practically maximum 

achievable RPM value of 2,400. Power increases with engine speed and starts to decrease at a very high engine 

speed values, usually one and a half times the speed of maximum torque. Normally the power of diesel engines 

tend to show a linearly increasing trend until 5,000-6,000 RPM, after which a decrease is expected.  
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Figure 13. P-v Diagram of the model from GT-Power 

 

 

 Figure 14. Relation of Power, RPM and Applied Torque  
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Figure 15.  Brake Power with RPM from Simulation and Experimental Results 

 

 

Figure 16. Brake Torque with RPM from GT-Power Model 

By definition, brake torque is the amount of torque delivered by the engine to the shaft. Over a full engine 

speed, Maximum Brake Torque (MBT) helps a designer by indicating the ability of obtaining a higher air flow 

over maximum rpm for an effective use of air. The torque of the engine is directly measured from the 

dynamometer. This reading is the measure of the Engine’s ability to perform work. The brake torque of the 

engine from our simulation model is shown in Figure 16 as brake torque.  

The MBT was found to be at 2,250 rpm of engine speed. Before reaching the maximum value the brake 

torque increases with an increase in RPM. It then starts to decrease for values higher than 2250 RPM. It is 

demonstrated in figure 17. This happens because at higher speeds the engine is unable to gulp a complete charge 

of air. Another factor contributing to this trend is frictional losses. Frictional forces increase with an increase in 

the speed and become more prominent at higher RPM values. 
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Brake specific fuel consumption decreases as engine speed increases, reaches a minimum, and then 

increases for high RPM values. At low speeds, a longer time per cycle allows more heat loss. Therefore, the fuel 

consumption goes up. Fuel consumption increases at high speeds because of greater friction losses. As our 

engine has compression ratio of 14.6, therefore it can be categorized in terms of having a medium Thermal 

Efficiency. This value of compression ratio (CR) is important as it has a significant effect on BSFC values. A 

higher CR means more compression, which in turn means better ignition/combustion inside the cylinder. Thus, 

BSFC decreases with an increase in CR. It also decreases with higher CR due to higher thermal efficiency. 

 

 

Figure 17.  BSFC with RPM from GT-Power Model  

 

 

Figure 18.  Volumetric Efficiency with RPM from GT-Power 
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Volumetric efficiency (VE) is actually a measure of the productivity of the engines induction process. This 

can be directly defined as the ratio of air volume flow rate into the intake system to the rate of volume 

displacement by the piston. In Figure 18, the volumetric efficiency is seen to increase with engine speed, apart 

from showing some fluctuations. This is because as the engine speed increases, the rate of air suction in the 

cylinders also increases exponentially with respect to the valve opening time which results in the charging of the 

cylinder with a greater volume of air. As shown the volumetric efficiency at 800 RPM is shown to be around 

70.50% (0.705) and at 4,000 RPM it is about 80.00 % (0.800). As VE depends greatly on the throttle opening, 

induction and exhaust system layout, port size, valve opening duration and valve timing, therefore, these 

fluctuations are a result of a combination of all these factors at different engine speeds.  At very high RPM 

values (around 5,000–6,000) the VE is expected to decrease with further increase in RPM due to air flow 

resistance caused by: 

- Air filter resistance 

- Throttle damper resistance 

- Aerodynamic resistance of manifolds 

- Intake valve resistance 

Table 3 shows the details of the fuel used in our engine during the experiments. The same values of fuel was 

entered in GT-Power for our simulation model. As seen from the table the Heat of Vaporization of the fuel was 

270 kJ/kg which was taken into consideration for the calculation of Power Input given to the engine. 

 

Table 3. Fuel Properties 

Euro Light Diesel 

Molecular Form C12.3H22.2 

Molecular Weight 170 

Heating Value – LHV (kJ/kg) 42500 

Stoichiometric (AF)s 14.5 

Stoichiometric (FA)s 0.069 

Heat of Vaporization (kJ/kg) 270 

Cetane Number 40-55 

 

The Power input to the engine at different RPM and applied torque is shown in Figure 20. With some minute 

fluctuations, the graph clearly represents an increase in input power with an increase in applied torque and RPM. 

This phenomena matches with the theoratical logic as increase in RPM and in applied torque demands more fuel 

intake in the cylinder for higher combustion as represented by Figure 19. Thus, a higher fuel intake represents a 

higher power input. 
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Figure 19. Relation of Fuel Consumption, RPM and Torque from Experimental Results 

 

 

Figure 20. Relation of Power In, RPM and Applied Torque from Experimental Results 

 

 

 

Figure 21. Valve Lift Profile of the Engine 

 

The valve lift profile was measured experimentally in the laboratory from real intake and exhaust cams on 

the cam shafts. The data was then plotted and the two cam profiles (intake and exhaust) were linked with each 

other on a single graph. The red represents the exhaust valve profile while the blue represents the intake valve 

profile and it can be seen in figure 21. 

The maximum valve lift for Erin engine was given to be 11 mm while practically it was recorded to be 10.40 

mm. The intake valve opening crank angle was measured to be 54° while the intake valve closing crank angle 

was shown to be 74°. The exhaust valve opening crank angle was 74° and the exhaust valve closing crank angle 

was 54°. The crank angle at the start of injection appeared to be 19° Before Top Dead Centre (BTDC). 
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Figure 22. Volumetric Flow with Crank Angle from GT-Power Model 

 

The mass flow rate of the intake valve plotted against crank angle obtained from out GT-Power model of the 

engine is shown in Figure 22. This Figure helps us to understand the valve actions during the intake, 

compression, power and exhaust stroke. The Figure clearly indicates that the volumetric flow rate starts to 

increase from TDC, reaches a maximum and then starts to decrease until it reaches zero at BDC. This happens 

because the valve starts to open at TDC, then starts to close after reaching the maximum valve lift and closes 

fully at BDC, where the cylinder has the maximum volume. It shows negative values of volumetric flow during 

the compression stroke which can be explained by the flow of the mixture out of the intake stroke when the 

compression has already begun and the intake valve is still closing. 

A higher engine speed means more combustion and this ultimately means more air flow in the cylinder. 

The same trend is shown by the graph in Figure 22. 

 

VIBRATION ANALYSIS 
Diesel engine noise and vibration can create harmful effects on hearing and user’s body. This is specially 

observed in the engines with high compression ratios and fast rising combustion pressures.  
This has a wide scope in future as it can also be used to detect the injector fault detection. Early detection of 

diesel engine faults is essential in order to take early corrective measures and avoid expensive repairs. Vibration 

measurement on the engine block or cylinder heads a non-intrusive method and has been used successfully 

for fault detection of diesel engines. 

A wireless accelerometer was fixed at the head of the engine to record the readings of z-axis (Vertical) 

Acceleration of the Engine. The Accelerometer had the capacity to record 3200 values of acceleration in one 

second. The data from the accelerometer was sent wirelessly to the computer using wireless adapters. The device 

was powered using a portable battery and operated on low-power operation. The vibrational data was recorded 

and transferred efficiently without any errors in the readings or tussle of wires. 

The vibration data was recorded between the RPM values of 1,000 and 2,000 at every 100 RPM interval. 

Vibration and Fast Fourier Transform (FFT) Graph was made using MATLAB. 

According to Figure 23, the optimum operational RPM of the engine is shown to be 1800 RPM. The engine 

was seen to operate very smoothly at this particular RPM. Figure 24 also clearly indicates that the most smooth 

transition between Thermal Efficiency and Brake Power is shown at 1800 RPM which was indicated previously 

to be the optimum RPM of the engine. Table 4 shows the accelaration and Fast Fourier Transform (FFT) plots.  
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Figure 23. Maximum FFT values with RPM 

 

Table 4. Demonstration of Acceleration and FFT plots  
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RPM = 1300 
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Table 5.  Demonstration of Acceleration and FFT plots (Continued) 

 

 

 

RPM = 1400 

 

RPM = 1500 

 
RPM = 1600 

 

 

RPM = 1700 

 
RPM = 1800 

 
RPM = 1900 
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Table 6.  Demonstration of Acceleration and FFT plots (Continued) 

 

 

Figure 24. Relation of Thermal Efficiency with Braking Power and RPM 

 

 

CONCLUSION 

In this investigation, the major differences between the trend lines of the graphical results of experimental 

and simulation results were studied. 

Simulated results appear to be near the experimental results but not necessarily follow the trend shown by a 

practical engine. This happens because the condition of the practical engine changes under extreme low or 

extreme high conditions. The results appear to be closest to each other near the optimum operating conditions. 

The results of the simulation widely depend on every small detail entered in the simulated model. Brake power is 

the feature that can be compared in both the situations and appeared to be 11.3 kW for experimental case while 

13.2 kW for the simulated case at the optimum RPM value of 1,800. 

The trend of engine performance maps for both cases appeared to be in correlation with each other apart 

from some anomalies shown in the practical results for low BSFC values.  

The maximum torque of the 1.16 L Erin Engine is given to be 80 Nm @ 1,800 RPM, while the simulation 

model indicated it to be 78 Nm at the same RPM value. Likewise, maximum power output was indicated to be 

18 kW @ 2,400 RPM, while the experimental results showed it to be 15 kW @ 2,400 RPM. 

The vibration analysis of the engine proved to be very accurate in its purpose of determining the optimum 

RPM. The optimum engine speed at which the engine performs very smoothly and efficiently was given to be 

 
RPM = 2000 
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1,800 RPM. This value was cross-matched with the previous results of engine performance and it was clarified 

that the engine performed the best at this value of RPM. Vibration analysis along with noise analysis can further 

be used to predict the faults and changes in the engine behavior, in future studies. 
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NOMENCLATURE 

AFR   Air-Fuel Ratio 

BDC   Bottom Dead Center 

TDC   Top Dead Center 

ABDC   After Bottom Dead Center 

BBDC  - Before Bottom Dead Center 

ATDC   After Top Dead Center 

BTDC   Before Top Dead Center 

CN   Fuel Cetane Number 

EGR   Exhaust Gas Recycle 

IVO   Intake Valve Opening 

IVC   Intake Valve Closing 

EVO   Exhaust Valve Opening 

EVC   Exhaust Valve Closing 

MEP   Mean Effective Pressure 

SFC   Specific Fuel Consumption 

BSFC   Brake Specific Fuel Consumption 

ISFC   Indicated Specific Fuel Consumption 

BMEP   Brake Mean Effective Pressure 

TC   Top-center crank position 

ATC   After TC 

BTC   Before TC 

RPM   Revolutions per minute 
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