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ABSTRACT 

Here we show how smart features of self-cooling and self-healing can be gained to mechanical systems with 

embedded vascular structures. Vascular structures mimic the circulatory system of animals. Similar to blood 

distribution from heart to the animal body, vascular channels provide the distribution of coolant and/or healing 

agent from a point to the entire body of a mechanic system. Thus the mechanic system becomes capable of cooling 

itself under unpredictable heat attacks and capable of healing itself as cracks occur due to applied mechanical 

loads. These smart features are necessary for advanced devices, equipment and vehicles. The essential design 

parameter is vascularization in order to provide smart features. There are distinct configurations for vascularization 

such as radial, tree-shaped, grid and hybrids of these designs. In addition, several theories are available for the 

shape optimization of vascular structures such as fractal theory and constructal theory. Unlike fractal theory, 

constructal theory does not include constraints based on generic algorithms and dictated assumptions. Therefore, 

constructal theory approach is discussed in this paper. This paper shows how smart features can be gained to a 

mechanical system while its weight decreases and its mechanical strength increases simultaneously. 
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INTRODUCTION 

Uncovering the design with the smallest resistance to the flow of heat, fluid and stresses is the fundamental 

of technological improvement. The reason of this is that the flow of heat, fluid and stresses are functions of the 

design. Using higher-conductivity material increases the heat transfer rate from a heat exchanger but the challenge 

is finding the best shape for minimizing thermal resistances by using a given material with fixed volume. The same 

challenge is also valid for minimization of resistances to the flow of fluids and stresses. Uncovering the best 

performing design ensures the usage of scarce materials and energy wisely, i.e. where they are necessary. 

There are two well-known theories in the literature for design optimization: constructal theory [1-4] and 

fractal theory [5-6]. Fractal theory discusses that the design should repeat a pattern that displays at every scale, i.e. 

the shape of a tree should be the same for every regions of the tree: from trunk to the branches [5-6]. However, the 

designs in nature do not confirm this theory. In addition, Bejan and Lorente [2] showed that the fractal designs do 

not provide the smallest resistance to the fluid flow in tree-shaped architectures but constructal designs do.  

Constructal theory was stated by Adrian Bejan in 1996 as “For a finite-size system to persist in time (to 

live), it must evolve in such a way that it provides easier access to the imposed currents that flow through it” [1]. 

This theory actually uncovers that there is no optimum design but best performing designs for a known time, 

constraints and conditions. As these time, constraints and conditions change, the design should also be morphed 

in order to survive. For example, some bacteria colonies such as living in lassen volcanic national park (California, 

USA) are capable of living in highly acidic regions. Even though these bacteria live in very harsh conditions (in 

terms of pH), they cannot be called the optimum or best bacteria kinds because they have evolved to live in these 

conditions. In technology, this trend of shape change in time (evolution) is also necessary and valid. For example, 

Walkman was revolutionary because of gaining mobility to music players. However, mobile music players have 

evolved from Walkman to mp3 players and then to the applications in smart phones. The brand of Walkman has 

forgotten because it have not evolved as fast as technology does. There are many similar examples in biology, 

geophysics, physics, chemistry and engineering. This shows that constructal theory is a unifying theory of animate 

and inanimate as discussed in the literature [7-8]. Constructal theory has been used in distinct fields such as biology, 

chemistry, physics, geophysics and engineering in order to show how design affects the performance in lungs, 

bacteria colonies, river-deltas, Eiffel tower, lightning bolts, snow-flakes and so on [1-4, 7-8].   
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In summary, constructal theory unifies and connects distinct fields, and it is valid for animate and 

inanimate. The best performing design for given conditions and constraints is the constructal design, and this 

constructal design changes as conditions and constraints change, i.e. the design is dynamic. Furthermore, the 

design is not restricted by generic algorithms and dictated design assumptions in constructal theory, i.e. the design 

is morphed freely in order to minimize resistances. 

 

RESULTS AND DISCUSSION 

Self-healing and self-cooling applications in engineered systems are biologically inspired. Similar to 

distribution of blood in the human body for keeping its temperature uniform and providing healing when a cut 

occurs on the body, distributing coolant and/or healing agent to the entire volume of a mechanical system provides 

self-cooling and/or self-healing capability to it. There are two main methods for self-healing: vascularization and 

microcapsules. White et al. showed that a damaged structure can be healed with embedded microcapsules which 

are filled with healing agents [9]. As cracks damages the microcapsules, microcapsules crack and the healing agent 

inside fills the gaps and polymerizes. Therefore, this healing method can be used on time for the lifetime of the 

mechanical system. In addition, literature shows that the mechanical strength of a structure drops after healing 

occurs [10-11]. Moreover, literature also shows that after the structure is damaged the applied mechanical force is 

unloaded for structure to be healed during experiments [12-13]. In addition, literature shows that the conductivity 

of a self-healing structure can be restored [14-15]. 

Unlike embedding microcapsules filled with healing agents, embedding a vascular structure in which 

healing agent flows in engineered structure enables the structure of healing countless time [16-18]. This embedded 

structure is similar to the blood veins in circulatory system of warm blooded animals. There are different kinds of 

vascular architectures in the literature such as: radial, grid, hybrid and tree-shaped designs. Each architecture has 

its positives and negatives. Radial and tree-shaped designs provide the smallest pressure drop in comparison with 

grid and hybrid structures [19-22]. However, grid and hybrid structures bathe the entire volume more uniformly 

in comparison with radial and tree-shaped designs [19-22]. In self-healing and self-cooling, it is essential to bathe 

the entire volume with coolant and/or healing agent due to random and unpredictable characteristics of heating 

and mechanical loads. The pressure drop of hybrid of grid and tree-shaped designs is smaller than grid designs and 

greater than tree-shaped architectures. In addition, this hybrid architecture bathes the entire volume almost as good 

as grid designs [22]. Therefore, hybrid of grid and tree-shaped designs became the best option for smart features. 

Literature also shows that the vascularization gains self-cooling capability to a structure [16-25]. Similar 

to healing agent flow inside the vascular channels, a coolant flows through the embedded vascular channels. The 

cooling performance of the vascularized structure is affected by the volume fraction, the complexity of the design, 

the pressure difference which governs the flow and the flow direction [19-22]. For a given set of conditions (such 

as boundary conditions) and constraints (such as volume fraction), there is an optimal design which provides the 

smallest peak temperature. This optimal design should be morphed to the new optimal design as conditions and 

constraints change. Therefore, the biomimetic designs not necessarily the best performing desing, i.e. if the 

objectives of the biological design is different than the engineered design. Cetkin [26] shows that a better 

performing cooling channel configuration exists than the sinusoidal channels which are inspired from the vascular 

channels in epidermis. This dynamic behavior of design is in accord with constructal theory. Therefore, the optimal 

design for a given set of conditions and constraints can be called the constructal design. As time passes, the 

structure should be morphed into the next constructal design if not it cannot survive. This trend is valid for animate 

and inanimate (natural or engineered). 

Furthermore, the cooling requirements can be deterministic and random. The deterministic cooling 

requirements are due to heat sources which are known and steady, and random ones are unsteady and diverse. A 

structure is protected from random and deterministic heat sources via embedded vascular cooling channels [20]. 

Random cooling requirements are responsible of damaging the structure which is designed to work in steady state 

due to their unpredictable nature. 

In addition of gaining smart features to a structure, vascularization provides mechanical strength with 

light weight which are essential for advanced vehicles [19-22, 27-28]. The strength of a structure decreases due to 

removal of the material in order to create vascular channels. However, if the material volume is fixed, the removed 

material is placed outside of the structure [19, 29]. It is also known from the strength of materials that the centerline 

of a structure is not stressed under bending. Therefore, removing the material from center and placing it around 

the vascular channels increase mechanical strength of the structure, i.e. the material is put where it is loaded the 
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most. Therefore, the strength of the structure increases with vascularization. Furthermore, if the structure is heated 

then the effect of thermal stresses cannot be neglected. Cetkin et al. shows when the effect of thermal stresses can 

and cannot be neglected [29]. Coolant flow in the vascular channels decreases the peak temperature and creates a 

more uniform temperature distribution in the solid domain; so, thermal stresses decrease greatly. Therefore, self-

cooling structures have greater mechanical strength than non-vascularized structures under great heat fluxes. 

Similar to how advanced capabilities of self-healing and self-cooling require vascularization in order to 

bathe the entire volume with coolant fluid and/or healing agent, vascularization is also essential in order to decrease 

the resistances of the distribution of energy, goods and water [1-4, 30]. A factory distributes all its products to the 

cities located around the world and collects raw materials around the world similar to distribution and collection 

of coolant and/or healing agent in advanced materials. These distribution and collection kinds of flows are 

examples of flows from a point to an area (or volume). 

 

Vascularized Structures with Uniform and Non-uniform Heating 
A structure can be bathed by coolant and/or healing agent with embedded vascular channels while its 

mechanical strength increases and its weight decreases. Discussion of some vascular channel configurations with 

uniform and non-uniform heating is required in order to uncover how the coolant and/or healing agent is distributed 

throughout the structure with random (non-uniform heating) and prescribed (uniform heating) boundary 

conditions. The objective is to find the design with the best cooling performance (i.e. uncovering the design which 

bathes the entire volume with coolant and/or healing agent). 

Here we show that the mechanical strength and thermal performance of a heated and mechanically loaded 

circular plate can be increased with embedded radial and tree-shaped vascular structures in it. The diameter and 

thickness of the circular plate are D and H, and their ratio is D/H = 10 which is fixed, Fig. 1a [19]. The solid 

volume is fixed, so is the volume of the vascular channel network. The plate is subjected to uniformly distributed 

force and uniform heat flux, both acting from below, Fig. 1a. 

The dimensionless governing equations (the conservation of the mass, the conservation of the momentum 

for the fluid domain, the energy equations for fluid and solid domains, the generalized Hooke’s law and the 

conservation of momentum equations for solid domain) were solved in a finite element software [31]. Mesh test 

was also performed to confirm mesh independency of the results. 

The heat flux and the mechanical load are applied on the bottom surface of the plate as shown in Fig. 1a. 

The pressure difference between inlet and outlet is non-dimensionalized as Bejan number [32, 33]. 

 

 
 

Figure 1.  (a) Radial channel configuration embedded in the circular plate. (b) The effect of the number 

of cooling ducts on the dimensionless peak temperature and the dimensionless peak stress [19] 

 

 

�̃�𝑚𝑎𝑥 =
(𝑃𝑖𝑛−𝑃𝑟𝑒𝑓)𝐷

2

𝜇𝛼
          (1) 
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where μ and α are dynamic viscosity and thermal diffusivity of the fluid. The value of  �̃�𝑚𝑎𝑥 represents the 

dimensionless overall pressure difference between the coolant inlet and outlet. The flow is laminar in all the 

channel configurations, Re < 2000. 

The peak temperature and the peak stress is affected by the design. Therefore, the design corresponding 

the smallest resistance to the flow of heat, fluid and stress can be uncovered by freely morphing the design. Figure 

1b shows the relation between the temperature, stress and number of ducts when   is 107 and 108. The maximum 

stress decreases when the number of the cooling channels increases from 6 to 8, and it increases when the number 

of the cooling ducts increases from 8 to 32. The reason of this behavior is that the maximum stress increases in the 

vicinity of the junctions of the cooling ducts. Even though   the peak stress is the minimum when the number of 

the channels is 8, neighboring designs (6 cooling channels when = 107 and 12 cooling channels when = 108) offer 

minimum peak temperatures. In summary, when the pressure drop is prescribed, it is possible to identify one design 

(or a group of designs) that provides the minimum peak stress and peak temperature, or vice versa. However, there 

is no optimal design for all the constraints and conditions. 

Next consider a square plate with length L and thickness H = 0.1L with embedded vascular channels, Fig. 

2a [22]. The plate is subjected to a uniformly distributed load and uniform heat flux both acting from below. The 

volume of the solid and the fluid are fixed. Lg is the length scale of the square area in which the grid cooling 

channels are embedded as shown in Fig. 2a. 

 The grid channels are connected to the periphery with radial channels. Coolant enters or exits from the 

center of the grid, and it is driven by the pressure difference maintained between the inlet and outlet boundaries. 

The results were obtained by solving the governing equations numerically. 

 Figure 2b shows that the minimum peak temperatures plotted against the peak stresses as Lg/L varies. The 

effect of the flow direction on the peak temperature and stress is weak. Tpeak and   decreases when Lg/L < 0.25, and 

the peak temperature increases as Lg/L increases even though the peak stress decreases and increases. The peak 

stress is the minimum when the design is a hybrid of grid and trees. However, the peak temperature is the minimum 

with radial channels. 

 Consider that the heating is concentrated in a small region on the vascularized solid domain. The area of 

the heated spot is 1/16 of the square area of length scale Lg, Fig. 2 [22]. The total heating rate of the concentrated 

heat generation is fixed, i.e. volumetric heating rate increases as the heat generating region size decreases in order 

to conform fixed heating rate. 

 Figure 3a shows how the peak temperature changes as Lg/L increases. When the concentrated heating is 

located in the center of the slab, Tpeak decreases as Lg/L. When the concentrated heating is located in the corner of 

the grid, Tpeak increases as Lg/L increases. Tpeak is the lowest when Lg/L = 0.25 with the concentrated heating is in 

the corner, and when Lg/L = 0.625 with the concentrated heating is in the center. In addition, when Lg/L = 0.375 

the peak temperature becomes almost as low as the lowest peak temperature obtained when the concentrated 

heating is located in the center or in the corner. Figure 3b shows the temperature distribution in the mid-plane of 

square domain when the heat generation is concentrated in the center of the slab and in the corner of the grid for 

Lg/L = 0.25 and 0.5. The effect of flow direction on the temperature distribution is also shown in Fig. 3b. 

 

 
Figure 2. (a) Grid structure connected to the perimeter with radial channels (b) Minimum peak 

temperatures relative to their peak stresses as Lg/L varies [22] 
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(a) (b)

 
Figure 3. (a) Peak temperature relative to Lg/L when the flow direction and the concentrated heat generation 

location change. (b) The temperature distribution in the mid-plane of the slab [22] 

 

 Consider a square plate of length scale L, and thickness of H = 0.1L as shown in Fig. 4 [20]. A vascular 

channel network is embedded in the plate in order to keep it under an allowable temperature ceiling while the plate 

is heated with a concentrated and moving heat flux. The length scale of the square footprint of the heating spot is 

0.1L and it moves with the constant speed of W from one edge of the plate to another. Four possible beam paths 

are discussed as shown in Fig. 4. The volume of the solid is fixed, so is the volume of the fluid. Coolant enters or 

exits from the center of the slab while the pressure difference between the inlet and exit boundaries is constant. 

The flow is incompressible with constant properties, and the dimensionless governing equations are time 

dependent, the dimensionless equations can be found in Ref. [20].  

 Figure 4 shows the average peak temperature of a solid structure (without embedded vascular channels) 

and the average peak temperature in four competing designs with embedded vascular channel configurations. The 

error bars indicate the maximum and minimum peak temperatures when the dimensionless time is greater than 0.1, 

i.e. after the entire concentrated heat flux enters the plate surface. Figure 4 also shows that a plate heated by a 

moving beam with an unpredictable path can be cooled by embedding vascular cooling channels in the plate. The 

effect of changing from no cooling to vascular cooling is dramatic with random cooling requirements similar to 

with prescribed cooling requirements. 

 Next, consider the plate with uniform heating load applied on its surface has embedded channels 

configured as radial, tree-shaped and their hybrid, Ref [34]. Figure 5 shows how the temperature distribution 

changes as the design and pressure drop (the difference between the inlet and outlet pressures) are altered. The 

resistance to the fluid flow is smaller in tree-shaped designs in comparison with the radial designs (for instance 

mass flow rate is 9 to 19% greater for the same pressure drop and volume fraction with tree-shaped design in 

comparison to the radial design Ref [34]). However, Figure 5 also shows that the thermal resistances in tree-shaped 

designs are greater than the radial designs, therefore, the peak temperature value is greater in tree-shaped designs 

when the pressure drop increases, for example the comparison of radial and tree-shaped designs with 290 Pa  

 

 
Figure 4. The average peak temperatures of four competing designs with vascular channels and the peak 

temperature of solid plate (without vascular channels) [20] 
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Figure 5. Temperature distribution of radial design for (a) 30 Pa, (b) 290 Pa, tree-shaped design for (c) 30 Pa, (d) 

290 Pa, and hybrid design for (e) 30 Pa, (f) 290 Pa [34] 

 

pressure drop value. Overall, the tree-shaped and radial designs promise to minimum resistances to the fluid flow 

and heat flow, respectively. The novel idea is to combining these two in one design, i.e. the hybrid design as shown 

in Fig. 5. Hybrid design performs almost as good as radial design and tree-shaped designs in terms of resistances 

to the heat and fluid flow. Both resistances are slightly greater (several per cent) than the corresponding minimum 

value of the best performing design.  

The result of Figure 5 uncovers that in some cases the conductive resistances are in great importance. In 

order to increase the overall thermal conductance of a solid material high-conductivity inserts can be placed. Figure 

6 shows how the locations of this high-conductivity inserts affect the thermal conductance by minimizing the peak 

temperature for fixed boundary conditions, Ref. [35]. 

Figure 6 shows that high-conductivity inserts should be embedded non-equidistantly in order to minimize 

thermal resistances. However, Figure 6 shows that there are family of best options, i.e. similar performing designs. 

 

 
Figure 6. The effect of the second level high-conductivity insert locations on maximum  

temperature [35] 
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For instance, if the first insert is fixed at 0.2 position, then second insert should be located at 0.8. However, 

the same performance can be achieved with placing inserts at locations 0.4 and 0.75. 

 

CONCLUSION  
This paper shows how the smart features of self-cooling and self-healing can be gained to an engineered 

structure. Vascularization is essential in order to bathe the entire volume of the system with coolant and/or healing 

agent. The best performing vascular channel networks for circular and rectangular plates with uniform and non-

uniform loads are documented. Novel hybrid designs of radial and tree-shaped designs are documented. In 

addition, the increase in the overall thermal performance for self-cooling with embedded high-conductivity 

materials is uncovered. 

This paper also shows that the hybrid designs combine the best features of each design that they were 

constructed from. Furthermore, this paper uncovers that there is no best design but family of best designs. This 

idea is in accord with the constructal law and the tendency in the nature. For instance, even the tree-shaped designs 

minimizes the resistances to the fluid flow for point to area (or volume) flows which explains why the tree roots 

and branches are similar to the animal lungs, none of the trees and animal lungs are identical and they vary from 

plant to plant and animal to animal (even for the same species).  
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NOMENCLATURE 

d diameter of cooling channels, m 

H plate thickness, m 

k thermal conductivity, W m−1 K−1 

L rectangular plate length scale, m 

Lg length scale of the grid region, m 

P pressure, N m−2 

Pst mechanical load, N m−2 

Pin inlet pressure, N m−2 

R  circular plate radius, m 

q'' imposed heat flux, W m−2 

T temperature, K 

x horizontal direction, m 

Greek symbols  

α  thermal expansion coefficient, K−1 

μ  dynamic viscosity, kg m−1 s−1 

σ  normal stress, N m−2 

Subscripts 

in inlet 

st mechanical 

max maximum 

ref reference 

Superscript 

~ dimensionless 
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